
What Observations Really Tell Us

Gero Iwan and Gerhard Lakemeyer
Department of Computer Science V
Aachen University of Technology

52056 Aachen, Germany
{iwan,gerhard}@cs.rwth-aachen.de

Abstract

When agents like mobile robots make observations while
carrying out a course of actions, a formalization of the
observed information is needed in order to reason about
it. When doing so in the situation calculus, a seemingly
straightforward approach turns out to be inappropriate since
it leads to unintended results and has an unfortunate sensi-
tivity with respect to different forms of successor state ax-
ioms. In this paper we suggest how to properly encode ob-
served information in order to avoid both of these problems.

1 Introduction
When agents like mobile robots make observations while
carrying out a course of actions, this information is of use
when reasoning about the future as in planning, but also
when reasoning about the past, which is necessary, for ex-
ample, when diagnosing execution failures. Here we are
considering formalizing actions and observations in the sit-
uation calculus (McCarthy 1963; Levesque, Pirri, & Reiter
1998; Reiter & Pirri 1999).

At first glance, it seems to be quite clear what knowledge
observations provide the agent with, namely that a certain
statement about the world is true at a given point during
its course of actions. However, when we began extend-
ing Iwan’s work on the diagnosis of plan execution failures
(Iwan 2002) to the case that observations can be made during
a course of actions, we realized that a seemingly straightfor-
ward formalization of the information provided by the ob-
servations may lead to unintended and/or unintuitive results
when drawing conclusions from these observations. More-
over, in this case different forms of the so-called successor
state axioms which describe the effect and non-effects of
actions yield different results although switching between
these different forms was thought to be innocuous. We will
suggest how to properly formalize the information provided
by observations in order to avoid both of these problems.

We will illustrate the problem and our solution by way
of the following simple scenario. Suppose an autonomous
robot is acting in a typical office environment with rooms
R1 ,R2 ,R3 , . . . ,Rm each of which is connected by a door
to a hallwayH . Starting from the hall in the initial situation,

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

as the first action in a course of actions, the robot wants to
enter roomR1 and initiates navigating towards roomR1 .1

But then, after arriving at the room, it finds out that it is not
R1 . An reasonable diagnosis of this plan execution failure
would be that the robot entered a room different fromR1 .
In order to figure out what actually happened it would be
helpful to determine the rooms for which it was possible to
enter them in the initial situation. Assume that it is possible
to enter a room from the hall iff the door of the room is open.
Let us consider three cases:
1. Suppose that nothing is known about the state of the

doors in the initial situation except that the door of room
R1 was open. Without any further information, one can
only infer that it was possible to enter roomR1 and that
it was at bestpotentiallypossible to enter any other room.

2. If the robot is capable of inquiring about the state of the
doors (e. g., from a door control system) it can obtain
new information. For example, let the answer to the re-
quest be: roomsR1 ,R2 ,R3 are open, all other rooms
are closed. From this information one should be able to
infer that it was possible to enter roomsR2 ,R3 instead
of R1 , but no other room.

3. Instead of requesting the door states from an outside
source, suppose the robot uses its own sensors and ob-
serves, for example, that it is in a room whose door is
open. In a sense, this seems like a rather trivial observa-
tion because having just entered a room should already
imply that the door to this room is open. Thus from
this redundant observation one should not be able to infer
more than in the case where no observation was made.

As we will see below, there are surprisingly subtle issues
that arise when attempting to formalize such scenarios.

The rest of the paper is organized as follows. In the next
section, we briefly introduce the situation calculus, followed
by a first attempt at formalizing and reasoning about obser-
vations using the robot example. In Section 4, we analyze
the problems with this approach and discuss our solution. In
Section 5, we look at the more general picture of project-
ing both forward and backward in time. Finally, we end the
paper with a section on related work and a brief summary.

1We assume a navigation software as in (Burgardet al. 1999)
which usually, but not always, leads to successful navigation from
one location to another.

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

2 The Situation Calculus
In this section we briefly go over the situation-as-histories
variant (Levesque, Pirri, & Reiter 1998; Reiter & Pirri 1999;
Reiter 2001) of thesituation calculus(McCarthy 1963;
McCarthy & Hayes 1969) and, as we go along, give a formal
account of our robot scenario in this framework. We adopt
the convention that free variables are implicitly universally
quantified unless otherwise stated.Φdx1, . . . , xne indicates
that the free variables of formulaΦ are amongx1, . . . , xn.

