
Generation and execution of partially correct plans
in dynamic environments

Alessandro Farinelli, Giorgio Grisetti, Luca Iocchi, Daniele Nardi and Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Università “La Sapienza”, Roma, Italy

Abstract

In this paper we present the recent developments of the
approach to the design of Cognitive Robots (i.e. robots
whose actions are driven by a formally developed the-
ory of action), that are capable of performing tasks in a
coordinated way. The logic of actions that we adopt is
an epistemic dynamic logic, where it is possible to de-
rive acyclic branching plans (branches corresponding to
sensing actions), including primitive parallel actions.
In the present work, we consider an extended notion
of plan by admitting a simple class of cycles that arise
from the attempt to recover from the failure states orig-
inated by sensing actions. The proposed extension al-
lows us to address the problem of generating plans that
handle a form of synchronization based on the recog-
nition of specific situations through sensing actions, in-
cluding forms of coordination required in a multi-robot
scenario.

Introduction
The focus on planning from a Cognitive Robotics perspec-
tive is to provide the robot with plans that are driven by
an action theory and can be effectively executed by robotic
agents.

A plan can be viewed as a sequence of actions that are
to be executed by the robot, or as complex programs that
include loops, nondeterministic choice and conditional con-
structs (see for example (Reiter 2001)). In the former case,
plans can be generated by a planner (De Giacomo et al.
1996; Reiter 2001) in the latter case the system is given the
plan and computes the consequences of the execution of the
plan (Reiter 2001).

In fact, attempts have been made to extend the plan gener-
ation approach by developing systems that take into account
non determinism (Cimatti et al. 1997), sensing (De Gia-
como et al. 1997), or concurrent actions (Iocchi, Nardi, &
Rosati 2000) in the plan generation process.

The work on classical planning (where the plan is always
generated by the system) in the last years has been focus-
ing on planners that take into account non-deterministic ac-
tions, but rely on the hypothesis of complete observability

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(Giunchiglia & Traverso 1999; Jensen, Veloso, & Bowl-
ing 1999; Blum & Furst 1995). In the presence of non-
determinism, it is relevant to consider, in addition to the
plans that are classically guaranteed to achieve the goal, also
plans that may fail depending on the success/failure of the
actions being executed. Consequently, different (and rich)
notions of plan have been developed in order to account
for branches and cycles in the plan structure (see for ex-
ample (Giunchiglia & Traverso 1999)). These approaches
are based on the assumption that during the execution of the
plan the robot has complete observability on all the proper-
ties that are considered in the dynamic system formalization.
However, this assumption may not be valid in some real ap-
plications for mobile robots.

More recently, in (Bertoli et al. 2001) the hypothesis
of complete observability is relaxed by introducing sensed
properties and addressing the problem of generating tree-
structured plans, where the branching structure is due to the
sensing and incomplete knowledge is represented by belief
states.

In this work we present a technique for generating plans
containing a simple form of cycles, corresponding to the re-
peated execution of plans of a sensing action. This struc-
ture has been used for implementing synchronization among
plans executed on different robots based on the recognition
of a sensed condition.

The basis of the present work is the formal framework
and the planning algorithm that generates acyclic branching
plans (branches corresponding to sensing actions) described
in (Iocchi, Nardi, & Rosati 2000). In the present work, we
adopt a weaker notion of plan and provide a technique for
generating plans possibly including a simple form of cycles
that arise from the attempt to recover from the failure states
originated by sensing actions.

The original motivation for devising such plans was the
attempt to achieve some form of synchronization between
robots in the multi-robot scenario provided by the RoboCup
competitions (Kitano et al. 1998), more specifically the
Sony Legged Robot League. Consequently, we address the
system architecture that allows for the generation and exe-
cution of the plans on our robotic agents (Castelpietra et al.
2001), discuss the proposed approach and its implementa-
tion in the RoboCup scenario.

