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Abstract

In this paper we present the architecture for an agent capable
of operating a physical device and performing diagnosis and
repair of the device when malfunctions occur. We expand the
algorithm for diagnostics and repair from our previous work
to domains in which the states of some components are not
observable. The algorithm, based on our new formalism of
testing, employs the multiple computation of stable models.

Introduction
Recently, answer set programming (Marek & Truszczynski
1999; Niemelä 1999) was applied to the development of an
architecture for a software agent (Baral & Gelfond 2000)
capable of performing diagnosis and repair on a physical
device it operates (Balduccini, Galloway, & Gelfond 2001;
Balduccini & Gelfond 2002). In this approach the agent’s
knowledge about the world and its own abilities and goals
and recorded by a program of A-Prolog - a language of logic
programs under the answer set (stable model) semantics
(Gelfond & Lifschitz 1988; 1991). Various tasks of the agent
(detecting inconsistencies, finding candidate diagnoses, gen-
erating tests, planning for goals, etc.) can all be reduced to
finding stable models of the corresponding logic programs.
In recent years, systems to compute stable models, such
as SMODELS, DLV, and DeReS (Niemelä & Simons 1997;
Citrigno et al. 1997; Cholewinski, Marek, & Truszczyński
1996) have progressed to a point where they are usable for
relatively large problems which allowed application of an-
swer set programming to a wide variety of problems.

The chief purpose of this paper is to expand the previous
work on diagnostic agents to allow diagnosis, testing, and
repair in the situation when not all fluents1 in the domain
are directly observable. We define a new notion of a test
and present algorithms for diagnostic reasoning with testing.
The algorithms are similar to those in (Balduccini & Gel-
fond 2002) - the agent’s tasks are reduced to finding answer
sets of logic programs. As in these previous works, knowl-
edge about the agents domain will be represented using an
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1Fluents are properties of the domain whose truth value may
depend on time.

action language (Gelfond & Lifschitz 1998) and automati-
cally translated into A-Prolog. It should be noted that this
work is ideologically similar, yet technically different, from
other recent results (Baral, McIlraith, & Son 2000; McIlraith
1997; 1998; McIlraith & Scherl 2000; Otero & Otero 2000;
Thielscher 1997) addressing similar problems. As in our
previous work, we assume that agent and environment sat-
isfy the following conditions:

1. The agent’s environment can be viewed as a transition di-
agram whose states are sets of fluents and whose arcs are
labeled by actions.

2. The agent is capable of making correct observations, per-
forming actions, and remembering the domain history.

These assumptions determine the structure of the agent’s
knowledge base.

The first part of the knowledge base, called an action (or
system) description, specifies the transition diagram of the
system. It contains descriptions of the domain’s actions and
fluents, together with the definition of possible successor
states to which the system can move after the execution of
an action from a given state.

The second part of the agent’s knowledge, called the
recorded history, contains the record of actions performed
by the agent together with the agent’s observations. This
defines a collection of paths within the transition diagram
which can be interpreted as the system’s possible pasts. If
the agent has complete knowledge of his environment and
the domain’s action are deterministic then there is only one
such path.

The final part of the agent’s knowledge base contains the
agent’s goals.

Using and updating this knowledge, the agent operates by
repeatedly executing the following steps:

1. observe the world and interpret the observations;

2. select a goal;

3. plan;

4. execute part of the plan.

It is within the first step of this loop, when the observations
contradict the agent’s belief about the state of the system,
that the agent must perform diagnosis. To illustrate princi-
ples presented in the paper we will use the following exam-
ple.
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The Circuit Example
Consider a simple circuit which contains a battery, a switch,
a resistor, and a light bulb (see figure 1). When the switch
is closed, the light will turn on (unless there is a problem
within the system). The agent is capable of opening and
closing the switch and replacing the light bulb and resistor
with different ones. The three possible exogenous actions2

in the domain are: the bulb burning out, the resistor shorting,
or the resistor breaking. The resistor can not be both broken
and shorted at the same time, and having the switch closed
when the resistor is shorted will cause the bulb to burn out.
Assume that the agent knows that initially all of the com-
ponents are in good working order and that the switch is
open. Suppose the agent then closes the switch but the light
does not come on. This contradicts the agents expectation
about what should have happened, hence some exogenous
action(s) must have happened in the system that would ex-
plain the behavior.

