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Abstract  
In this paper we describe an interface library IG-
OAAlib that supports the development of Open 
Agent Architecture (OAA) agents using the Indi-
Golog agent programming language. OAA is a mul-
tiagent infrastructure that supports facilitated com-
munication. IndiGolog is a high-level agent pro-
gramming language based on logic that supports 
planning and allows complex agent behaviours to 
be specified. Full-fledged IndiGolog agents written 
using our interface library can be both reactive and 
proactive, thus overcoming one of the limitations of 
the OAA framework. The interface hides all of the 
low-level procedures that are used to communicate 
with the OAA system as well as OAA initialization, 
thereby leaving the IndiGolog programmer free to 
concentrate on the functionality of the agent. A 
multirobot mail delivery application developed us-
ing the library is presented. 

1 Introduction 
In recent applications of robotic technology, such as in 
space or manufacturing, the software systems used are 
generally complex and composed of multiple compo-
nents that need to be integrated.  Moreover, the appli-
cations often involve multiple robotic platforms whose 
operation needs to be coordinated.  Given this, it is 
important to develop techniques that facilitate system 
integration and evolution. As well, systems need to be 
robust and able to cope with failures and unexpected 
conditions.  In response to this, developers are starting 
to adopt agent-oriented architectures, where a system is 
composed of agents, autonomous entities that can in-
teract in flexible ways, for instance through negotia-
tion, while working towards their goals and reacting to 
changes in the environment.  However, such flexibility 
cannot be achieved without imparting some intelligence 
to some of the agents through the use of knowledge-
based architectures, automated planning, etc. In this 
paper, we address the need for tools for implementing 
multiagent systems involving intelligent agents for ro-
botics and for other applications. 

IndiGolog (De Giacomo & Levesque 1999) is a very-
high-level programming language for intelligent agents 
and robots that supports on-line planning and plan exe-

cution in dynamic and incompletely known environ-
ments.  It allows the programmer to specify a logical 
model of the domain in the situation calculus and uses 
it to perform projection in planning/search and update 
when actions occur.  Complex behaviours combining 
planning and reactivity can be specified in a rich con-
current programming language.  It has been imple-
mented on top of Prolog and is a very effective tool for 
programming individual agents for tasks that require 
planning and reasoning.  

IndiGolog has been used previously in robotics ap-
plications. Lespérance et al. (1998) showed how a 
high-level robot controller written in ConGolog (a pre-
cursor of IndiGolog) could be interfaced cleanly to an 
implemented robot architecture and deployed in a mail 
delivery application.  Lespérance and Ng (2000) ex-
tended IndiGolog so that it could be used to effectively 
integrate sensing, planning, and reactive plan execution 
for robotics applications. Levesque and Pagnucco 
(2000) showed how IndiGolog could be used to control 
very inexpensive robots.  An IndiGolog-related lan-
guage was also used to implement a very successful 
museum guide robot in Germany (Burgard et al. 1998). 

Many applications are best delivered as multiagent 
systems that involve multiple interacting agents with 
specialized skills. Agents programmed in IndiGolog 
can be included in such systems, but until recently, 
they had always been interfaced using low-level proto-
cols such as TCP/IP.  In this paper, we describe a new 
interface mechanism IG-OAAlib that allows the easy 
integration of IndiGolog agents in multiagent systems 
that use SRI's Open Agent Architecture (OAA) (Martin 
et al. 1999) infrastructure. OAA provides high-level 
brokered communication facilities that can automati-
cally route requests to agents that have the capabilities 
to serve them.  It uses a Prolog-like Interagent Com-
munication Language that makes it a good match for 
IndiGolog. OAA has been used to control multiple ro-
bots in (Guzzoni et al. 1998).  

The combination of OAA and IndiGolog provides a 
very powerful tool for developing multiagent systems 
for advanced applications. As an example, we describe 
a multirobot mail delivery system that has been imple-
mented using the framework. 

