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Abstract

Existing approaches to high-level robot control which sup-
port deliberation in one form or another usually do not view
the time spent on reasoning as critical, which is true in typi-
cal applications like office delivery. This is not so, however,
in domains like robotic soccer where a team of robots must
cooperate in a highly dynamic environment and where ac-
tions need to be chosen under tight resource constraints. For
this reason, most existing systems for such domains rely on
purely reactive architectures without a reasoning component.
Our aim is to build robotic soccer agents which are capa-
ble of limited forms of deliberation using the action language
Golog. In order to meet the real-time constraints, we propose
to integrate Golog into a hybrid architecture, which enables
the robot to react to the environment very fast as well as to
choose actions proposed by the reasoning component. We
feel that Golog is particularly well-suited for the reasoning
component because it allows to limit the search space by pro-
gramming complex actions and because of recent advances
in extending the expressiveness of the language to deal with
issues like continuous change, event-driven behavior, and un-
certainty, all of which are important in a domain like robotic
soccer.

Introduction
Autonomous mobile robots have been successfully deployed
in a number of realistic domains like office delivery or mu-
seum tour guides (Simmonset al. 1997; Burgardet al. 2000;
Thrun et al. 1999). Typically, such robots exhibit a high-
level controller which selects the next action to be exe-
cuted, which is then handed to other, low-level routines
which oversee the actual execution of the action such as
navigating to a certain location. High-level controllers can,
roughly, be divided into those which do not make use of
(logic-based) deliberation and which make up the major-
ity of existing systems (Murphy 2000), and those which do
such as (Myers 1996; Thielscher 2002; Burgardet al. 2000;
Boutilier et al. 2000).

Being able to reason about one’s actions clearly has ad-
vantages in that a) the user is able to specify a task at an
abstract level and b) the robot can project the outcome of
its actions and choose the best course of actions accord-
ing to some measure like cost or utility. There is a price
to pay, however. Reasoning does not come for free and
is indeed intractable in general settings such as planning.

Action languages like Golog (Levesqueet al. 1997) al-
leviate this problem to some extent by offering program-
ming constructs to limit the search space, but even there
the problem does not go away. Hence it is not surpris-
ing that the applications where reasoning mechanisms have
been employed are usually not time-critical. For exam-
ple, it does not matter much if the robot spends seconds
or even a minute or more to figure out an optimal sched-
ule to deliver mail. But what about highly dynamic domains
like robotic soccer where a timely response is critical? In-
deed, with few exceptions such as (Jensen & Veloso 1998),
most existing soccer playing systems do not use a princi-
pled (logic-based) reasoning component at all or only to
a limited extent as in (Murray, Obst, & Stolzenburg 2001;
Burkhard 2001).

Challenges and opportunities for deliberation in robotic
soccer present themselves as follows: On one hand, a high
degree of reactivity is necessary to cope with the ever chang-
ing environment, which often presents unexpected opportu-
nities like a ball rolling into close range. Even if the robot
has the ball, it should not just stand around and muse about
what to do next. Chances are that an opponent will intercept
and the ball is lost to the other team. On the other hand,
deliberation clearly seems useful for intelligent game play
such as playing a double-pass to out-play the opponents or
to force an off-side by coordinating with the other defend-
ers. The question then is how to allow for some deliberation,
which may involve comparing several candidate plans, with-
out losing the advantage of quick responses.

In this paper, we want to argue that a recent extension of
Golog is a good candidate for the deliberative component
of a robotic soccer agent, but, compared to previous uses of
Golog, it needs to be integrated into the system in a hybrid
fashion, similar in spirit to (Jensen & Veloso 1998). (We will
discuss the connection to this work at the end of the paper.)

Our proposal is to adopt a hybrid approach to how the next
action to be executed is chosen. To guarantee a fast response,
we use a reactive component which suggests an action solely
based on the current state together with some heuristics to
determine the utility of the possible actions. At the same
time, a Golog reasoning system runs asynchronously, which
takes the current world model and projects a number of can-
didate plans, chooses the best one and returns it for execu-
tion. A separate action selection module chooses among the
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actions returned by the reactive component and the next ac-
tion of� the plan returned by Golog and initiates its execution.
Note that by running Golog asynchronously, it does not have
direct control over the robot and it may take some time to
produce a plan. If Golog does not return a plan in time, then
there is always an action to choose from the reactive com-
ponent, which may not be optimal but is likely much better
than doing nothing.