The language of the situation calculus has three disjoint
sorts: situation, action, object. There are two function
symbols of sortsituation: the constantS0, which denotes
the initial situation, and the binary function symboldo,
where do(α, σ) denotes the situation that is reached af-
ter executing actionα in situationσ. There are several
domain-independent foundational axioms which, among
other things, characterize the predicate@ which denotes the
predecessor relation between situations:s′ @ smeans thats
can be reached froms′ by a sequence of actions. The abbre-
viations′ v s stands fors′ @ s ∨ s′ = s.

An action is a termA(t1, . . . , tn), whereA is a n-ary
action function. The action functions used here areenter
andleave for entering and leaving a room,open, close and
lock for opening, closing and locking doors. In the example,
the rooms and the hall are denoted by the object constants
R1 ,R2 ,R3 , . . . ,Rm and H . Properties of situations are
represented using so-called fluents. Here we confine our-
selves to relational fluents, which are predicates whose last
argument is of sortsituation, e. g.,Locked(r, s), Open(r, s)
andRoLoc(l, s), whose meaning is “The (door of) roomr
is locked in situations”, “The (door of) roomr is open in
situations” and “The robot is at locationl in situations”,
respectively. For each fluent there is a successor state axiom
of the form

F (x1, . . . , xn, do(a, s)) ≡ ΦF dx1, . . . , xn, a, se (SSA)

which states under which condition,ΦF , the property
F (x1, . . . , xn,) holds in the successor situationdo(a, s) of
situations after executing actiona, e. g.,

Locked(r, do(a, s))
≡ a = lock(r) ∨ Locked(r, s)

Open(r, do(a, s))
≡ a = open(r)
∨ [Open(r, s) ∧ ¬[a = close(r) ∨ a = lock(r)]]

RoLoc(l, do(a, s))
≡ a = enter(l)
∨ [a = leave ∧ l = H]
∨ [RoLoc(l, s) ∧ ¬[∃r a = enter(r) ∨ a = leave]]

Axioms describing the initial situation and situation inde-
pendent facts form the initial database, e. g.,

RoLoc(H ,S0) ∧ Open(R1 ,S0)
¬[Locked(r,S0) ∧Open(r,S0)]
[Open(r,S0) ∨ Locked(r,S0)] ⊃ Room(r)
Room(r) ≡ r = R1 ∨ r = R2 ∨ · · · ∨ r = Rm
unique names axioms forR1 , . . . ,Rm andH

Action precondition axioms of the form

Poss(A(x1, . . . , xn), s) ≡ ΠAdx1, . . . , xn, se

are used to state under which condition,ΠA, it is possible to
execute actionA(x1, . . . , xn) in situations, e. g.,

Poss(lock(r), s)
≡ Room(r) ∧ [RoLoc(r, s) ∨ RoLoc(H , s)]

Poss(close(r), s)
≡ Room(r) ∧ [RoLoc(r, s) ∨ RoLoc(H , s)]

Poss(open(r), s)
≡ Room(r) ∧ [RoLoc(r, s) ∨ RoLoc(H , s)]
∧ ¬Locked(r, s)

Poss(enter(r), s)
≡ RoLoc(H , s) ∧Open(r, s)

Poss(leave, s)
≡ ∃r [RoLoc(r, s) ∧Open(r, s)]

A situation is said to beexecutable if, starting in the initial
situation, it is possible to execute all the actions that lead to
the situation. Formally:

Exec(s) .= ∀a′, s′ [do(a′, s′) v s ⊃ Poss(a′, s′)]

As discussed in detail in (Reiter 2001), a basic action the-
ory D describes the initial state of the world and how the
world evolves under the effects of actions. It consists of
foundational axioms for situations, unique names axioms for
actions, an action precondition axiom for each action func-
tion, a successor state axiom for each fluent, and axioms de-
scribing the initial situation and situation independent facts.2

In what follows we also need the notion ofsituation-sup-
pressed formulas, i. e., formulas where all occurrences of
situation terms are “deleted” (details omitted). Ifφ is a sit-
uation-suppressed formula thenφ

[
σ
]

denotes the situation
calculus formula obtained after restoring suppressed situ-
ation arguments by “inserting” the situationσ where nec-
essary, e. g., ifφ = ∃x (Room(x) ∧ RoLoc(x) ∧Open(x))
thenφ

[
σ
]

= ∃x (Room(x) ∧ RoLoc(x, σ) ∧Open(x, σ)).
In contrast to the form of successor state axioms used

above the form

Poss(a, s) ⊃
(
F (~x, do(a, s)) ≡ ΦF d~x, a, se

)
(PSSA)

is also found in the literature (e. g., in (Reiter 1991;
Levesqueet al. 1997; McIlraith 1998)) and is in fact the
“original” form from (Reiter 1991). We refer to it as the
Poss-guarded form, and it only allows to infer effects of ex-
ecutable actions. Note that the unguarded form is logically
equivalent to theTrue-guarded form

True ⊃
(
F (~x, do(a, s)) ≡ ΦF d~x, a, se

)
(TSSA)

Hence, from now on, we will writeDTrue for basic ac-
tion theory using the unguarded form (or theTrue-guarded
form) andDPoss for basic action theory using thePoss-
guarded form.