Our IndiGolog-OAA interface mechanism allows In-
diGolog agents to be both proactive and reactive.  This 
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overcomes a major limitation of Prolog-based agents in 
OAA since both IndiGolog and OAA require them to 
run their separate event loops. Here, we propose a solu-
tion that integrates these event loops, therefore allow-
ing an IndiGolog agent to monitor both OAA and Indi-
Golog events concurrently. 

2 IndiGolog 

2.1 IndiGolog Agent Structure 
An IndiGolog agent includes the following:  

• A specification of the application domain dynam-
ics. This is done declaratively in situation calculus 
(McCarthy & Hayes 1979; Reiter 2001). 

• Behaviour specification. This is specified proce-
durally in a rich programming language with loops, 
non-determinism, concurrency, interrupts, etc. In-
diGolog agents may perform sensing actions to ac-
quire information at runtime as well as react to ex-
ogenous events. 

2.2 Specifying Domain Dynamics in 
Situation Calculus 

In IndiGolog domain theories are specified in the situa-
tion calculus (McCarthy & Hayes 1979; Reiter 2001), a 
language of predicate logic for representing dynami-
cally changing worlds. In this language, a possible 
world history, which is simply a sequence of actions, is 
represented by a first order term called a situation. The 
constant So is used to denote the initial situation and 
the term do(a,s) denotes the situation resulting from 
action a being performed in situation s.  

Relations and functions that vary from situation to 
situation, called predicate fluents and functional fluents 
respectively, are represented by predicate and function 
symbols that take a situation term as last argument. A 
domain of application will be specified by theory that 
includes the following types of axioms (De Giacomo & 
Levesque 1999; Reiter 2001): 

• Axioms describing the initial situation, So. 

• Action precondition axioms, one for each primitive 
action a, characterizing Poss(a,s), which means that 
primitive action a is possible in situation s. 

• Successor state axioms, one for each fluent F, 
which characterize the conditions under which 
F(x,do(a,s)) holds in terms of what holds in situa-
tion s; they provide a solution to the frame problem 
(Reiter 1991). 

• Sensed fluent axioms, which relate the value re-
turned by a sensing action to the fluent condition it 
senses in the environment. 

• Unique names axioms for the primitive actions. 

• Some foundational, domain independent axioms. 
In the current IndiGolog implementation, the initial 

situation is specified as a set of Prolog clauses, which 
means that only completely specified initial situations 

can be handled. We hope to accommodate limited 
forms of incompleteness in the future implementations 

2.3 Behaviour specification 
The behaviour of an IndiGolog agent is specified pro-
cedurally using a rich set of high-level programming 
constructs which include recursive procedures, if-then-
else, while loops, non-deterministic execution of two 
programs, non-deterministic choice of arguments, non-
deterministic iteration of a program, concurrent execu-
tion of two programs with or without prioritization, 
interrupts, etc. 

A powerful search block facility is available in In-
diGolog. By default IndiGolog programs are executed 
in an on-line fashion: all the non-deterministic choices 
are treated as random ones and, any action selected is 
executed immediately. On the other hand, for a pro-
gram in a search block the interpreter does an offline 
search. It looks for a sequence of actions constituting a 
legal execution of the program resolving non-
deterministic choices appropriately, before actually 
executing them. After a sequence of actions is found 
for the search block, it needs to be rechecked if an ex-
ogenous action occurs to see if it still leads to the final 
situation for the search block. If the previously found 
sequence of actions is no longer valid, replanning (a 
new search) is done. 

3 The Open Agent Architecture 
The Open Agent Architecture is a framework for con-
structing multiagent systems developed at SRI Interna-
tional (Martin et al. 1999). The primary goal of OAA is 
to provide a means for integrating heterogeneous appli-
cations in a distributed infrastructure. OAA incorpo-
rates some of the dynamism and extensibility of black-
board approaches, the efficiency associated with dis-
tributed objects (e.g. CORBA, DCOM), and the rich 
and complex interactions of communicating agents.  
 OAA provides a communication infrastructure for 
the agents as well as the Interagent Communication 
Language (ICL) that is used to exchange information 
between agents. The system has at least one special 
agent called facilitator. This agent acts as a bro-
ker/matchmaker and all interagent communication goes 
through it. The facilitator keeps track of all the agents 
in its system, their addresses, and their capabilities. 
Requests are automatically routed to agents that have 
the capabilities to handle them. It is possible to create a 
hierarchy of facilitators, each with its own subsystem 
of agents. The current version of OAA supports such 
agents written in Java, Quintus and SICStus Prolog, 
C/C++, and Compaq's Web Language. 