The paper is organized as follows. We first describe the

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

 Actions
 Primitive

 Generation
 Plan

Coordination
Module

 Plan
 Execution

 Perception World
Model

KB
Library

PlanDeliberative Level

Off-line

Conditions
High-level

ActuatorsSensors

Operative Level

On-line

Deliberative Level

Figure 1: Layered architecture for our robots

architecture of our cognitive robots, then we recall the ba-
sics of our logical framework, we introduce the notion of
partially strong plans and describe the implementation of
the plan generation procedure. Finally, we provide some ex-
amples of plans that have been devised for coordination in
the RoboCup Sony Legged environment.

System architecture
In this section we recall the layered hybrid architecture used
for our cognitive mobile robots (see also (Iocchi 1999)) dis-
played in Fig. 1, that has been implemented on several dif-
ferent kinds of robotic platforms, namely Sony AIBOs, Pio-
neer, and home-made wheeled robots.

The Operative Level of the architecture is based on a
numeric representation of the information acquired by the
robot sensors and of the data concerning the current task,
while the Deliberative Level is based on a symbolic repre-
sentation of the information acquired by the robot sensors
and of the data concerning the task to be accomplished:
the On-Line Deliberative SubLevel is in charge of evaluat-
ing data during the execution of the task, while the Off-line
Deliberative SubLevel is executed off-line before the actual
task execution.

The deliberative level relies on a representation of the
robot’s knowledge about the environment. This knowledge
is formed by both a general description of the environment
provided by the robot’s designer and the information ac-
quired during task execution. In particular, the world model
of this level contains symbolic information corresponding to
the data in the geometric world model of the operative level.

The deliberative level is formed by three main compo-
nents:

1. Plan Execution Module that is executed on-line during the
accomplishment of the robot’s task and is responsible for
executing a plan by coordinating the primitive actions of
a single robot;

2. Coordination Module that is responsible for assigning
tasks to the robots in the team according to the current
situation;

3. Plan Generation Module, that is executed off-line before
the beginning of the robot’s mission, and generates a set
of plans to deal with some specific situations.

The Plan Execution Module is in charge of executing a
plan, represented as a graph as described in the next section.

During the execution of a plan, this module checks for the
conditions that guarantee the applicability of the current plan
in the current situation. If the current plan is no longer exe-
cutable, because some properties do not hold anymore, this
module communicates this fact to the coordination module
that will select another task and consequently another plan
to be assigned to the robot.

Coordination among robots is achieved by a coordination
module that selects which task must be accomplished by ev-
ery robot, by sending to the Plan Execution Module the ap-
propriate plan in the library that relates to this task. The co-
ordination module is described in (Castelpietra et al. 2000)
and it is based on a coordination protocol for dynamic as-
signment of roles and on the evaluation of utility functions
computed by each robot for determining an estimation of
its own capability to reach a given goal. The computation
for the coordination protocol is distributed and the protocol
is robust because it relies on a little amount of transmitted
data. Each robot has the knowledge necessary to play any
role, therefore robots can switch roles on the fly, as needed.
In practice a role corresponds to a goal to be achieved by a
robot and dynamic role exchange is a very effective way to
select the robot that is in a better situation to accomplish a
task. Moreover, when the situation at hand is such that the
goal cannot be accomplished the coordination module will
assign this task to another robot. This is obtained by decreas-
ing the utility function for this role, so that the coordination
protocol will eventually select another robot to perform this

task.
The reasoning system processes a knowledge base con-

taining a description of the actions to be performed by the
robot using an action representation language, that is de-
scribed in the next section. The Plan Generation Module
implements an automatic planner that generates a plan to
achieve a given goal in a specific situation, as described in
the next section. Plan generation is accomplished off-line
for efficiency reasons and it is achieved by restricting the
situations of interest.

Plan Representation and Generation
In this section we first recall our formal framework for the
specification of the dynamic system, and then present our
new method for cyclic conditional plan generation, based
on a notion of partial correctness of plans that allows for
generating plans corresponding to programs with a general
structure (ramifications and indefinite cycles).