-

+

Figure 1: The Circuit Example

The goal of this paper is to develop methods for model-
ing the agent’s behavior after such a discovery, especially in
situations where the agent cannot directly observe the con-
dition of some of the components. We will start by present-
ing a mathematical model of an agent and its environment.
In what follows we assume some knowledge of action lan-
guages (Gelfond & Lifschitz 1998).

Modeling the domain
This section gives a short overview of diagnostic domains
((Balduccini & Gelfond 2002)). We limit ourselves to non-
intrusive domains in which the agent’s environment does not
normally interfere with his work and the agent normally ob-
serves all of the domain occurrences of exogenous actions.
The agent is, however, aware of the fact that these assump-
tions can be contradicted by observations. As a result the
agent is ready to observe, test, and take into account occa-
sional occurrences of exogenous ’breaking’ actions. More-
over, discrepancies between expectations and observations
may force him to conclude that some exogenous actions in
the past remained unobserved.

By a domain signature we mean a tuple

Σ = 〈C,F,O, I,F ,As,Ae〉
2By exogenous actions we mean action which are not per-

formed by the agent. Such actions may either be natural actions
or those performed by other agents operating in the same domain.

of finite sets where O, I are subsets of F and all other
sets are disjoint. Elements of C are called device com-
ponents and used to name various parts of the device; F
contains possible faults of these components. Elements of
A = As ∪ Ae are called elementary actions; As contains
those which are executable by the agent while actions from
Ae are exogenous. Subsets of A are referred to as actions.
Intuitively, execution of an action a corresponds to the si-
multaneous execution of its components. (When convenient,
an elementary action a will be identified with {a}). Ele-
ments of F are referred to as fluents. They denote dynamic
properties of the domain. We assume that F contains special
fluents ⊥ (which stands for falsity), observable(f) which
say that the value of a fluent f ∈ O can be actually observed,
executable(a) which states when an elementary action a can
actually be performed, and ab(c, f) which says that the de-
vice’s component c has a fault f . (The use of ab in diagnosis
goes back to (Reiter 1987)). Elements of O are called ob-
servable fluents - their values can, under certain conditions,
be observed by the agent. We assume that observable(f)
and executable(a) are in O. Fluents from I are called iner-
tial - they are subject to the Inertia Axioms of (McCarthy &
Hayes 1969).

By fluent literals we mean fluents and their negations (de-
noted by ¬f ). The set of literals formed from a set X ⊆ F
will be denoted by lit(X). A set Y ⊆ lit(F) is called com-
plete if for any f ∈ F , f ∈ Y or ¬f ∈ Y ; Y is called
consistent if ⊥�∈ Y and there is no f such that f,¬f ∈ Y .

The possible states of the agent’s domain and changes
caused by different actions are modeled by a transition di-
agram over signature Σ - a directed graph T such that:

1. the states of T are labeled by complete and consistent sets
of fluent literals from Σ corresponding to possible physi-
cal states of the domain.

2. the arcs of T are labeled by actions from Σ.

Paths of a transition diagram T correspond to possible
trajectories of the domain. Such paths have the form
σ0, a0, σ1, . . . , an−1, σn, where each σi is state of T and
each ai is an action. A particular trajectory,

W = 〈σW
0 , aW

0 , σW
1 , . . . , aW

n−1, σ
W
n , . . .〉,

called the actual trajectory, corresponds to the actual behav-
ior of the domain.

Definition 1 (Diagnostic Domain) By a diagnostic domain
we mean a triple 〈Σ, T,W 〉 where Σ is a domain signature,
T is a transition diagram over Σ, and W is the domain’s
actual trajectory.

To design an intelligent agent associated with a diagnostic
domain S = 〈Σ, T,W 〉 we need to supply the agent with
the knowledge of Σ, T , and the recorded history of S up to a
current point n. Elements of Σ can normally be defined by a
simple logic program. Finding a concise and convenient way
to define the transition diagram of the domain is somewhat
more difficult. While our approach is applicable to a variety
of action languages, we will use a variant of action language
B from (Gelfond & Lifschitz 1998).