When a client agent enters the system, it connects to 
the facilitator agent and provides it with a list of solv-
ables – the agent's capabilities. These provide the high 
level interface to the agent. A callback method associ-
ated with a capability is invoked when a request involv-
ing that capability is received. Agents can dynamically 
add and remove solvables. The solvables can be of two 
types: procedure and data. Procedure solvables de-
scribe some service that can be performed by the agent, 
while data solvables are most commonly used to create 



a data storage that is shared among the agents in the 
system.  

When an agent wants some services performed by 
other agents, it issues an oaa_Solve(goal, parameters)  
request that is forwarded to an appropriate agent by the 
facilitator. The goal part of such request is an ICL de-
scription of the service to be performed. A number of 
parameters can be used in the oaa_Solve request to 
specify, for example, whether this call should be block-
ing, or to say whether multiple agents are allowed to 
attempt to solve the problem simultaneously. The result 
of the query is returned by binding variables as in 
Prolog. 

4 Our IndiGolog-OAA Interfacing 
Scheme 

Our interfacing scheme is designed to integrate full-
fledged IndiGolog agents in an OAA-based system 
without giving up any of the usual functionalities (e.g. 
data solvables, interrupts, etc.) of either tool. It sup-
ports the integration into an OAA system of IndiGolog 
agents that are both reactive and proactive, thus over-
coming one of the major limitations of Prolog-based 
agents in OAA (see Figure 1). To be able to execute 
IndiGolog program while keeping track of incoming 
OAA events, we need to integrate the event loops of 
IndiGolog and OAA.  

To allow this, we need to use an asynchronous com-
munication scheme. Other agents should be using non-
blocking calls when requesting services from Indi-
Golog OAA agents built using this interface. It is up to 
the IndiGolog program to decide when and how to re-
spond to these requests. We advise that the calls to 
OAA made from an IndiGolog agent using this inter-
face also be non-blocking, to allow the agent to react 
promptly to its incoming events. 

An IndiGolog OAA agent using this interface will be 
able to execute its program (e.g. reasoning/planning) 
while still keeping track of incoming OAA messages 
(most notably requests for service coming from other 
agents in the system). Support for exogenous events in 
IndiGolog allows us to automatically check the OAA 
library for incoming events after every action executed 
by the IndiGolog interpreter. The process of receiving 
OAA events is completely transparent to the program-
mer: they appear in the program as IndiGolog exoge-
nous actions. 

The OAA primitives can be used in the implementa-
tions of IndiGolog primitive actions. The interface lets 
the OAA library handle all the incoming messages that 
are not calls to the solvables the agent has defined. 
Such events may be related to the management of data 
solvables defined at this agent and auxiliary activities 
such as message tracing. 

In order to be able to react to OAA events appropri-
ately, an IndiGolog agent needs to have exogenous ac-
tions defined, one for every procedure solvable that the 
agent declares. Incoming OAA events that are inter-
cepted by this interface appear in IndiGolog program as 
these exogenous actions. They are inserted into the ac-
tion history in the order that they are received. Succes-
sor state axioms involving these exogenous actions  

Figure 1. IndiGolog-OAA Interface 
 

should be defined, changing the values of certain flu-
ents in accordance with the event received. 

The interface also hides all of the code that is needed 
to connect to the OAA facilitator, declare solvables, 
etc. However, here we concentrate on the other benefits 
of this interface. 

We next present an example application before re-
turning to the details of the interface implementation. 