In the remainder of this paper we will describe the pro-
posed hybrid architecture which combines reactive behav-
ior and deliberation in more detail. All examples are drawn
from robotic soccer, which has been the driving force behind
developing this architecture. However, we feel that the prin-
ciples involved go beyond soccer playing robots and apply
more generally to robots acting in highly dynamic environ-
ments. This is very much a report on work in progress and it
probably leaves open more questions than it answers. On the
other hand, we feel we are heading in the right direction of
showing that cognitive robotics can have significant impact
in areas where so far it has played little role, if any.

The rest of the paper is organized as follows. In the next
section, we briefly introduce the RoboCup soccer domain.
We then present our hybrid architecture for combining de-
liberation with reactivity, illustrated by examples and issues
from robotic soccer. We finish with a brief discussion and
give an outlook on future work.

The RoboCup Domain
The efforts around robotic soccer are coordinated by the
RoboCup organization (RoboCup 2002). RoboCup provides
a number of benchmarks to test and compare ideas in mo-
bile robotics, in particular, soccer playing robots.1 Soccer
naturally lends itself to comparing the effectiveness of ideas
in competitions, which are held annually at various national
and international events. Due to the wide area of different
problems, five soccer leagues are distinguished. The simula-
tion league is the only one using software-agents. The small-
and mid-size league, the Sony four-legged and humanoid-
robot league are played with real hardware. We concentrate
on the simulation- and mid-size league, mainly for two rea-
sons. For one, these are the leagues we are experiment-
ing with and competing in ourselves. For another, these
two leagues provide rather complementary challenges. The
simulation league requires the coordination of a fairly large
team of agents, yet without the burden of dealing with ac-
tual sensors and effectors. The mid-size league, on the other
hand, features small teams of robots, where each robot can
be equipped with rather sophisticated sensors and effectors.

In a little more detail, we have the following: In the
mid-size league, four robots with a maximum extension of
40 � 40 � 80cm are on a team. They have kickers to hold
and kick the ball. A model of the world — so a model
of the situation on the playground — has to be obtained
through sensors like laser range finders and video-cameras.
In the simulation league, there are 11 agents on each team.
The world model needed for computing the next actions are

1There is alsoRoboCup Rescue, which deals with robots rescu-
ing people from disaster zones.

Figure 1: One of our mid-size robots

given by the simulation-server, called SoccerServer (Noda
et al. 1998).

Despite the differences in the two leagues, we believe that
the architecture presented in this paper is appropriate for
both leagues.

An architecture for RoboCup
Overview
Figure 2 summarizes our architecture which enables us to
use deliberation as well as benefit from reactive behavior.

Reactive Component Deliberative Component

Utility

Sensors

Effectors

Abilities

Basic Worldmodel

Team−level tactics

Group−level tactics

Sit. Classification

Figure 2: Architecture

Using sensor data as input the world model (surrounded
by the gray box) keeps track of the positions of the players
and the ball. Simple facts about the game like the start-
ing positions of the players are stored here as well. The
world model also provides a (simple) classification mech-
anism which, roughly, labels a given situation as “good” or
“bad.” Finally, the world model stores information regard-
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ing the tactic currently played by the team as a whole or by
a group� of players like the defenders.

The world model is used by the reactive component (RC),
the deliberative component (DC), and action selection com-
ponent (ASC). The RC computes from the given situation a
“best” next action, whereas the DC (Golog) projects several
candidate plans selects one together with a first action. The
ASC then chooses an action from those suggested by the RC
and DC and hands it to the module Abilities, which handles
the actual execution, which eventually translates into control
signals to the effectors such as the motors or the kicker of the
robot. Here we list the main abilities, which correspond to
the actions available to RC and DC:

1. ��� move to a certain position
2. �	�
������ attack an opponent player
3. ������������� dribble to a certain point
4. ������� ������� stopping the ball
5. ������� pass the ball to a certain

position or player
6. ��� ��� ��!���� shoot towards the goal
7. ����� ����#"$� blocking an opponent
8: ������� �%"&���'� ���(�)� intercept the ball

We will not go into any details of how these abilities are
implemented except to note that, in the case of the simula-
tion league, these are simply given. We also ignore low-level
issues like sensor interpretation, collision avoidance, or self-
localization, which are important but would lead us too far
afield. Finally, we completely ignore the issue of commu-
nication between robots for the purpose of coordination and
the fact that there are adversaries out there with their own
choice of actions. While these are very important issues, we
simply do not have not much to report here yet, but hope-
fully will have in the future.