Describing the diagram
System descriptions of our language are sets of statements
of the form:

1. causes(a, l0, [l1, . . . , ln]),
2. caused(l0, [l1, . . . , ln]),
3. definition(l0, [l1, . . . , ln])
where a is an elementary action and each li is a fluent lit-
eral. A literal l0 is called the head and the set {l1, . . . , ln}
is called the body of the corresponding statement. The first
statement, called a dynamic causal law, states that ‘if action
a is performed in a state in which preconditions l1, . . . , ln
are true, then l0 will be true in the resulting state.’ If l0 =⊥
this law is referred to as executability precondition. and
sometimes written as

impossible if(a, [l1, . . . , ln]).
The second statement, called a static causal law (or state
constraint), states that ‘if l1, . . . , ln are true in a state σ, then
l0 must also be true in σ.’ If l0 =⊥ the law states that ‘there
is no state containing l1, . . . , ln’.

The third sentence is called a definition proposition. The
set def(l0) of definition propositions with the head l0 can be
viewed as an explicit definition of l0 - l0 is true in a state σ iff
the body of at least one proposition from def(l0) is true in σ.
We will assume that the heads of definition propositions are
formed by non-inertial fluents. (Under this assumption such
propositions can be replaced by an (often large) collection
of static causal laws (Watson 1999).)

The causal laws of a system description SD can be di-
vided into two parts. The first part, SDn, contains laws
describing normal behavior of the system. Their bodies
usually contain fluent literals of the form ¬ab(c, f). The
second part, SDb, describes effects of exogenous actions.
Such laws normally contain relation ab in the head or posi-
tive parts of the bodies. (To simplify our further discussion
we only consider exogenous actions capable of causing mal-
functioning of the system’s components. The restriction is
however inessential and can easily be lifted.)

Notice that, to correctly capture the meaning of the flu-
ent executable(a), the system description must be written so
that it ensures that ¬executable(a) is true in a state σ iff there
is an executability precondition impossible if(a, [l1, . . . , ln])
such that l1, . . . , ln hold in σ. This can be achieved by as-
suming that every system description SD, of our language
satisfy the following condition: for every executability pre-
condition impossible if(a, [l1, . . . , ln]) ∈ SD, SD also con-
tains a proposition definition(¬executable(a), [l1, . . . , ln]).
In our further examples these propositions will not be ex-
plicitly written.

Due to the space limitation we will not give the precise defi-
nition of the transition diagram defined by a system descrip-
tion SD. The semantics is very close to that of language B
of (Gelfond & Lifschitz 1998). For the precise meaning of
definition propositions one is referred to (Watson 1999).

Sample System Description
As an example consider a (simplified) system description
SD of the system from Figure 1 Components:

b1, b2, . . . (a collection of light bulbs)
r1, r2, . . . (a collection of resistors)

In what follows C’s will stand for components, B’s for
bulbs, R’s for resistors, and F for an arbitrary fluent. Al-
though there is also a switch and battery in the circuit, for
this simple example we will not name them.

Fluents:
closed - the switch is closed
in circ(C) - a component C is in the circuit
ab(B, burnt) - a light bulb, B, is burned out
ab(R, shorted) - a resistor, R, is shorted
ab(R, broken) - a resistor, R, is broken

Agent Actions:
replace(C1, C2) - replaces component C1 by
a spare component C2

open - opens the switch
close - closes the switch

Exogenous Actions:
burn - burns out the circuit’s bulb
short - shorts out the circuit’s resistor
break - breaks the circuit’s resistor

Causal laws and executability conditions describing the nor-
mal functioning of S:

SDn




causes(open,¬closed, [ ]).
causes(close, closed, [ ]).
causes(replace(C1, C2),in circ(C2), [ ]).
causes(replace(C1, C2),¬in circ(C1), [ ]).
caused(observable(F ), [ ]).
definition(lit(B), [closed,in circ(B),

in circ(R),¬ab(B, burnt),
¬ab(R,shorted),¬ab(R,broken)]).

impossible if(open, [¬closed]).
impossible if(close, [closed]).
impossible if(replace(C1, C2), [¬in circ(C1)]).

Laws describing the effects of exogenous actions:

SDb




causes(burn, ab(B, burnt), [in circ(B)]).
causes(short, ab(R,shorted), [in circ(R)]).
causes(break, ab(R,broken), [in circ(R)]).
caused(ab(B, burnt), [ab(R,shorted),

in circ(B),in circ(R)]).
caused(⊥, [ab(R,shorted), ab(R,broken)]).