5 Example Application: Multirobot 
Mail Delivery 

5.1 Overview 
Let us now describe an application that we have im-
plemented with our toolkit. It involves a multirobot 
mail delivery system. The setting is a virtual office 
environment, which models the graduate labs area in 
our department. This environment is populated by a 
varying number of robots capable of delivering pack-
ages (the robots are currently simulated). The assign-
ment of packages to robots is the responsibility of a 
dispatcher agent. The dispatcher and the robots imple-
ment a variant of the contract net protocol to select the 
best robot to deliver a package. The system is open in 
the sense that the robots can come online and go offline 
(presumably after completing the orders they were as-
signed) at any time. If no robot can deliver a package, 
the order is queued until there is a robot available. The 
GUI agent is used to get users’ orders and visualize the 
system by displaying the status and locations of all the 
robots in the system. 

This example system includes six different agents. 
Five of them are implemented in Java. The mail deliv-
ery robots are actually implemented using an architec-
ture that involves two agents: a high-level control agent 
written in IndiGolog and a low-level control agent writ-
ten in Java. The IndiGolog-based High-Level Control 
agent (HLC) is responsible for bidding for available 
mail delivery orders and for constructing optimal plans 
for carrying out the orders awarded to the robot. It 



takes full advantage of the IndiGolog-OAA interface 
through which it can execute its package delivery plan 
while responding to requests for bids coming from the 
dispatcher and modifying the plan to incorporate newly 
awarded orders. The Java-based Low-Level Control 
agent (LLC) simulates the movement of the robot 
through the environment. Each robot has a unique ID. 
This ID is given to both the LLC and the HLC and is 
used by them to find each other and form a single logi-
cal robot controller while still remaining two separate 
agents. 

5.2 Individual Agent Details 

5.2.1 The GUI, PathPlanner, and DB Agents 
The GUI agent displays the virtual environment with 
the current position and status of every mail delivery 
robot and package as well as the status of all delivery 
orders. It is used by the user of the system to place or-
ders for package delivery. This agent is multithreaded 
and all the synchronous calls to OAA are executed in 
their own threads, thus allowing it to accommodate a 
large number of robots and orders. The robots use the 
GUI’s solvables action_update (we omit parameters 
here) and position_update to send information 
about their current activity and location respectively. 

The PathPlanner agent knows the distances and paths 
between any pair of locations. It is used mainly by the 
robots to prepare bids for new orders and for traveling 
from location to location. It has two solvables: dis-
tance returns the distance between a pair of locations 
while path returns a list of locations that constitutes a 
path from one location to another. 

The DB agent accepts bids from robots and sends 
them to the Dispatcher while also keeping track of 
queued orders. Since the DB agent acts like a black-
board, its functionality could have been easily imple-
mented by the OAA facilities such as triggers and data 
solvables. Unfortunately, there were difficulties with 
that approach and we decided to have a dedicated DB 
agent instead of relying on the OAA functionality.  

5.2.2 The Dispatcher 
The Dispatcher is responsible for taking orders from 
the GUI agent and distributing them among available 
robots. After receiving an order, the Dispatcher checks 
it for validity and then issues a call for bids that is sent 
to all the mail delivery robots currently online. The 
Dispatcher does not have to know the addresses of the 
agents it is sending this call for bids to, or how many 
such agents are currently in the system. The OAA Fa-
cilitator automatically forwards this query to all the 
agents that are capable of handling it, thus illustrating 
the openness and scalability of OAA. 

The robots will reply to the call for bids by sending 
their bids to the Dispatcher. It will then compare the 
bids and select the robot that is the closest to the origin 
of the mail package being processed by the Dispatcher 
and award the order to that robot. If there are no replies 
to the call for bids, the order is queued. The request for 
bids will then be sent to any robot that posts “avail-
able” status and automatically awarded to the first ro-
bot that replies with a bid.  

The GUI uses the Dispatcher’s solvable re-
quest_delivery to inform it of a new order. 