2Note that with the given action theory for the robot example,
e. g.,D |= ∀r, s [(Exec(s) ∧ Locked(r, s)) ⊃ ¬Open(r, s)].

DTrue andDPoss are equivalent w. r. t. planning and pro-
jection for executable situations, strictly speakingprojection
into the futurewhich means reasoning forward (in time) (cf.
Section 5). But the example in the next section seems to
suggest that they are not equivalent w. r. t.projection into
the past, that is, reasoning backward in time. Worse yet,
both forms suddenly seem inappropriate. However, Sec-
tions 4 and 5 will show how both problems can be avoided
by accurately formalizing the information contained in ob-
servations.

3 The Robot Example Revisited
With the situation-calculus account of the robot exam-
ple given in the previous section, let us now reconsider
the situation where the robot planned to perform the ac-
tion enter(R1) but fails. According to (Iwan 2002),
enter(%) is a diagnosis of this plan execution failure for any
% ∈ {R2 , . . . ,Rm} provided the executability ofenter(%)
can be proved. Letφ be a situation-suppressed closed for-
mula representing the observation that was made after per-
forming the actionenter(%). Then φ

[
do(enter(%),S0)

]
is the additional information provided by this observation.
Since we want to determine whether it was possible to enter
room% in the initial situation we consider the sets of rooms
R⊕1 (D, φ) and R	1 (D, φ) intendedto be the sets of rooms
different fromR1 for which we are able to infer that it was
possible or impossible to enter them respectively:3

R⊕1 (D, φ) = {% ∈ {R2 , . . . ,Rm} |
D ∧ φ

[
do(enter(%),S0)

]
|= Open(%,S0)}

R	1 (D, φ) = {% ∈ {R2 , . . . ,Rm} |
D ∧ φ

[
do(enter(%),S0)

]
|= ¬Open(%,S0)}

Note that, no matter which form of successor state axioms
is used,Poss(enter(%),S0) ≡ Open(%,S0) can be inferred
from the action precondition axiom forenter together with
RoLoc(H ,S0).

The three cases regarding the information about the door
states can be represented as follows:

φN = True,
φR = ∀r [Open(r) ≡ r = R1 ∨ r = R2 ∨ r = R3]
φL = ∃r [Room(r) ∧ RoLoc(r) ∧Open(r)]

whereφN expresses that no observation was made,φR cor-
responds to the case where the agent was told that only the
first 3 rooms are open, andφL corresponds to the case where
the agent itself is able to figure out that the door to the room
it just entered is open.

Let R⊕(φ) andR	(φ) denote the intended results for an
observationφ. The argument given in the introduction sug-
gests the following values forR⊕(φ) and R	(φ), respec-
tively:

R⊕(φR) = {R2 ,R3} R⊕(φL) = ∅ R⊕(φN) = ∅
R	(φR) = {R4 , . . . ,Rm} R	(φL) = ∅ R	(φN) = ∅

3In a slight abuse of notation, we often writeD ∧ Φ instead of
D ∪ {Φ}.

However, depending on whether we usePoss- or True-
guarded successor state axioms, we sometimes get surpris-
ingly different results as shown in the following table:

φ φR φL φN

R⊕1 (DTrue , φ) {R2 ,R3} {R2 , . . . ,Rm} ∅
R	1 (DTrue , φ) {R4 , . . . ,Rm} ∅ ∅
R⊕1 (DPoss , φ) ∅ ∅ ∅
R	1 (DPoss , φ) {R4 , . . . ,Rm} ∅ ∅

Thus for the observationφR, DPoss is too weak butDTrue

gives the intended results, whereas forφL , DPoss gives the
intended results andDTrue gives a completely counter-intu-
itive result.