Later we consider some fluents to be unobservable.

Recording the History
A recorded history, Γn, of a system up to step n is a collec-
tion of statements of the form:

1. initially(l) - ‘fluent literal l is true in the initial state’

2. obs(l, t) - ‘observable fluent literal l was observed to be
true at moment t’;

3. hpd(a, t) - ‘elementary action a ∈ A was observed to
have happened at moment t’



where t is an integer in the range [0, n).
A pair, 〈SD,Γn〉 is referred to as a domain description.
For the following definitions, let S be a diagnostic do-

main, T be the transition diagram defined by S, W =
〈σW

0 , aW
0 , σW

1 , . . . , aW
n−1, σ

W
n 〉 be the actual trajectory, and

Γn be a history of S up to moment n.

Definition 2 (Model) A path σ0, a0, σ1, . . . , an−1, σn in T
is a model of Γn iff

1. if initially(l) ∈ Γn then l ∈ σ0

2. if hpd(a, k) ∈ Γn then executable(a) ∈ σk

3. ak = {a : hpd(a, k) ∈ Γn};
4. if obs(l, k) ∈ Γn then observable(l) ∈ σk and l ∈ σk.

Definition 3 (Consistent) Γn is consistent (w.r.t. T ) if it
has a model.

Definition 4 (Sound) Γn is sound (with respect to S) if, for
any literal, l, action, a, and time, t:

1. if initially(l) ∈ Γn then l ∈ σW
0

2. if obs(l, t) ∈ Γn then observable(l) ∈ σW
t and l ∈ σW

t ,
and

3. if hpd(a, t) ∈ Γn then executable(a) ∈ σW
t and a ∈ aW

t .

Definition 5 (|= (Entailment)) A fluent literal, l, holds in a
model, M , at time t ≤ n (denoted M |= h(l, t)) if l ∈ σt.
Γn entails h(l, t) (denoted Γn |= h(l, k)) if for every model
M of Γn, M |= h(l, k).

The definitions are almost identical to that of ((Balduccini &
Gelfond 2002)) - the most important difference is the inclu-
sion of initially(l) and the fact that fluents must have been
observable at the time they were observed.

With these definitions, we can now look at the history de-
scribed in the circuit example, examine the models of the
domain description, and see what can be entailed.

Sample History Description
For our circuit example, the history, Γ0, can be encoded by:

hpd(close), 0).
initially(¬closed, 0).
initially(¬lit(B), 0).
initially(in circ(b1), 0).
initially(in circ(r1), 0).
initially(¬in circ(C), 0).
initially(¬ab(B, burnt), 0).
initially(¬ab(R,F ), 0).

where B is any light bulb, R is any resistor, C is any bulb
or resistor other than b1 and r1, and F is either shorted or
broken.

Given the system description SD of S, and the recorded
history, Γ0, it is easy to see that the path 〈σ0, close, σ1〉 is
the only model of Γ1 and that Γ1 |= h(lit(b1), 1).

Basic Definitions
We now present some definitions needed for diagnosis and
testing. The definitions, with minor modifications, are from
(Balduccini & Gelfond 2002).

Definition 6 (Configuration) A pair, 〈Γn, Om
n 〉, where Γn

is the recorded history of S up to moment n and Om
n is a

collection of observations made by the agent between n and
m, is called a configuration.

Definition 7 (Symptom) A configuration, S = 〈Γn, Om
n 〉,

is a symptom of the system’s malfunction if Γn is consistent
but Γn ∪ Om

n is not.

Definition 8 (Explanation) An explanation (Baral & Gel-
fond 2000), E, of a symptom, S, is a collection of state-
ments

E = {hpd(ai, t) : 0 ≤ t < n and ai ∈ Ae}
such that Γn ∪ Om

n ∪ E is consistent.

Definition 9 (Candidate Diagnosis) A candidate diagno-
sis of a symptom, S, is a pair D = 〈E,∆〉 such that E is an
explanation of S and ∆ = {(c, f, k) : n ≤ k ≤ m, M |=
h(ab(c, f), k)} for some model M of Γn ∪ Om

n ∪ E.

Given a candidate diagnosis, D, for convenience we of-
ten denote E by act(D) and ∆ by faults(D). Moreover,
in some cases, we abuse the notation, and identify D with
E ∪ {obs(ab(c, f), k) : (c, f, k) ∈ ∆}.