Logical framework for dynamic system
representation
We first briefly recall the main features of our formal frame-
work for representing actions (we refer to (Iocchi, Nardi, &
Rosati 2000) for a detailed presentation of the framework).

Generally speaking, our work on the definition of the log-
ical framework is based on the idea of using a nonmono-
tonic formalism in order to logically reconstruct a number of
expressive features for action representation. More specifi-
cally, we have analyzed the modal nonmonotonic descrip-
tion logic ALCKNF (Donini, Nardi, & Rosati 2002), and
experimented its adequacy in the formalization of dynamic
systems. It can be shown that such a formalism is able to
logically capture and extend several formal frameworks for
action representation (e.g., STRIPS and the language A).

In our ALCKNF framework, we represent the dynamic
system through a logical theory (called ALCKNF knowl-
edge base). In such a theory, actions are represented by
means of binary relations (roles), states are represented by
means of domain elements (individuals), and state proper-
ties by means of unary predicates (concepts). Actions are
represented using preconditions and effects. Preconditions
are the conditions that are necessary for activating the action
and indicate what must be true before the action is executed:
they specify circumstances under which it is possible to ex-
ecute an action. Effects are the conditions that must hold
after the execution of the action and characterize how the
state changes after the execution of the action.

In (Iocchi, Nardi, & Rosati 2000) we have shown that
such a framework allows for expressing the following fea-
tures:

• ordinary actions, i.e., actions whose effect is determinis-
tic, although context-dependent;
• sensing (or knowledge-producing) actions, namely ac-

tions which allow the robot to know the value of a prop-
erty in the current state of the world. The peculiarity
of such actions lies in the fact that their execution only
affects the robot’s knowledge about the world, without
changing the state of the external world;

• concurrent execution of single actions (both ordinary and
sensing actions);

• state constraints (Lin & Reiter 1994), that is, ordinary
first-order sentences expressing static relationships be-
tween dynamic properties, and causal dependencies be-
tween properties (Mc Cain & Turner 1995; Thielscher
1997). Both ordinary state constraints and casual con-
straints enforce ramifications, e.g. indirect effects of ac-
tions;

• several forms of persistence of properties. In particular,
through the use of both monotonic and nonmonotonic
solutions to the frame problem, we are able to formal-
ize both inertial/non-inertial properties and inertial/non-
inertial actions. We remark that we are interested in
dynamic environments in which some properties may
change due to events (usually called exogenous events)
that cannot be predicted by the robot.
Due to the form of the assertions used in the formalization

of the dynamic system, the interpretation structures (mod-
els) of an ALCKNF knowledge base can be interpreted as
transition graphs. In particular, individuals represent states
of the system and are labeled by concepts representing the
properties (or fluents) that hold in that state; edges between
individuals represent transitions between system states, and
are labeled by roles representing the actions that cause the
state transition. More specifically, each node (individual)
denotes a different epistemic state of the robot, i.e., what the
robot knows about the world: an edge labeled by an action
R connects two such states (individuals) s, s′ if the execu-
tion of R, when the robot’s epistemic state is s, changes its
epistemic state to s′.

As illustrated in (Iocchi, Nardi, & Rosati 2000), the set
of models of an ALCKNF knowledge base Σ formaliz-
ing a dynamic system can be represented by means of a
unique transition graph, called first-order extension (FOE)
of Σ, which represents all the possible evolutions of the dy-
namic system. For instance, Figure 2 displays some exam-
ples of portions of FOEs. Observe that the nodes of these
graphs represent the epistemic states of the robot, thus con-
taining the properties that the robot knows about the envi-
ronment, and not what is true in the environment. An epis-
temic state actually corresponds to a set of states in the
world and thus allows for representing partial knowledge
of the robot. Moreover actions here represent transitions
between epistemic states (i.e. sets of states in the world).
This is an important difference with respect to the graphs
used in classical planning (Giunchiglia & Traverso 1999;
Jensen, Veloso, & Bowling 1999; Blum & Furst 1995),
where every node correspond to a state in the world with
complete knowledge of the properties in the environment
and actions maps world states to world states.