This result can be meliorated by a more careful formula-
tion of the setsR⊕1 (D, φ) andR	1 (D, φ):

R⊕2 (D, φ) = {ξ ∈ {R2 , . . . ,Rm} |
D ∧ φ

[
do(enter(%),S0)

]
|= Open(ξ,S0)}

R	2 (D, φ) = {ξ ∈ {R2 , . . . ,Rm} |
D ∧ φ

[
do(enter(%),S0)

]
|= ¬Open(ξ,S0)}

Here we distinguish between the room% 6= R1 which is
assumed to be entered and the roomξ for which we are
able to infer that it was possible or impossible to enter
it. Determining the sets of rooms yields the same re-
sults except that(1.) for observationφR, DPoss becomes
even weaker sinceR	2 (DPoss , φR) = ∅ if % ∈ {R2 ,R3} and
R	2 (DPoss , φR) = {%} if % ∈ {R4 , . . . ,Rm}, and (2.) for
the other observation,R⊕2 (DTrue , φL) = {%}:

φ φR φL φN

R⊕2 (DTrue , φ) {R2 ,R3} {%} ∅
R	2 (DTrue , φ) {R4 , . . . ,Rm} ∅ ∅
R⊕2 (DPoss , φ) ∅ ∅ ∅
% ∈ {R2 ,R3}:

R	2 (DPoss , φ) ∅ ∅ ∅
% ∈ {R4 , . . . ,Rm}:

R	2 (DPoss , φ) {%} ∅ ∅

Given the intuition that R⊕(φL) = ∅ the result
R⊕2 (DTrue , φL) = {%} is “less counter-intuitive” but
nevertheless strange because it is trivial that the robot can
leave a room it just entered. Thus, the robot should not
gain any information from the observationφL after an
enter -action. Let us consider the argument forDTrue and
φL in a bit more detail:

1. An effect of the execution ofenter(%) is that
RoLoc(r) ≡ r = %, i. e., the location of the robot is% [by
the (unguarded) successor state axiom forRoLoc].

2. If the location of the robot is% then the observationφL is
equivalent toOpen(%), i. e., room% is open.

3. If room % is open after actionenter(%) then room%
must have been open before actionenter(%) [by the (un-
guarded) successor state axiom forOpen].

4. If room % is open beforeenter(%) thenenter(%) is ex-
ecutable (since the location was the hallway before) [by
the action precondition axiom forenter].

So we have a kind of circular argument here: “An effect of
the execution ofenter(%) is that . . .enter(%) is executable.”
The crucial point in this circular argument is the first one
which is considering effects of actions that are not known to
be executable.

This discovery leads us to a defect of the formaliza-
tion of observed information so far: we consider observa-
tions made in situations which are not known to be exe-
cutable. But this seems absurd: if we make an observa-
tion in some situation then we have reached this situation,
and if we have reached some situation then the actions lead-
ing to this situation must have been executable. So it is re-
vealed now that the intuitionR⊕(φL) = ∅ was wrong if we
assume that a room%was entered. The right intuition should
have beenR⊕(φL) = {%}. Generally,% ∈ R⊕(. . .) must
hold. ForφN this bringsR⊕(φN) = {%} 6= ∅ = R⊕2 (D, φN).
AndD ∧ φR

[
do(enter(%),S0)

]
should turn out to be incon-

sistent if % /∈ R⊕(φR) = {R2 ,R3} (% 6= R1 was presup-
posed). This is not the case. Rather there are models where
¬Open(%,S0) is true. Moreover, if% ∈ {R4 , . . . ,Rm}
thenD ∧ φR

[
do(enter(%),S0)

]
|= ¬Open(%,S0). But this

means thatenter(%) was not executable, contradicting the
assumption that% was entered. To resolve this problem, we
need to be more careful in representing what observations
really tell us.

4 What Observations Really Tell Us
We define anobservation as a situation-suppressed closed
formula. In order to obtain the information provided by
an observation one has to restore an appropriate situation,
namely the situation where the observation was made. When
an agent, while carrying out a course of actions, makes sev-
eral observationsφ1, . . . , φn in sequence thebasic informa-
tion contained in this sequence of observations is

• For each observationφi there is a situationsi where it
was made.

• There is a situations∗ which is the current situation and
therefore is executable.

• The sequences1, . . . , sn, s∗ provides us with a natural
ordering of the situations.

This is captured by the formula∃Ω[φ1, . . . , φn] where

Ω[φ1, . . . , φn] .= s1 v . . . v sn v s∗
∧ Exec(s∗)
∧ φ1

[
s1

]
∧ · · · ∧ φn

[
sn
]

Here s1 v s2 ∧ · · · ∧ sn−1 v sn ∧ sn v s∗ is abbreviated
by s1 v . . . v sn v s∗. Note that, as a consequence of the
foundational situation calculus axioms,s v s∗ ∧ Exec(s∗)
impliesExec(s).

The message then is that the sole information as given
by the observation formulas is not enough to draw the
right conclusions, but that we also need to take into
account the history and, in particular, the fact that it is
executable.