Definition 10 (Diagnosis) We say that a candidate diagno-
sis, D = 〈E,∆〉, is a diagnosis of a symptom, S =
〈Γn, Om

n 〉, if all the components in ∆ are faulty, i.e., for any
(c, f, k) ∈ ∆, ab(c, f) ∈ σW

k .

Sample Candidate Diagnosis
Previously we presented a system description, SD, and
history, Γ0, for our circuit example. To continue with
this example let us assume that at time point 1 (the time
point immediately after the agent closed the switch) the
agent observed that the bulb is not lit. Using our nota-
tion we have a configuration S0 = 〈Γ0, O

1
1〉 such that

O1
1 = {obs(¬lit(b1), 1)}. It is easy to see that S0 is a symp-

tom of a malfunction in the system and that the following is
the complete list of candidate diagnoses of S0:
D1 = 〈{hpd(burn, 0)}, {(b1, burnt)}〉
D2 = 〈{hpd(short, 0)}, {(b1, burnt), (r1, shorted)}〉
D3 = 〈{hpd(break, 0)}, {(r1, broken)}〉
D4 = 〈{hpd(burn, 0), hpd(short, 0)},

{(b1, burnt), (r1, shorted)}〉
D5 = 〈{hpd(burn, 0), hpd(break, 0)},

{(b1, burnt), (r1, broken)}〉
At this point, the agent needs to find a diagnosis from the

set. This is accomplished through testing.

Testing
When confronted with a number of candidate diagnoses, an
agent has to be able to determine what is or is not a di-
agnosis. In our previous works, (Balduccini, Galloway, &
Gelfond 2001; Balduccini & Gelfond 2002) all fluents were
assumed to be observable at all times and therefore testing
could be done by simply observing the state of the compo-
nents mentioned in the diagnosis. If a candidate diagnosis
predicts that a component should be faulty but the real com-
ponent is not, then the agent can reject that candidate. The



situation is much more difficult when there are components
which are not always observable. An agent can still reject a
candidate based on the currently observable fluents, but, if
the candidate diagnosis contains any fluents which are not
currently observable, there could be insufficient information
to accept the candidate as a diagnosis. The agent must find
a way to test the suspected components. In what follows
we assume that no (relevant) exogenous actions can occur
during the testing and repair process.

Definition 11 (Test) A test of a candidate diagnosis D of
a symptom S = 〈Γn, Om

n 〉 is a pair (α,U) where α =
{a1, . . . , ak} is a sequence of actions, U is a collection of
fluents such that there is a model M of S∪D∪{hpd(ai,m+
i : ai ∈ α} which entails h(observable(f),m + k + 1) for
any fluent f from U .

Notice that the simplest case of test is when, for some
pair (c, f,m) ∈ ∆, ab(c, f) is observable in the current
state, m. In such a case, ([ ], {ab(c, f)}) is a test. If this
is not the case, then the agent may try to find an α that will
lead to a state containing observable(ab(c, f)). This can be
achieved by using a standard planning algorithm (Dimopou-
los, Nebel, & Koehler 1997). If α is successfully executed
and c is observed to have a fault f the agent may conclude
that c was faulty before the test. Of course this conclusion
can only be justified assuming that components are not bro-
ken by the testing actions. If, contrary to the D based pre-
diction, ab(c, f) is observed to be false, D will be rejected
as the candidate diagnosis. If the agent’s assumptions are
incorrect it can also discover that some action in his test is
not executable or that some element of U is not actually ob-
servable. This information will be added to the agent’s set of
observations and will allow the agent to eliminate a number
of possible candidate diagnoses of the original symptom, in-
cluding D. In general good tests are supposed to reduce the
number of candidate diagnosis of the symptom. An obvi-
ous way of eliminating useless tests is to only choose those
which are in some way related to elements of ∆. This and
other approaches to the problem will be addressed in the full
version of the paper.