5.2.3 The Low-Level Robot Control Agent 
The LLC is the low-level motion control subsystem of 
a mail delivery robot. It acts on orders from the corre-
sponding High-Level Control agent. From the point of 
view of the HLC moving from one location to another 
is a primitive action go(Loc1,Loc2). On the other 
hand, the LLC is interested in the exact path it needs to 
follow. The LLC uses the PathPlanner’s path solvable 
to get that path. While following the path the LLC 
sends updates on the position of the robot to the GUI 
agent. To simulate the lengthy task of moving from one 
location to another, the time that the LLC “travels” 
between two locations is proportional to the distance 
between them. When LLC reaches its destination, it 
sends a movement_complete event to its HLC. 

5.2.4 The High-Level Control Agent 
The HLC is the high-level reasoning part of the mail 
delivery robot. It is implemented in IndiGolog and is 
responsible for bidding for new delivery orders and 
constructing and executing plans for delivering the 
awarded packages. This agent uses the IndiGolog-OAA 
interfacing mechanism described earlier and is able to 
effectively execute its package delivery plans while 
monitoring for incoming OAA events and reacting ap-
propriately to calls for bids and new contract assign-
ments.  

The following fluents are used by the HLC to model 
the world state: 

 
• current_location – stores the current loca-

tion of the robot  
• next_location – stores the next location of 

the robot, where it is currently moving 
• canmove – true when the robot is stationary, 

false otherwise 
• delivery(From,To,OrderNo) – stores or-

der status (ordered / onboard / completed) 
• bid_requested(From,To,OrderNo) – true 

when the robot has to bid on the order 
• llc_address – stores the OAA address of the 

corresponding LLC agent 
• dist(From,To) – stores the distance between 

From and To locations 
 
The agent has three solvables defined: re-
quest_for_bids is used by the Dispatcher to ask the 
robot to bid on a newly placed order; the deliver 
event is sent by the Dispatcher to award an order to the 
robot; and the movement_complete event is used by 
the LLC to notify the HLC of its arrival at the destina-
tion.  

A causal law (causes_val) specifies the effect of a 
certain primitive/exogenous action on a fluent. Causal 
laws for the same fluent are automatically compiled 
into successor state axioms by the IndiGolog inter-
preter. The first argument of causes_val is the action 
that causes the fluent (the second argument) to acquire 
a new value (the third argument) provided the condi-
tion (the last argument) holds. The following causal 



laws are used to update the values of the HLC’s fluents 
when OAA events arrive. 

Fluent bid_requested becomes true for a particu-
lar order when request_for_bids is received: 

 
causes_val(request_for_bids(F,T,ON), 

bid_requested(F,T,ON),true,true). 
 
Fluent delivery becomes 'ordered' when the agent 

is awarded the delivery: 
 

causes_val(deliver(F,T,ON), 
delivery(F,T,ON),ordered,true). 
 

The movement_complete message from the associ-
ated Low-Level Control agent signals that the robot has 
reached the destination: 

 
causes_val(movement_complete, 

canmove,true,true). 
causes_val(movement_complete, 

current_loc,N,N=next_location). 
 

Most of the primitive actions used by HLC have self-
explanatory names and we will only mention that the 
delivery_completed action sends a message to the 
GUI agent saying that the robot has successfully com-
pleted the delivery; the primitive action 
go(LLC_addr,From,To) sends the go(From,To) 
event to LLC agent. The extra parameter LLC_addr is 
used in the call to oaa_Solve to tell the Facilitator that 
this event has to be sent only to the one particular LLC 
agent associated with the given robot, not all the agents 
capable of handling go. Similarly the LLC uses the 
address of the corresponding HLC to send move-
ment_complete events. Presented below is the main 
procedure of the HLC agent (see 
http://www.cs.yorku.ca/~lesperan/IG-OAAlib/ for 
the complete source code). 
 
proc(control, [ 

prioritized_interrupts([ 
  %high priority: handles bid requests 
 interrupt([f,t,o],     
      bid_requested(f,t,o)=true, 
     pi([l,d], [?(l=next_location), 
      ?(d=dist(l,f)), bid(o,d)])),  
 %medium priority: handles newly assigned orders 
 interrupt([f,t,o], and(canmove, 
      delivery(f,t,o)=ordered),  
     search(pconc(minimize_distance(0), 
             envSimulator))), 
  %low priority interrupt: when nothing to do, wait 
 interrupt(true,no_op) ]) ]). 