The notion of plan
The classical formulation of the notion of plan corresponds
to the following: given the specification of
• the dynamic system

• the initial state

• a goal (property) G

X2X1

X0

BA

X2X1

X0 X0

senseA (T) senseA (F)

senseA (F)

senseA (T) senseA (F)

senseA (F)

senseA (T)

senseA (F)senseA (T)

GOAL

senseA (T)

GOAL

senseA (F)

b)a) c)

senseA (T) senseA (F)

senseA (T)

Figure 2: Plan structure for cyclic sensing actions.

a plan for G is a sequence of actions S such that the execu-
tion of S leads to a state s in which the goal G holds.

In order to have an effective notion of plan in our frame-
work, we have to modify the above notion in many respects.
In particular, the execution of a sensing action in a given
state may have in general multiple outcomes. Hence, the
presence of sensing actions requires to reformulate the above
notion of plan. In particular, following (Levesque 1996), in
the presence of boolean sensing actions we define a plan as a
conditional plan, that is a program composed of action state-
ments and if-then-else statements, such that each if-then-else
statement occurs right after a sensing action statement, and
is conditioned by the truth value of the sensed property. In
other words, the structure of a plan corresponds to a binary
tree, where each leaf corresponds to a state in which the goal
holds: in our framework, such a tree is a subgraph of the
graph corresponding to the FOE of the dynamic system.

Based on such a structure of plan, in the presence of sens-
ing actions two different notions of plan have been defined
in the literature:

• A strong plan for G is a conditional plan SG such that the
execution of SG leads to a state in which G is known to
hold for each possible outcome of the sensing actions in
SG.
• A weak plan forG is a conditional plan SG such that there

exists an outcome of the sensing actions in SG for which
the execution of SG leads to a state in which G is known
to hold.

A third notion of conditional plan, which can be consid-
ered as “intermediate” between the two above notions, ex-
tends the structure of plan by adding a “goto” statement, thus
allowing cycles in the plan execution. In other words, under
such an extended notion, plans correspond to graphs of a
general form: in our framework, each such graph is a sub-
graph of the graph corresponding to the FOE of the dynamic
system. We call partially strong plan for G a plan SG such
that, for each possible outcome of the sensing actions in SG,
if the execution of SG terminates, then it leads to a state in
which G is known to hold. This definition is equivalent to
the definition of strong cyclic plans given in (Giunchiglia &
Traverso 1999).

Namely, a partially strong plan is a plan that is not guaran-
teed to terminate: termination actually depends on the out-
come of the sensing actions in the plan. However, if such
a plan terminates, then it always leads to the goal. In this
sense, a partially strong plan is both “weaker” than a strong
plan (which both terminates and always reaches the goal)
and “stronger” than a weak plan (which may terminate with-
out reaching the goal).

Besides its theoretical interest, the notion of partially
strong plan can be very useful in practice: for instance, if
there exists no strong plan for G, then a partially strong plan
constitutes the best reasonable way to attempt at reaching
the goal, especially in the presence of an external mecha-
nism that is able to cope with non-termination of the plan
(the coordination module in our architecture), as illustrated
in the next section.

Plan Representation
The representation of plans is given by transition graphs,
where each node denotes an epistemic state, and is labeled
with the properties that the robot knows to be true, and each
arc denotes a state transition and is labeled with the action
that causes the transition.

An epistemic state represents a set of world states (i.e. a
set of situations the system can be in) and is characterized
by a set of properties which give a partial description of the
situation. Actions are represented using preconditions and
effects. Preconditions are the conditions that are necessary
for activating the action and indicate what must be true be-
fore the action is executed: they specify circumstances under
which it is possible to execute an action. Effects are the con-
ditions that must hold after the execution of the action and
characterize how the state changes after the execution of the
action.