Diagnostic and Testing Algorithms
In this section we give a brief description of an algorithm for
finding a diagnosis of a symptom. We assume a fixed system
description SD such that any symptom S of its malfunction-
ing has a diagnosis. The algorithm will use two basic rou-
tines, Get Test(S,D) and Perform Test(S, T ). The former
finds a test, T , of a diagnosis D of symptom S and returns
nil if no such test is available. The latter attempts to exe-
cute actions of T and to observe the resulting fluents. The
results of this activity will be recorded in the agent’s knowl-
edge base. It is easy to show that the resulting configuration,
S ′, will remain a symptom. Consider for instance a test T =
〈a, {f}〉. Assuming that f is true after the execution of a, the
successful execution of the test will expand S by statements
hpd(a,m) and obs(f,m+1). If the execution of a fails, the
resulting S ′ = S ∪ obs(¬executable(a),m). Finally, if the
agent discovers that f is not observable after the execution of
a then S ′ = S ∪{hpd(a,m), obs(¬observable(f,m+1))}.

We assume that if a is not executable or f is not observ-
able this fact will always be detected by the agent. Nor-
mally, the function Get Test will significantly depend on the
agent’s knowledge of the domain. For illustrative purposes
we describe this function for a domain in which a fault f
of a component c can only be observed in a state satisfying
some conditions t(c, f) recorded in the agent’s knowledge
base SD.

First we will need some notation. Recall that in (Balduc-
cini & Gelfond 2002) we defined a logic program, TEST(S),
which encodes SD together with a configuration S. That pa-
per also contains a proof of correctness of this encoding with
respect to the semantics of our action language. We will
also need a standard planning module PM (Dimopoulos,
Nebel, & Koehler 1997; Lifschitz 1999) (possibly extended
by some heuristic information). Finally, by Π we will denote
a logic program Test(S ∪ D) ∪ goal(t(c, f)) ∪ PM .

function Get Test( S: symptom,D :diagnosis):diagnosis;
begin

select 〈c, f〉 ∈ faults(D);
if Π is consistent then

select an answer set X of Π;
return(a1, . . . , ak : occurs(ai,m + i) ∈ X);

else return(nil)
end

The correctness of our encoding, TEST(S), together with the
correctness of the planning module guarantee correctness of
the returned value of Get Test. Slight modifications of the
above code will allow us to avoid multiple observances of
the same fluents, to limit the length of tests, to restrict tests
to actions relevant to t(c, f), etc.

We will also need a routine for finding candidate diagnoses
of a symptom. The one presented below is very similar
to that in (Balduccini & Gelfond 2002). It uses a logic
program D0(S) =TEST(S) ∪ DM where DM is one of
the diagnostic modules described in that paper. Recall also
that a set of literals X determines a candidate diagnosis
〈E,∆〉 if E = {hpd(a, t) :occurs(a, t) ∈ X, a ∈ Ae} and
∆ = {(c, f, t) : obs(ab(c, f), t) ∈ X,n ≤ t ≤ m}.

function Candidate Diag( S: symptom ,
Q: set of diagnosis):diagnosis;

{ returns a candidate diagnosis of S which is not in Q or
nil if no such candidate diagnosis exists }

var E,X : history;
∆ : set of faults;

begin
if D0(S) is consistent then

begin
select an answer set, X , of D0(S) such that the

pair 〈E,∆〉 determined by X is not in Q;
return(〈E,∆〉)

end
else

return (nil);
end



Correctness of the returned value of the function was
proven in (Balduccini & Gelfond 2002).

Next we will define a function Test responsible for finding
and performing a test of a diagnosis D of symptom S. Test
may establish that D is a diagnosis or that the appropriat-
ness of D as a diagnosis cannot be discovered by any test.
If neither of these outcomes occur it computes a new candi-
date diagnosis of the (possibly updated) symptom. A more
precise description of the behavior of the function is given
in Proposition 1 below.
Type : test outcome = {y,n,u};

function Test( var S: symptom,
D: diagnosis,
var D′: diagnosis,
var Q: set of diagnosis ):test outcome;

var T : test;
begin

if for every candidate diagnosis, Di of S,
faults(D) ⊆faults(Di) then

return(y);
T := Get Test(S,D);
if T = nil then

Q := Q ∪ {D};
else

Perform Test(S, T );
D′ :=Candidate Diag(S, Q);
if D′ = nil then

return(n)
else

return(u);
end

Proposition 1 Let S0 and S1 be the initial and the final
value of parameter S of Test. Then

1. If Test returns y then D is a diagnosis of S0.
2. If Test returns n then the diagnosis of S1 cannot be tested.

(If every symptom of our system has a diagnosis then Q
contains a diagnosis of S0 and S1.)