In the following, we describe in more detail the four com-
ponents central to our architecture: the world model, the re-
active, deliberative, and action selection component.

The World Model
The world model is built from the sensory inputs and static
information about the game. It is divided into four sections.
In the basic world model, information such as the position of
the players and the ball is stored. These values can be com-
puted directly from the sensory input. Keeping track of this
information over the time, one can compute the movement
vectors of the opponent players and the ball. With that one
can make prediction of future positions of objects.

The task of the moduleSituation Classificationis to first
map the information of current player positions relative to
the ball to some more abstract game description, where the
position of the ball is taken as the point of reference. This
information is then used as a starting position for the delib-
erative component to find a preferred game situation. Fig-
ure 3 illustrates the basic concentric grid representation with
the position of the ball at the center. This representation is
adapted from (Stone, Riley, & Veloso 2000).

The gray dots indicate teammates and the black ones ad-
versaries. We classify situations by building groups going
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Figure 3: Model for situation classification with the ball cen-
tered

from the ball through the cones from the inside to the out-
side. If the ball is at position*�+-, +-.�/'0-,1/�2 , which is some-
where in the right mid-field, the situation can then be en-
coded as:34� �������65879�
�
:;�%�����).<�'�#�-!-��� ��3 �>=?5-/	.<@ A#� ��3 ��=B5�C).�/�A���D3 ��EF58G�.<C8A�� ��3 ��EH5�G).�I�A 3 �>JK5�G).�I�A 3 � J����L.(+-.�I'A#��A .

The �>M denote teammates and�8N opponents.
Furthermore we define events like���8�>� ������� or
�#" ��� � � ��� ������!���� �;�8�>�#�
�
��"O*�� = 2 . The ���8�>� ������� -event for
example is generated if our team was in���D��� ���8���'� �'�>�
��" ,
for no agent of our team������� �#" ��%�>�������� �D� ���$*P�>M
2 is valid
and for at least one opponent this is true.

To what extent we have to take direction and speed infor-
mation into account during classification is currently under
investigation. In (Stone, Riley, & Veloso 2000) the number
of players per cone or the relative directions and distances
per player are mentioned as good approximations for situa-
tions.

Another role of classification is to evaluate a given situa-
tion as “good” or “bad.” Consider, for example, the follow-
ing situation from the mid-size league:

Q Q Q Q QQ Q Q Q QR R R RR R R R
S S S S SS S S S SS S S S ST T T TT T T TT T T T

U U U U UU U U U UU U U U UV V V VV V V VV V V V

W W W W WW W W W WX X X XX X X X YZ

Figure 4: A worthwhile game situation for the white team

Clearly, this situation should be classified as “good” by
the white team and, by symmetry, as “bad” by the black
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team. We are currently working on developing simple eval-
uation� functions for this kind of classification.

The Group-LevelandTeam-Level Tacticscan be viewed
as analogues of the directives of the coach in real soccer.
The moduleGroup-Level Tacticsdefines the tactical param-
eters for the different player groups defense, mid-field and
offense. A good tactic for the defense in real soccer, if play-
ing with four defenders (see Team-Level Tactics), might be
forming a string parallel to the goal-line, as so to head to-
wards an off-side. The moduleTeam-Level Tacticssets the
general tactical conditions of the whole team. Parameters
as basic formation, e.g. 4 defenders—4 mid-fielders—2 at-
tackers, offensive or defensive play, wide or narrow play, i.e.
playing over the out-fields or not, are determined here. This
tactical information is simply stored as parameter settings
which the player will use for decision making. A defender
must behave in a different way if she has four other team-
mates playing in the defense than if there are only three other
defenders. The role affiliation is stored in the basic world
model. This information can then be used by any compo-
nent.