The actions in the graph can be classified into ordinary
(i.e. movement) actions and sensing actions. The former
cause changes in the environment, while the latter permit
the acquisition of information, in order to let the robot take
better decisions. Both actions are relevant to state transition.
Sensing actions are associated with conditions to be veri-
fied: depending upon the runtime value of these conditions,
a different part of the plan will be executed.

Plan Generation
The plan generation module, given an initial state and a goal,
generates a plan that, when executed starting from the initial
state, if the execution terminates then the robot reaches a
state in which the goal is satisfied.

The plan generation module selects a portion of the FOE
of the KB containing only those actions that are necessary to
achieve a goal starting from a given initial situation. In fact,
conditional plans can in principle be generated in two steps
(see in (Iocchi, Nardi, & Rosati 2000) for details). First,
the FOE of the knowledge base is generated; this FOE can
be seen as an action graph representing all possible plans
starting from the initial state. Then, such a graph is visited,
building a term (the cyclic conditional plan) representing a
graph in which: (i) sensing actions generate branches; (ii)
each branch leads either to a state satisfying the goal or to a
previous state of the plan. However, the current implemen-
tation does not build the entire FOE before searching for the
plan, but it builds the FOE starting from the initial state with
a depth-first technique until a goal state is reached. In case
of sensing actions all the branches are required to reach a
goal state. In this way it is possible to extract a minimal
plan (with respect to the number of actions to be executed).

If the planner finds a strong plan, this plan is represented
as a tree in which sensing actions generate branches and
each branch leads to a state satisfying the goal. However,
in case a strong plan does not exists, the planner is able to
build a partially strong plan that is not a tree anymore since
there are also cycles. In the current implementation of our
planner, for every sensing action that produces a portion of
the model like the one shown in Fig. 2a, there are three pos-
sible cases: i) if neither path A nor B leads to the goal, then
this part of the graph will be discarded; ii) if both path A
and path B lead to a state in which the goal is verified, then
this strong plan is returned; iii) if only one of the path A or
B leads to the goal, while the other does not (Fig. 2b), then
the planner is able to generate a partially strong plan like the
one shown in Fig. 2c.

Implementation and experiments
The situation we describe in this section, as an example for
explaining our plan generation and execution mechanism, is
the dynamic exchange of the role of goalkeeper in the Sony
Legged League and the application of the two-defender rule.
The situation presented in Fig. 3a is a typical situation in
the Sony Legged League matches in which the goalkeeper
(robot number 1) is moving away from its own goal and is
approaching the ball to push it away, while robot number 2
is far away from the ball and it cannot help the goalkeeper
immediately. In this situation, it is more convenient for the
team that robot 1 takes the role of attacker pushing the ball
towards the opposite goal, while robot 2 goes back to defend
its own goal acting as a goalkeeper. However, in performing
this role exchange the two robots must comply with the two
defenders rule, and thus robot 2 can enter the goal area only
after robot 1 has left it.

This coordination problem cannot be solved by simply
applying the distributed coordination protocol already pre-

sented in (Castelpietra et al. 2000), since dynamic role ex-
change is not sufficient to respect the two-defender rule. In
other words, we want to solve two aspects of coordination:
on the one hand, dynamic role exchange allows for selecting
the best robot able to accomplish a task; on the other hand,
while accomplishing their own tasks the robots must take
into account some constraints on shared resources and thus
have to synchronize their actions.

The problem of complying with the two-defender rule is
solved by generating a plan in which one robot, before en-
tering the goal area, must check that it is free (i.e. the other
robot has left the area). This is achieved by adding in the
knowledge base of the robot the specification of a sensing
action SenseFreeArea that is used for verifying if the goal
area is not occupied by any robot of the team.