In the robot example, the basic information contained in
φL is no new information sinceDTrue andDPoss both imply
∃Ω[φL]: they both implyσ1 v σ∗ ∧ Exec(σ∗) ∧ φL

[
σ1

]
,

e. g., withσ1 = σ∗ = do(enter(R1),S0). In general, the
basic information may contain new information. For in-
stance, for bothD = DTrue andD = DPoss

D ∧ ∃Ω[φR] |= ¬Locked(R2 ,S0) ∧ ¬Locked(R3 ,S0)

Without this information we have4 D |= ¬Locked(R1 ,S0)
but

D 6|= ¬Locked(R2 ,S0) and D 6|= ¬Locked(R3 ,S0)

However, mostly we have some additional assumptions
about the action history. In the robot example, the assump-
tion wass1 = do(enter(%),S0) (with % 6= R1). Let this for-
mula be namedΘ%.

A history assumption for Ω[φ1, . . . , φn] can be expressed
by a formulaΘds1, . . . , sn, s∗e (i. e., by a formulaΘ with
free variables amongs1, . . . , sn, s∗) where s1, . . . , sn, s∗
are the variables chosen inΩ[φ1, . . . , φn]. The basic in-
formation together with the history assumption then is
∃ [Ω[φ1, . . . , φn] ∧Θ].

We accordingly redefine the setsR⊕2 (D, φ) andR	2 (D, φ)
from the previous section:

R⊕% (D, φ) = {ξ ∈ {R2 , . . . ,Rm} |
D ∧ ∃ [Ω[φ] ∧Θ%] |= Open(ξ,S0)}

R	% (D, φ) = {ξ ∈ {R2 , . . . ,Rm} |
D ∧ ∃ [Ω[φ] ∧Θ%] |= ¬Open(ξ,S0)}

Note that∃ [Ω[φ] ∧Θ%] is equivalent to

Poss(enter(%),S0) ∧ φ
[
do(enter(%),S0)

]
(since the foundational situation calculus axioms imply
Exec(do(a,S0)) ≡ Poss(a,S0)). D ∧ ∃ [Ω[φR] ∧Θ%] is in-
consistent if% /∈ {R1 ,R2 ,R3}. Therefore theφR-results
are only reported for% ∈ {R2 ,R3} (% 6= R1 was presup-
posed):

φ φR (% ∈ {R2 ,R3}) φL φN

R⊕% (DTrue , φ) {R2 ,R3} {%} {%}
R	% (DTrue , φ) {R4 , . . . ,Rm} ∅ ∅
R⊕% (DPoss , φ) {R2 ,R3} {%} {%}
R	% (DPoss , φ) {R4 , . . . ,Rm} ∅ ∅

So for each of the three observations bothDTrue andDPoss

give the intended results that were discussed at the end of the

4Because of the axioms describing the initial situation we have
D |= Open(R1 ,S0) ∧ ∀r ¬[Locked(r,S0) ∧Open(r,S0)].

previous section (including the inconsistence for observation
φR if % /∈ {R2 ,R3}).

Of course, in contrast to the previous section, here the
primary statement thatenter(%) is executable in the initial
situation is given additionally. This was not done in the
previous section. But the absence of this premise was ex-
actly the shortcoming of the formalization of observed in-
formation in the previous section. Note that the premise
Poss(enter(%),S0) does not originate from the basic infor-
mation contained in the observation but from the history as-
sumption (together with the basic information).

The explicit distinction between the basic information
contained in the observations on the one hand and the
assumptionabout the history on the other hand is a
valuable quality of the approach to observation infor-
mation presented here.

Instead of explicitly introducing the entered room% we
could have used a modified history assumption

∃r [Room(r) ∧ r 6= R1 ∧ s∗ = s1 = do(enter(r),S0)]

which is closer to what we wanted to express actually. Let
this formula be namedΘ∃ and used withinR⊕% (D, φ) and
R	% (D, φ) instead ofΘ% yielding:

R⊕∃ (D, φ) = {ξ ∈ {R2 , . . . ,Rm} |
D ∧ ∃ [Ω[φ] ∧Θ∃] |= Open(ξ,S0)}

R	∃ (D, φ) = {ξ ∈ {R2 , . . . ,Rm} |
D ∧ ∃ [Ω[φ] ∧Θ∃] |= ¬Open(ξ,S0)}

Note that∃ [Ω[φ] ∧Θ∃] is equivalent to

∃r [Room(r) ∧ r 6= R1
∧ Poss(enter(r),S0) ∧ φ

[
do(enter(r),S0)

]
]

FurthermoreD ∧ ∃ [Ω[φR] ∧Θ∃] is consistent. The results
now are:

φ φR φL φN

R⊕∃ (DTrue , φ) {R2 ,R3} ∅ ∅
R	∃ (DTrue , φ) {R4 , . . . ,Rm} ∅ ∅
R⊕∃ (DPoss , φ) {R2 ,R3} ∅ ∅
R	∃ (DPoss , φ) {R4 , . . . ,Rm} ∅ ∅

So for each of the three observations bothDTrue andDPoss

give what we expect to be the intended results as initially
stated at the beginning of the previous section.