%Environment simulator – simulates exogenous actions 
proc(envSimulator,while(canmove=false, 
         sim(movement_complete))). 
 

The high priority interrupt fires when the agent re-
ceives a request_for_bids event from the Dis-
patcher. It produces a bid that is sent back to the Dis-
patcher. Presently, the bid is simply based on the dis-
tance from the location where it is currently heading 

(for simplicity we do not allow the robots to change 
directions midway) to the new package sender’s loca-
tion; more interesting bidding strategies could be used. 
The medium priority interrupt fires when the Dis-
patcher awards a new delivery to this robot. Then, the 
HLC plans an optimal delivery route that serves all 
orders assigned to the robot. The lowest priority inter-
rupt is there simply to prevent the HLC from terminat-
ing when it has nothing to do. 

To plan a delivery route, the second interrupt runs an 
iterative deepening search procedure (mini-
mize_distance) to come up with an offline plan that 
minimizes the distance the agent has to travel. In our 
domain theory the precondition axiom for the go action 
requires the robot to be stationary – the canmove fluent 
has to be true. The only way for canmove to become 
true is through one of the causal laws above. This in 
turn is triggered by the arrival of a move-
ment_complete event from the LLC. Since HLC is 
doing offline planning, and the plan has to be ready 
before it is executed, we run the offline planning rou-
tine concurrently with an environment simulator 
(Lespérance & Ng 2000) that simulates move-
ment_complete events. When the plan is executing, 
HLC will actually wait for the arrival of move-
ment_complete before asking LLC to move to a new 
location. 

The HLC code for route planning appears below. 
serve_customers is the main behaviour of a mail 
delivery robot: 

 
proc(serve_customers(Max), 
  ndet([    %Have all the orders been delivered? 

?(neg(some([from,to,orderNo],                  
or(delivery(from,to,orderNo)=ordered, 

       delivery(from,to,orderNo)=onboard)))),  
     no_op   %Ground case - done 
    ],[ % Nondet. pick up or drop off an order 
     ndet([  % Pick values s.t. the tests (?) succeed 
          pi([f,t,on,llc,l,m,d],[ 
           ?(delivery(f,t,on)=ordered), 
              ?(l = current_location), 
             ?(llc = llc_address),  
       %Execute actions with the picked params 
               go(llc,l,f), pickUp(on), 
            ?(d=dist(l,f)), ?(m is Max - d), 
       %If the distance allowed is not used up, 
       %recurse, else fail 

?(m>=0), serve_customers(m) 
          ]) 
          ],[  
        pi([f,t,on,l,llc,m,d],[ 
         ?(delivery(f,t,on)=onboard), 

    ?(l = current_location), 
        ?(llc = llc_address), 
         go(llc,l,t), dropOff(on), 

       delivery_completed(on,f,t),  
    ?(d=dist(l,t)), ?(m is Max - d), 
    ?(m>=0), serve_customers(m) 

  ]) 
           ]) 
    ]) 
). 



The iterative deepening search routine tries to come 
up with a plan to deliver all of the assigned packages 
with a given distance bound. If unable to do so, it in-
crements the bound: 
 
proc(minimize_distance(Max),   

ndet( serve_customers(Max),  
  pi(nd,[?(nd is Max+1),  

     minimize_distance(nd)]))). 