Utilities
All methods selecting or reasoning about actions, which we
discuss in the following subsections, use a measure of utility
to rank different possible actions. Here we briefly illustrate
what we have in mind.

Consider the situation in Figure 6(a). Here the labels cor-
respond to utilities, which we assume to range between 0
and 1. We assume that utilities are computable in a simple
manner. For example, a reasonable utility value for pass-
ing a ball to a teammate can be obtained as a function of
the trajectory of the ball, its average velocity, the distance of
the closest opponent from the ball trajectory, and an average
speed of the opponent (see Figure 5). The white player has

PSfrag replacements

[\

]8^`_�abadc

]8egf<h%c

Figure 5: Parameters to compute the utility of a Pass

the opportunity to play a pass (solid line) to the teammate
on the left or on the right. If only the next action is consid-
ered, then the pass to the right is chosen because the utility
value is higher (0.9 vs. 0.8). If several actions are consid-
ered, say, to play a double-pass with the white player moving
along the dashed line, then passing to the left first seems bet-
ter because the combined utility of the two passes is higher

(0.7 � 0.7i 0.9 � 0.2). Now consider two possible situations
after the ball was kicked to the left player. In Figure 6(b)
the opponent players did not move that much. The recalcu-
lated utility based on the present setting of the world is still
high enough to play the planned pass. In contrast to this, in
Figure 6(c) a player moved into the pass-way, so the utility
decreases significantly. Thus the double-pass is abandoned
and another action, say, a dribble (dotted line) is selected.

In general, in order to select actions with the highest util-
ity at a given situation, techniques from Markov Decision
Processes will be employed (L.Puterman 1994). These have
recently been adapted to symbolic reasoning using Golog as
well (Boutilier et al. 2000).

u=0.9u=0.7

u=0.2
u=0.7

(a) An initial decision situation

u=0.6u=0.5

(b) A possible situation after one action
has been executed

u=0.3u=0.5

(c) Another possible situation after one ac-
tion has been executed

Figure 6: Selecting an action based on utilities

The Reactive Component
The idea for the reactive component is to quickly settle on
the next basic ability to execute.

In the Simulation League a new world model is generated
every 0.1 seconds. At the end of a cycle an action has to
be given to the simulation server, otherwise the player will
not do anything. For the mid-size league, this cycle is likely
longer, but the right amount still needs to be determined ex-
perimentally.

Many different reactive systems have been developed over
the recent years. Applicable methods are for instance deci-
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sion trees, neural networks or condition-action rules. Our
aim is not reinventing reactive soccer play, so we build on
the experience of other teams. We have to figure out in the
future how useful classified situations in combination with
one predefined reaction are. In our first implementation a
decision tree will be implemented. A simple schema of such
a tree is shown in Figure 7. While these tree will be hand-
crafted at first, our aim is to eventually learn them, following
an approach like (Stone & Veloso 1998) in the simulation
league, but adapting it to the mid-size league as well.

lost_ball

no

midfield offense

yes

defense

hold_ball

ball_area

yes no

...

... ...

go(defense_pos)pass(midfielder)
or

dribble(forward)

Figure 7: A simple Decision Tree for reactive decisions

All utility values and the world model are available to the
RC and can be used to determine an immediate action. A de-
cision tree may start with the question whether we���8�>� �������
or not. If not we ask for the���D��� �D����� and get one of the
answers defense, mid-field, or offense. If the ball is in the
defense and I!)� ��� ������� actions like �������D*P79�%�
:;�
�����D�'� 2 or
�	�'����������*�:$����jk�D� �D2 are defined, in the other cases something
like ����*��D� :$�'"6�>� ���8��2 . If we just ���8�>� ���D��� similar ques-
tions have to be asked. The actions then would be more
like shifting relative to the ball or attacking the opponents’
ball-holder directly. The terms7l�
�
:;�
�����D�>� or �	� :$�'"6�'� �;�8�
stand for several players or positions available in the world
model. We want to allow for the possibility of having sev-
eral action choices at a leaf of the decision tree. The one
with the highest utility will be given to the ASC.