The portion of the plan for the robot 2, of interest for this
coordination problem, that has been generated by the plan
generation module is shown in Fig. 3b. Notice that this is
a partially strong plan, since it may be the case that its exe-
cution does not terminate. However, if the plan terminates,
then the goal is achieved.

Plan execution
Plan execution is responsible for monitoring the actions that
are executed by the robot and to perform state transitions
when the actions terminate. During actual execution of the
plan in real environments two issues must be faced: 1) fail-
ure of an action executed during the plan; 2) non-termination
of the plan.

The first case is handled by the Plan Execution Module in
this way: if, at the end of the execution of an action, the con-
ditions in the world are different by the ones in the successor
state (i.e. the effects of the action are not those described in
the KB), then the Plan Execution Module will search for a
recovery state in the current plan from which it is possible to
continue the execution of the plan for reaching the goal. If
this recovery state is not found, this module communicates
a plan failure to an external module (in our case the Coordi-
nation Module) that will select another plan for the robot.

The second case is instead managed directly by the Coor-
dination Module that guarantees that, if a robot is not able to
perform a task, its role (and thus its plan) will be eventually
changed (Castelpietra et al. 2000).

Experiments with a simulator
The experimental setting we have used has been given by
a simulator (see Fig. 3a): even though it cannot provide a
precise characterization of all the aspects that influence the
performance of the robot in the real environment, it can pro-
vide useful feedback to the design of the coordination and
plan execution modules for actual robots. Through this sim-
ulator we have verified the intended behaviour of the robots
in each of the roles in different scenarios.

The simulator provides a global view of the environment
that in the case of our experiment is the RoboCup soccer
field, and shows ball position and robot positions and orien-
tations. With the simulator it is possible to let the simulated
robot play, changing the environment in order to represent
some particular situations of interest. In our experiments

a) b)

GotoAreaLine

SenseFreeArea (T)

GotoGoal

SenseFreeArea (F)

Figure 3: a) Typical situation for dynamic coordination. b) Plan generated for robot 2.

we have represented the situation of Figure 3, and we have
checked the dynamic role assignment and the execution of
the robot plans. More in depth, the first robot (robot number
1 in the figure) is initially assigned to a defensive role and
its position is inside the goal area, robot number two starting
position is outside the goal area. When the ball is positioned
in front of the robot number 1, a role change occurs: robot
number 1 takes the attack role and begins to push the ball to-
wards the opponent goal escaping the goal area, meanwhile
the robot number 2 takes the defender role, and starts going
in the defense position but it does not enter the area until
the other robot leaves it, due to the SenseFreeArea sensing
action discussed above. The experiment shows that the al-
gorithm for dynamic role assignment successfully exchange
the role between the two robots and that the SenseFreeArea
action correctly avoids the presence of two robots in the de-
fense area.

The method used for the role exchange is also robust with
respect to the following unexpected situation: a) robot 1
throws the ball towards robot 2 then, due to the dynamic role
assignment algorithm, robot 2 becomes the attacker and be-
gins to push the ball towards the opponent goal while robot 1
(which is become defender again) goes back to the defense
position; b) if robot 1 is not able to escape from the goal
area, then the utility function passes the role of attacker to
robot 2; robot 2 starts heading towards the ball while robot 1
goes back to defense position; c) when three robots are play-
ing, if robot 2 violates the two-defender rule and is taken out
from the field (according to the RoboCup Legged compe-
tition rules) while robot 1 is pushing the ball, then robot 3
will take the defender role and will go in the defense position
while robot 1 keeps on pushing the ball.

Conclusions
In this paper we have presented an extension of a previous
approach to generate, based on a rich action theory, plans
to be executed by our Cognitive Robots (Castelpietra et al.
2001).