3. If Test returns u then D′ is a candidate diagnosis of S1.

The proof of the proposition will be given in the full paper.
Notice that checking the condition of the first if statement

of Test can be done as follows:

1. compute a stable model of a logic program Π′ = D0(S)∪
C where C is a logic programming constraint

{ :- {h(ab(c, f), k) : (c, f, k) ∈ faults(D)}}
2. If a model is found the condition fails. Otherwise it is
true.

So, as before, the real computation of the function is reduced
to finding stable models of logic programs.

Now we are ready to define the main function of our algo-
rithm which generates and tests the candidate diagnoses of a
symptom.

function Find Diag( var S: symptom ) : diagnosis;
{ returns a diagnosis of S or nil if no diagnosis is found.}
var D,D′ : diagnosis;

Q : set of diagnosis;
Outcome : test outcome;

begin
Q = { };
D :=Candidate Diag(S, Q);
while D �= nil

Outcome:=Test(S,D,D′, Q);
if Outcome= y then

return(D);
D := D′;

end {while}
if D is the only element of Q consistent with S then

return(D)
else return(nil)

end

It is not difficult to show that, if the function returns D,
then it is a diagnosis of both, the original and the final symp-
toms S0 and S1. In the full paper we will give several con-
ditions which will guarantee the function’s termination.

Testing in the Circuit Example
To illustrate the algorithm let us consider several versions of
our circuit example. The versions will differ only by what
fluents are viewed as observable. Let us assume that the
agent already discovered a symptom S0. In our trace we will
refer to its diagnoses D1, . . . , D5. We will also assume that
our function Get Test returns a test with the shortest possible
sequence of actions. (Which is common and easy to imple-
ment).

We start with a system, S0, in which all faults are observ-
able. This is a straight forward diagnostic problem and can
easily be handled by the previous agent framework of (Bal-
duccini, Galloway, & Gelfond 2001),(Balduccini & Gelfond
2002)). Function Find Diag will simply generate the candi-
date diagnoses and observe their predicted faults. The pro-
cess will terminate and return one of D1, . . . , D5.

Next we will consider S1 in which we can observe if bulbs
are burnt out but faults of resistors are not observable. Here
the previous work is no longer sufficient. In Find Diag,
suppose the first candidate diagnosis chosen to check was
D1. D1 contains only one fault - the light bulb, b1, being
burnt out - and it is observable. The Test algorithm will call
Get Test which will return ([ ], {ab(b1, burnt)}). Suppose
that the agent performed the test and discovered that the bulb
is not burned out. This information is added to S0. Test
then calls Candidate Diag with the new symptom S1. No-
tice that, since the bulb was good, the only remaining candi-
date diagnosis of S1, D3, will be saved in D′ and returned
to Find Diag along with the test outcome u. In Find Diag,
D then becomes D3 and Test is called again. Since D3 is the
only candidate diagnosis of S1, it is obviously true that the
first if statement in Test succeeds, y is returned, and hence
D3 is returned by Find Diag as a diagnosis of S1. Although
r1 was not directly observed to be broken, it must be the case
(otherwise S1 would not have a diagnosis). Of course, this
is also the only diagnosis of S0. If the bulb had been obsev-
ered to be burnt out, the information would be added to S0

and a candidate diagnosis D′ would be chosen and returned



with outcome u. If D1 was chosen again as our D′ then the
next call to Test would return it as a diagnosis. If D2,D4, or
D5 was chosen for D′, further testing would be performed
and the algorithm would continue until a diagnosis was con-
firmed.