The Deliberative Component
Golog
We use a variant of the action programming language
Golog (Levesqueet al. 1997; Giacomo, Lesperance, &
Levesque 2000) for deliberation. We will not go into any
details of the language except to note the following. Golog
is based on the Situation Calculus (McCarthy 1963), in par-
ticular, the variant proposed by Reiter (Reiter 2001), which
includes a solution to the frame problem. Starting with a
pre-defined set of primitive actions, which in our case corre-
spond to the abilities of a soccer agent as defined earlier, the
user can combine them in Golog to obtain complex actions
using control structures known from conventional program-
ming languages such as sequence, if-then-else, while-loops,
or recursive procedures. Some examples are given below.
We believe that the ability to explicitly program complex
actions provides an important advantage in highly dynamic
environments compared to classical planning methods. This

way it is possible for the designer of the system to provide
plan skeletons for, say, different variants of a double pass.
The robot can then instantiate these variants for a given situ-
ation, project them to assess the various outcomes, and then
choose the most promising one for execution. Perhaps most
importantly, the complexity of the projection task can be
controlled by the user by carefully choosing the plan skele-
tons.

However, this alone is not enough. In particular, the
original Golog lacks the expressiveness to adequately de-
scribe actions in continually changing, uncertain environ-
ments like RoboCup. Fortunately, recent extensions of
Golog by (Grosskreutz & Lakemeyer 2000a; 2000b) have
helped overcome this shortcoming. The most prominent
novel features are the following:

For one, it is now possible to modelcontinuous change,
which is useful for spatial reasoning, in particular when rea-
soning about the trajectories of robots or the ball. Further-
more, the constructjk�D�%��mB����*�n$2 plays an important role.
For example,

jk�D�#��mB����*#��������oB�8�Hpq*r/>s-,d/�.(C�s), G�2r2
may stand for the robot waiting until the ball has reached
a certain position. This way we are able to express very
convenientlyevent-driven behavior, a feature that so far was
found only in nonlogic-based robot control languages such
as RPL or Colbert (McDermott 1991; Konolige 1997).

Lastly, it is now possible to deal withuncertaintyby using
the probabilistic construct�)� �8� *4�6.(t E .<t J 2 . To see its use,
consider the following example program3 ��
��g*P��=>uv� E 2�.

��� �8� *�s),vI�+�.(�'�'� ��
�� �>w;����� �'�	.��>�'� ��
�� :$�D�
�����D2�.
��:`*���
�� :$�D�
�����). goDefense. goOffense2%A%,

The robot� = considering this plan is supposed to kick the
ball to � E . With a probability ofs-,bI8+ the kick is successful,
otherwise the ball is lost. Depending on the outcome of the
action the robot will react.

Applying Golog to the Soccer Domain
The task of our deliberative component is to find a plan con-
sisting of only a few actions that lead to a known game sit-
uation (compare Figure 3)—that is, to find a transition from
one game situation to another.2 Since the Golog interpreter,
a variant of IndiGolog (de Giacomo & Levesque 1999), is
relatively slow compared to the reactive decision cycle, the
DC has to run asynchronously. This has the advantage that
the DC has not need to provide a new plan at every decision
cycle.

The basic abilities and situation descriptions are the same
as used for the reactive layer. Once the robot is in a known
game situation, one can make use of pre-defined action
scripts or schemata in the form of Golog- procedures. Given
the situation being blocked by an opponent in front34� �������65879�
�
:;�%�����).<�'�#�-!-��� �D3 � = 5-/�.(@ A#� ��3 � = 5�C).�/�A���D3 � E 58G�.<C8A��>A

2Due to the dynamics of the game and the uncertainties in-
volved, it certainly does not make sense to plan from the kick-off
to scoring a goal.
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(compare Figure 6 or 3), the action sequence for a sin-
gle robotx supposed playing a double-pass might be some-
thing like