The present work is focussed on cyclic conditional plans,
for which partial correctness is guaranteed with respect to

the formal specification of the system: if the plan terminates
then the goal is achieved. More specifically, we have ad-
dressed the generation of plans containing a simple class of
cycles that arise from the attempt to recover from the failure
states originated by sensing actions. This kind of plans are
useful for handling some aspects of coordination required
in a multi-robot system, for instance the synchronization of
actions during task execution.

As compared with previous work in Cognitive Robotics
this is a novel attempt to generate plans that include cycles.
As compared with the work on classical planning there is
a close relationship with the work in (Bertoli et al. 2001),
where only conditional plans (tree-structured) are generated.
While we have considered a more general class of plans, we
have not considered the efficient implementation of the plan-
ning algorithm, and we are currently addressing the applica-
tion of model checking techniques, as done in (Bertoli et al.
2001), also in our setting. Moreover, we are extending our
analysis to generate plans with cycles that are more general
than the ones presented in this paper.

References

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In Proc. of the 17th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2001).

Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. In Proc. of the 14th Int. Joint
Conf. on Artificial Intelligence (IJCAI’95).

Castelpietra, C.; Iocchi, L.; Nardi, D.; Piaggio, M.; Scalzo,
A.; and Sgorbissa, A. 2000. Communication and coordi-
nation among heterogeneous mid-size players: ART99. In
RoboCup-2000: Robot Soccer World Cup IV.

Castelpietra, C.; Guidotti, A.; Iocchi, L.; Nardi, D.; and
Rosati, R. 2001. Design and implementation of cognitive
soccer robots. In Proc. of RoboCup Symposium.

Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso,
P. 1997. Planning via model checking: a decision proce-

dure for AR. In Proc. of the 4th Eur. Conf. on Planning
(ECP’97).
De Giacomo, G.; Iocchi, L.; Nardi, D.; and Rosati, R.
1996. Moving a robot: the KR&R approach at work. In
Proc. of the 5th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’96).
De Giacomo, G.; Iocchi, L.; Nardi, D.; and Rosati, R.
1997. Planning with sensing for a mobile robot. In Proc.
of 4th European Conference on Planning (ECP’97).
Donini, F. M.; Nardi, D.; and Rosati, R. 2002. Description
logics of minimal knowledge and negation as failure. ACM
Trans. on Computational Logic 3(2):1–49.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In Proc. of the 5th Eur. Conf. on Planning
(ECP’99).
Iocchi, L.; Nardi, D.; and Rosati, R. 2000. Planning
with sensing, concurrency, and exogenous events: logical
framework and implementation. In Proceedings of the Sev-
enth International Conference on Principles of Knowledge
Representation and Reasoning (KR’2000), 678–689.
Iocchi, L. 1999. Design and Development of Cognitive
Robots. Ph.D. Dissertation, Univ. ”La Sapienza”, Roma,
Italy, On-line ftp.dis.uniroma1.it/pub/iocchi/.
Jensen, R. M.; Veloso, M. M.; and Bowling, M. H. 1999.
OBDD-based optimistic and strong cyclic adversarial plan-
ning. In Proc. of the 5th Eur. Conf. on Planning (ECP’99).
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; Osawa, E.;
and Matsubara, H. 1998. Robocup: A challenge problem
for ai and robotics. In Lecture Note in Artificial Intelli-
gence, volume 1395, 1–19.
Levesque, H. J. 1996. What is planning in presence of
sensing? In Press, A. P. M., ed., Proc. of the 13th Nat.
Conf. on Artificial Intelligence (AAAI’96), 1139–1149.
Lin, F., and Reiter, R. 1994. State constraints revisited.
Journal of Logic and Computation, Special Issue on Action
and Processes 4(5):655–678.
Mc Cain, N., and Turner, H. 1995. A causal theory of
ramifications and qualifications. In Proc. of the 14th Int.
Joint Conf. on Artificial Intelligence (IJCAI’95).
Reiter, R. 2001. Knowledge in action: Logical foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Thielscher, M. 1997. Ramification and causality. Artificial
Intelligence 89.