Our robot example is a projection problem into the past
where the form of successor state axioms does not matter.
In the next section we will see that with our approach to
observation information this is true in a rather general sense
(correcting the impression that was given in Section 3).

5 Planning and Projection with Observations
In the last section, we used inferences like
D ∧ ∃ [Ω[φ1, . . . , φn] ∧Θ] |= Ψ. This can be rephrased as

D |= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ) ⊃ Ψ] (?)

whereoΘ is obtained fromΘ by removing all∃-quantifiers
from the front ofΘ (so Θ = ∃ oΘ). Note though that (?)
is more general sinceΨ may refer to the free variables of
Ω[φ1, . . . , φn] ∧ oΘ. This feature is needed, e. g., for general
reachability, (re-)planning and projection problems.

For instance,oΘ∃ is

Room(r) ∧ r 6= R1 ∧ s∗ = s1 = do(enter(r),S0)

and we can ask for properties ofr, e. g., whetherr is cur-
rently open which is obviously true (since the robot just en-
teredr): D |= ∀ [(Ω[φ] ∧ oΘ∃) ⊃ Open(r, s∗)]. Note that
this could not be inferred ifΘ∃ would not contains∗ = s1.
Likewise, if we would like to know whether it is possible to
recover from error in our robot example we have to check
whether the original goal of the robot can be reached from
the current situation. This is a reachability problem. Its gen-
eral form is

D |= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ)
⊃ ∃s [s∗ v s ∧ Exec(s) ∧ Γ(s)]]

(reachability)

wheres∗ is the variable referring to the current situation in
Ω[φ1, . . . , φn].

(Re-)Planning means: Find an action sequence
α1, . . . , αm and check that it is executable in the cur-
rent situation and achieves the goal?5 The general form
therefore is withσ. = do(αm, . . . do(α1, s∗) . . .)

D |= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ)
⊃ [Exec(σ.) ∧ Γ(σ.)]]

(planning)

Projection into the future means: Does a given action se-
quenceα1, . . . , αm achieve the goal if it is performed in the
current situation? So it refers to the given future situation
σ. and asks whether a certain property (the goal) will hold
in σ.. Projection into the past instead refers to a given past
situationσ/ (S0 in our robot example) and asks whether a
certain property (the goal) held inσ/. The general form for
projection is

D |= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ) ⊃ Γ(σ)] (projection)

Note that plan checking (i. e., checking whether an action
sequence is a plan) and reachability testing can be viewed
as special cases of projection. Ifσ is not a bygone situation,
i. e., D 6|= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ) ⊃ σ @ s∗], then projec-
tion ishypothetical reasoning. Since they refer to future sit-
uations, plan checking and reachability testing are hypothet-
ical reasoning, too.

If there are no observations (i. e.:n = 0) and the current
situation is the initial situation (i. e.:Θ simply is s∗ = S0)
then any occurrence ofs∗ in Γ can be replaced byS0 and
reachability, planning and projection (into the future) reduce
to their standard forms

D |= ∃s [Exec(s) ∧ Γ(s)] (reachability)

D |= Exec(σ′) ∧ Γ(σ′) (planning)

D |= Γ(σ′) (projection)

5That is in a way: Doess = σ. yield an instance of the reacha-
bility problem?

with σ′ = do(αm, . . . do(α1,S0) . . .) for variable-free ac-
tionsα1, . . . , αm. Note that the standard forms are hypo-
thetical reasoning (since the foundational situation calculus
axioms imply¬(σ′ @ S0)).