3 �>����� ��������.`�;�����D*P� E 2�.y����*4���8� ��� !)�#"g� �����6.(z�sD2�.
jk�D�%��mB����*�!�� ] ��{|�����#2%A .3 Due to this plan the robot should
stop the ball, pass it to robot� E defined by the situation clas-
sification and runs (with 90% of maximum strength) to a
point behind the blocking opponent. Taking a closer look at
the }~�D�%��mB��� -Construct we have to take the behavior of the
other robots, especially the own ones, into account during
planning. A predefined script for two involved robots might
be like this: 3 ������� �������<*P� = 2�.��������D*P� = .r� E�2�.
��:`*����8��� ��������.<�D�
������ �������#!)� ���	�'��*������8�'���>� �����	���'� ��� ��������2<2�.

jH�	�%��mB����*P� E�.(!�� ] ��{|�����#2;����*P� = .��;�8� ��� !-�%"g� ���	�6.(z�s	2�.
�>����� �������<*P� E 2�.��������D*P� E .����8�D*P�>=�2<2�.

��:`*����8��� ��������.<�D�
������ �������#!)� ���	�'��*������8�'���>� �����	���'� ��� ��������2<2�.
jk�D�%��mB����*P� = .�!)� ] ��{|�����#2%A .

The planner is now able to fill the variables of these scripts
with legal values by projecting from the present into the fu-
ture. Every atomic action is evaluated with respect to the
assumed world model. Only������� �������<*P��='2 is evaluated with
respect to the actual situation. If more than one plan has been
defined for one situation, the one with the best overall utility
is passed to the ASC. With the help of Golog programming
constructs the predefined scripts can be made more flexi-
ble. The plan above contains an��: -statement whether the
pass was successful or not. If the ball is reconquered im-
mediately by�D�
���D�> ��������!�� ���D�'� , the plan execution can be
continued, otherwise the game situation changed so signifi-
cantly that the utility for the next action-situation pair will be
decreased drastically and the plan execution will be stopped.
If the plan succeeds completely another known game situa-
tion arises. Overall our approach can be seen as a transition
function between known game situations. If one action fails
in between the world evolved differently from the assump-
tion. The utility decreases significantly if the present action
of the plan is not applicable anymore. Therefore the plan
execution will be stopped by the ASC. Further details will
be described in the next paragraph.

One difficulty is modeling the behavior of teammates and
the opposing team. The own teammates view the situation
from the ball-holder’s point of view. Thus the robot in area3 G).<C8A in Figure 3 is able to notice being robot� E in the script.
The ball-holder has to execute all primitive actions start-
ing with parameter� = and the other one all actions starting
with � E . To receive a common decision for the same script
the robots need to have a similar world model. Initial tests
have shown that our situation abstraction mechanism sup-
ports this requirement. Modeling the behavior of opponents
is more sophisticated. Several methods have to be evaluated
here. Some possibilities are (1) extending the present speed
and direction for the next decision loops, (2) the nearest op-
ponents always try to attack our ball-holder or the ball itself
or (3) they behave like our own robots.

Another open question is when to initiate planning. As
we already pointed out, the time it takes to generate a plan is

3If this situation occurs in the defense or the offense other
scripts may be defined.

independent of the reactive decision cycle. One possibility
is initiating a new planning cycle immediately after a plan
was generated. The disadvantage is the great expense on
futile planning work, the advantage is having always a quite
up-to-date plan. The other option is starting planning only if
something unexpected happens, e.g our team lost the ball.

Action Selection
An reactive action by the RC and a plan by the DC are given
to the Action-Selection method. This module has to decide
which action—reactive or the next in the plan—is selected
for execution.

While the RC action has already been evaluated on the
present world model, the planned action is based on approx-
imated assumptions how the world evolves when certain ac-
tions take place. Therefore the utility of the next action from
the plan has to be evaluated again on the basis of the current
situation.

Several cases can arise. The simplest case is only having a
reactive action (RA) available and no valid plan. As defined
the RC has always to provide a basic ability for the next de-
cision cycle. The RA will be chosen. If a plan is given as
well, we have to take a closer look. If the world somehow
evolved as expected during deliberation the plan is valid and
the next action of the plan is chosen for execution. Valid in
this case means that the utility is close to the one calculated
during planning. If the world changed differently from what
was expected and the next action of the plan is not appli-
cable, the newly computed utility will decrease because the
action-situation pair will be rated significantly lower than
during the planning loop. Therefore the reactive action will
be chosen. An example was already given in figure 6.