Finally, let us assume that neither faults of bulbs nor
resistors are observable. Again let us consider the case
when D1 was the first candidate chosen in Find Diag.
As before, Find Diag calls Test and Test calls Get Test.
The system will try to find a test which will help deter-
mine if the bulb is bad. One such test would be the pair
([replace(b1, b2)], {lit(b2)}) (replace the bulb in the circuit
with one of the good spare bulbs and observe if the new bulb
lights up). The information gained while performing the test
is added to S0. Suppose the new bulb did light up. When
Test calls Candidate Diag to get a candidate, it is easy to
see that D1 is the only candidate which is consistent with
S1. Again, after u and D′ are returned by Test, D will be-
come D1. It will be returned as a diagnosis on the next call
to Test. If, in this example, the new light bulb had not lit,
D1 could not be a diagnosis and hence, one of the other
candidate diagnoses of S1 would be chosen as D′. To con-
tinue the example informally, suppose D2 is chosen. We
again get a test. Consider the test (switch(r1, r2), lit(b2)).
If the light bulb is not lit after this action, then r1 must have
been shorted and blew out b2 as soon as it was put in the
socket. Since we know the resistor was shorted, we would
also know that b1 was bad as well. This is due to the fact
that no exogenous actions are allowed to happen during the
testing. In this case, both D2 and D4 are still candidates.
Note that it is impossible to differentiate between these two.
In both cases the bulb, b1, is abnormal (burned out) and r1

is shorted. Since the exogenous actions which caused the
faults had no other effect, it is impossible to deduce which
set of actions actually happened. Notice however, that they
are both, by definition, diagnoses of S2 (and hence S0. The
one which is chosen by Candidate Diag as the new D′ in
Test will be eventually returned as a diagnosis.

If the bulb had lit when the resistors were switched, then
D2 could not be a diagnosis since r1 must have been broken,
not shorted. The two remaining candidate diagnoses are D3

and D5. D3 is definitely a diagnosis because we know r1

was broken. If D5 was chosen next however, we could run
the test ([replace(b2, b1)], lit(b1)). By putting the original
bulb back in the circuit whose resistor is now certainly work-
ing, we would be sure if b1 was abnormal or not.

We hope that this discussion facilitated the reader’s under-
standing of the algorithm. In the full paper we hope to
present its implementation and show the actual output of the
program.

The example also show that the quality of the algorithms de-
pends very substantially on the implementation of Get Test.
Assume for instance that, in our example, the light wasn’t on
because the resistor had shorted and Get Test returns a test
which requires changing the bulb. As was discussed above,
since the resistor is shorted, not only will the light not be on
as a result of this action, but the new bulb will also be blown
in the process. We may attempt to avoid this situation by

modifying Get Test to insure that performance of a test will
not cause new abnormalities if executed in any of the pos-
sible current states of the system. Such ”safe” tests may, of
course, be preferable. But, it can easily be seen that such test
do not always exist. We will leave discussion of safe tests
and other similar choices and their ramifications for future
work.

Conclusion and Future Work
This paper desribes an ongoing work investigating the ap-
plicability of answer set programming to the design and
implementation of intelligent agents capable of acting in a
changing environment. In particular it expands the work on
the diagnostic reasoning module of the agent (Balduccini &
Gelfond 2002) to allow for repair combined with testing in
situations where faults of the system are not always observ-
able. We introduced a new notion of a test which differs
somewhat from those available in the literature (McIlraith &
Reiter 1992; McIllraith 1994; Baral, McIlraith, & Son 2000;
McIlraith & Scherl 2000). We also presented new reasoning
algorithm for finding diagnoses of a symptom. The algo-
rithm uses testing and observations to desciminate between
various candidate diagnoses. Most of the computational
work in the algorithm is accomplished by answer set solvers
which compute answer sets of logic programs representing
the agent’s knowledge. Even though the relationship be-
tween our approach and other related work requires further
investigation, it is clear that some features of our approach
are new. For instance we differ from (Baral, McIlraith, &
Son 2000) in our use of action language with fixed order-
ing of points and parallel actions. In contrast, that paper
allows arbitrary interleaving of unobserved actions. While
our work seems to be simpler and provide some computa-
tional advantages, that of (Baral, McIlraith, & Son 2000) is
more general. Our approach also seems to avoid the need
for special treatment of knowledge producing actions (as in-
troduced in (McIlraith & Scherl 2000)). In our approach the
agent confirms his diagnostics by observations and by estab-
lishing that, unless certain faults are present, no explanation
of the symptom is possible. The agents from (McIlraith &
Scherl 2000) seem to rely more on logical reasoning in sitau-
tion calculus with knowledge producing actions. It will be
very interesting to investigate the relationship between these
approaches. In our further work we also plan to refine and
optimize the algorithm and to investigate their properties. In
particular we are interested in finding conditions on the do-
main and the function Get Test which will guarantee termi-
nation and completeness of Find Diag. Other plans include
implementation and testing of our diagnostic module.
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