Of course, the given general forms do not automatically
guarantee that the form of the successor state axioms does
not matter. For instance, if

Θ′ = φL
[
do(enter(%),S0)

]
then ∀ [(Ω[φR] ∧ oΘ′) ⊃ Open(%,S0)] is equivalent to
Θ′ ⊃ Open(%,S0) w. r. t. bothDTrue andDPoss , but

DTrue ∧Θ′ |= Open(%,S0)

DPoss ∧Θ′ 6|= Open(%,S0)

(cf. Section 3). The crucial point here is that nothing
is known about the executability ofdo(enter(%),S0).
If do(enter(%),S0) were claimed to be executable,
either directly, e. g., by Exec(do(enter(%),S0))
or Poss(enter(%),S0), or indirectly, e. g., by
do(enter(%),S0) = s1 or do(enter(%),S0) v s∗, both
DTrue and DPoss would give the same answer. For
example, if instead ofΘ′ we use

Θ′′ = φL
[
do(enter(%),S0)

]
∧ do(enter(%),S0) v s∗

then for bothD = DTrue andD = DPoss

D |= ∀ [(Ω[φR] ∧ oΘ′′) ⊃ Open(%,S0)]

An appropriate definition ofclaimed executable would
give us the following theorem:

If all situations are claimed executable withinΩ[. . .],
Θ andΨ then

DTrue |= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ) ⊃ Ψ]

iff DPoss |= ∀ [(Ω[φ1, . . . , φn] ∧ oΘ) ⊃ Ψ] .

It is a topic under investigation to formulate a precise (yet as
comprehensive as possible) syntactic criterion for “all situa-
tions are claimed executable within” However, reason-
able formula are likely to comply with this condition as can
be seen from the following considerations.

For reachability and planning,s and σ. are explicitly
claimed executable byExec(s) andExec(σ.) respectively.6

Since reasoning about non-executable actions does not make
much sense, for projection into the futureΘ should con-
tain Exec(σ.), i. e., we assume that the action sequence
α1, . . . , αm is executable in the current situation. Like-
wise, for projection into the past it is safe to haveσ/ v s∗
contained inΘ as the previous situationσ/ lies before
the current situations∗. Also, if the history assumption
Θ mentions previous situations it can containσ v s∗ for
each of these situationsσ. Yet, Θ may also refer to

6The fact thatExec(σ.) occurs on the right side of the implica-
tion does not cause trouble since, e. g.,Exec(do(α′, do(α, s∗))) is
an abbreviation equivalent toPoss(α, s∗) ∧ Poss(α′, do(α, s∗)).
So the first Poss-atom claimsdo(α, s∗) executable (because
s∗ is executable) and the secondPoss-atom then claims
do(α′, do(α, s∗)) executable.

the future, e. g., if we assume that the current situation is
so that after performing some actionsα′1, . . . , α

′
k a situa-

tion will be reached which has some propertyψ, i. e., Θ
containsψ

[
do(α′k, . . . do(α′1, s∗) . . .)

]
. But if we think

that we are able to reachdo(αm, . . . do(α1, s∗) . . .) then
Exec(do(αm, . . . do(α1, s∗) . . .)) should be contained in
Θ, too. Similar considerations can be made for situations
in Γ(s). However, oftens will be the only situations men-
tioned inΓ(s) in which case no problem arises fromΓ(s).

6 Related Work
As we already remarked at the beginning of this paper, this
work grew out of Iwan’s investigations into diagnosing plan
execution failures (Iwan 2002). There, as well as in McIl-
raith’s earlier work on diagnosis (McIlraith 1998), obser-
vations similar to those used in this paper, play a central
role. Although we make no commitment as to how obser-
vations come about, they are often a result of sensing ac-
tions performed by the agent. Sensing in the framework of
the situation calculus is considered, for example, in (De Gi-
acomo & Levesque 1999a; 1999b). McIlraith and Scherl
recently addressed the question what sensing tells us (McIl-
raith & Scherl 2000). However, they are mainly concerned
with knowledge, ramifications, and the notion of tests, issues
which are orthogonal to those addressed in this paper.

There are also interesting connections between observa-
tions and narratives. Just as narratives talk about whatactu-
ally happened in the past, so do observations.7 Narratives
were formalized in the situation calculus in (Pinto 1998;
Miller & Shanahan 1994).8 We remark that the models of
time considered in these approaches can easily be added to
our framework as well. An interesting approach to model-
ing narratives in an action language different from the sit-
uation calculus is discussed in (Baral, Gelfond, & Provetti
1997). There the languageL1 is proposed, which extends
the languageA (Gelfond & Lifschitz 1992; 1993) by adding
the notions of actually occurring actions and observations to
capture narratives. In the remainder of this section, we take
a closer look at this work.

To start with,L1 is a propositional language, just like
A. The constantsSi that are used to denote actual situ-
ations (in contrast to hypothetical situations) roughly cor-
respond to our situation variablessi in Ω ∧ oΘ. The
causal laws (A causes F if ψ) correspond to effect ax-
ioms∀s [ψ

[
s
]
⊃ F (do(A, s))] in the situation calculus and

can be encoded by successor state axioms (cf. (Reiter
1991); the necessary completeness assumption is also part
of the semantics ofL1). Observations are expressed by
fluent facts(φ at Si) which correspond toφ

[
si
]
; prece-

dence facts(Sj precedes Si) correspond tosj @ si; oc-
currence facts(A occurs at Si) translate todo(A, si) @ s∗;
and hypotheses(φ after [A1, . . . , An] at Si) correspond to
φ
[
do(An, . . . do(A1, si) . . .)