Discussion and Future Work
In this paper we proposed a robot architecture which is in-
tended for highly dynamic environments like robotic soccer
and which combines reactive action selection and Golog-
style planning. We are currently refining the architecture
and implementing it both in the simulation league and on
custom-built mid-size robots like the one in Figure 1, which
we obtained very recently. Many issues still need to be re-
solved. We mentioned already that the question when and
how robots should communicate is still open. Also, we only
have preliminary ideas about how to classify a given game
situation obtained from sensors and other world knowledge.
Running actual experiments will likely help refining our
ideas here. Similarly, experiments will help us develop bet-
ter heuristics for the reactive component. Ultimately, ma-
chine learning techniques should be employed for this task.
As for the deliberative component, we only have initial ver-
sions of Golog programs, which need to be tested and re-
fined. Whether to run Golog concurrently at all times or
whether to initiate plan selection on demand needs to be re-
solved as well. Finally, as one of the reviewers remarked,
there seem to be interesting connections between the Golog
programs we envision and MDPs or POMDPs, an issue that
needs to be investigated more carefully in the future. (See
also (Boutilieret al. 2000) for a version of Golog that ex-
plicitly integrates MDPs.)
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Regarding related work, our architecture is an exten-
sion of the three-layered architectures proposed in (Firby,
Propopowicz, & Swain 1998; Gat 1998). Sahota (Sahota
1994) proposes a kind of reactive deliberation, which on the
surface looks very related. Even the application domain is
the same. On closer inspection, however, the deliberative
component used is actually much closer to our reactive com-
ponent, since its sole purpose is to choose a single next abil-
ity such as “move to mid-field” or “defend goal.” In other
words, no plans of length greater than one are considered.
In (Murray, Obst, & Stolzenburg 2001), logic programming
is used for the implementation of soccer agents. Delibera-
tion is mainly confined to a form of qualitative spatial rea-
soning.

Perhaps the most closely related approach to our work
is (Jensen & Veloso 1998). Here, the simulation-league
soccer agents also mix reactive and deliberative decision
making. Among other things, the authors propose that an
agent switches from deliberation to reactive control when
an opponent moves too close to the agent. This fits well
with our notion of dropping the deliberative plan once the
world changes too much compared the world model used
by Golog. Despite these similarities, there are signifi-
cant differences as well. For one, Jensen and Veloso use
PRODIGY (Velosoet al. 1995), a nonlinear planner, which
runs as a central deliberative service and which derives a
multi-agent plan for the whole team and then sends each
agent its corresponding subplan. To make this work, severe
restrictions in the expressiveness of the plan language are
necessary. For example, it is assumed that every action takes
the same unit of time, which seems to limit the usefulness of
the plans derived. Besides, employing a full-scale planner
like PRODIGY imposes a heavy burden computationally.

More recently, (Burkhard 2001) describes work in
progress involving a so-calleddouble-pass architecture,
which features adeliberator, which produces partial plans
using Case Based Reasoning techniques, and anexecutor,
which asynchronously selects actions when needed, tak-
ing into account the current plan and information about the
world. We intend to compare our approach to this one in
more detail in the future.

Another related approach is taken in the WITAS
project (Dohertyet al. 2000). Here the control rests strictly
with the reactive component, which is understandable given
the unmanned aerial vehicle scenario. The deliberative com-
ponent, which includes a planner, among other things, is
only activated on demand when the reactive controller can-
not achieve a goal. This is different from our architecture,
since we never rely on the deliberative component producing
a plan, mainly because the environment of a soccer playing
robot requires constant vigilance on the part of the robot.4

On a final note, one may ask why there needs to be a strict
separation between the reactive and deliberative component.
After all, Golog, at least in principle, can be used to pro-

4Granted, a helicopter cannot stay idle either, but it can decide
to hover while deliberation is in progress.

gram strictly reactive behavior.5 The short answer is that the
Golog implementation, which is an interpreter running un-
der Prolog, just does not have the performance needed for
quick reactions. In other words, the reactive component is
written in C, which also opens the way to use any special-
purpose non-symbolic problem solver. Whether there are
deeper reasons why reactive control should be separated
from logic-based control remains to be seen.
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