]
. Domain descriptions are

collections of laws and facts and can be translated into

7Of course, in general observations could be mistaken, an issue
we have ignored here altogether.

8See also (Baral, McIlraith, & Son 2000), where the connection
between diagnosis and narratives is investigated.

successor state axioms (laws) and an observations-plus-
history-assumption formulaΩ ∧ oΘ (facts). L1 has no
notion of executability of actions, which means that
∀s [Poss(A, s) ≡ True] for all actionsA. Therefore, of
course, problems regardingPoss- or True-guarded laws do
not arise inL1 at all. (There are extensions ofL1 containing
executability conditions, e. g., in (Baral, McIlraith, & Son
2000) where, applying our terminology, the causal laws are
True-guarded.) The semantics ofL1 imposes a minimality
condition on the occurrence of actions leading to the current
situation. It is an interesting question whether and how the
same minimality property can be achieved within the situ-
ation calculus. ThenL1 may be emulated in the situation
calculus using our approach to observations with history as-
sumptions.

7 Summary
Our concern has been to answer the question “What do ob-
servations really tell us?” This question arose from exam-
ples where an unsophisticated formalization within the situ-
ation calculus led to unintended and unintuitive results when
drawing conclusions and where the use of either unguarded
or Poss-guarded successor state axioms unwantedly yields
different results. So there was the need for a closer look on
how to formalize information provided by observations. We
found that the information can (and should) be divided into
the basic informationwhich only reflects the sequence of
observations (up to the current situation) and anassumption
about the history (including the current situation and possi-
bly assumption about potential future evolutions). With this
formalization at hand, we revised the general form of plan-
ning and projection (now into the future and into the past)
in the presence of observations and argued that unguarded
andPoss-guarded successor state axioms will behave equiv-
alently.

References
Baral, C.; Gelfond, M.; and Provetti, A. 1997. Represent-
ing actions: Laws, observations and hypotheses.Journal
of Logic Programming31(1–3).

Baral, C.; McIlraith, S.; and Son, T. 2000. Formulating
diagnostic problem solving using an action language with
narratives and sensing. InProceedings of the 7th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning.

Burgard, W.; Cremers, A.; Fox, D.; Ḧahnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1999.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence114(1–2).

De Giacomo, G., and Levesque, H. 1999a. An incre-
mental interpreter for high-level programs with sensing. In
Levesque, H. J., and Pirri, F., eds.,Logical Foundation for
Cognitive Agents: Contributions in Honor of Ray Reiter.
Springer.

De Giacomo, G., and Levesque, H. 1999b. Projection using
regression and sensors. InProceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence.

Gelfond, M., and Lifschitz, V. 1992. Representing ac-
tions in extended logic programming. InProceedings of the
Joint International Conference and Symposium on Logic
Programming.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs.Journal of Logic Program-
ming17(2/3&4).
Iwan, G. 2002. History-based diagnosis templates in the
framework of the situation calculus.AI Communications.
To appear.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains.Journal of Logic Program-
ming31(1–3).
Levesque, H.; Pirri, F.; and Reiter, R. 1998. Foundations
for the situation calculus.Linköping Electronic Articles in
Computer and Information Science3(018).
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds.,Machine Intelligence 4.
Edinburgh University Press.
McCarthy, J. 1963. Situations, actions and causal
laws. Stanford Artificial Intelligence Project: Memo 2.
Reprinted in: M.L. Minsky, editor.Semantic Information
Processing. MIT Press, 1968.
McIlraith, S., and Scherl, R. 2000. What sensing tells us:
Towards a formal theory of testing for dynamical systems.
In Proceedings of the 17th National Conference on Artifi-
cial Intelligence.
McIlraith, S. 1998. Explanatory diagnosis: Conjecturing
actions to explain observations. InProceedings of the 6th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning.
Miller, R., and Shanahan, M. 1994. Narratives in the situ-
ation calculus.Journal of Logic and Computation4(5).
Pinto, J. 1998. Occurrences and narratives as constraints
in the branching structure of the situation calculus.Journal
of Logic and Computation8(6).
Reiter, R., and Pirri, F. 1999. Some contributions to the
metatheory of the situation calculus.Journal of the ACM
46(3).
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed.,Artificial In-
telligence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy. Academic Press.
Reiter, R. 2001.Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.