6 Interface Implementation Details 
To allow IndiGolog agents to be both proactive and 
reactive, we want our IndiGolog-OAA interface to 
process incoming OAA events without giving complete 
control to the OAA library. A special exogenous action 
get_event is defined as part of the interface (see be-
low). It runs after every primitive action in an Indi-
Golog program (unless it is specifically disabled). 
get_event first executes the procedures found in the 
main OAA event loop: it gets the top priority OAA 
event from the communication library and lets OAA 
process it. It repeats this until there are no more events 
waiting (i.e., until it receives 'timeout' event). 
 
exog_occurs(get_event,E,H) :- 
%Get OAA events. For events that we are interested in, 
%get_event will automatically add them to oaa_event_queue 
  oaa_loop, 
  oaa_event_queue(Q), %Get the queue 
  \+ Q = [], %Succeeds if the queue is not empty 
  %Add OAA events to IndiGolog history 
  extract_events(E,H,Q). 
 

The reason why we need to let OAA process the 
events rather than extract them manually is simple: in 
addition to events that result from some agents request-
ing the services of our IndiGolog agent there are other 
OAA events that we don't want to deal with. These 
could be events that update a data solvable declared at 
this particular agent, or these could be events that turn 
on the system's tracing facility, and so on. We let the 
OAA library handle these events since we want the 
combined IndiGolog OAA agent to be compliant with 
OAA specifications to the maximum degree possible. 

To achieve the task of separating OAA events that 
are calls to user-defined solvables from other OAA 
events, we define and register with OAA a default call-
back that is called every time some agent requests the 
services of our IndiGolog OAA agent. This callback is 
given the goal (the problem that we have to solve) and 
adds this goal to a queue that holds the OAA events to 
be processed by the IndiGolog agent. The OAA library 
sends the success message to the caller immediately. 
This is why other agents should only send non-blocking 
requests for the services provided by IndiGolog OAA 
agents. If some other agent waits for the answer to its 
query, its oaa_Solve call will return successfully, but 
the variables through which that agent expects to get 
the answer will remain unbound. 
get_event then calls the extract_event proce-

dure that processes the queue and extracts the events 
from it. It adds the events to IndiGolog program his-

tory, thus turning the newly received goals into exoge-
nous actions that appear to have been executed and 
changing the value of fluents appropriately. The pro-
grammer has to provide the appropriate causal laws/ 
successor-state axioms. Suppose that we register the 
solvable: movement_complete(Location). This 
could be a notification from a certain mobile robot that 
our IndiGolog agent controls. The following axiom 
specifies one of the possible changes in the system 
caused by the arrival of the goal move-
ment_complete(Location): 

 
causes_val(movement_complete(Loc), 

current_location,Loc,true). 
 

This effectively says that the value of the fluent 
current_location changes to become the location 
that the robot has just arrived at. 

7 Conclusion and Future Work 
In this paper, we have presented an IndiGolog-OAA 
interfacing mechanism that we think adds value to both 
tools. It provides easy access to a multiagent platform 
for IndiGolog, allowing us to use this language in a 
wide range of new applications. Moreover, since 
OAA’s ICL is Prolog-based, it makes it a great match 
to the current implementation of IndiGolog. On the 
other hand, the built-in concurrency of IndiGolog al-
lows IndiGolog-based OAA agents to be both reactive 
and proactive and thus much more powerful than the 
previously supported Prolog-based agents. This inter-
face adds a new powerful high-level programming lan-
guage to the set of languages supported by OAA. The 
system is available for download at 
http://www.cs.yorku.ca/~lesperan/IG-OAAlib/. 

We are interested in applying this work in a variety 
of domains. One area of interest is personal service 
robotics with robots having multiple skills such as find-
ing people, giving tours, etc. With Erich Leung, we 
have started integrating software agents into the system 
that locates people based on where they logged-in and 
their typical schedule. We would also like to use Indi-
Golog to program a smarter matchmaker for some do-
main, one that supports compound queries. Other po-
tentially interesting applications include semantic web 
services (McIlraith et al. 2001). 

The choice of OAA as a multiagent platform to inter-
face IndiGolog to arose from their common Prolog 
heritage, which suits them to developing agents that 
perform reasoning and planning. We are also examin-
ing the use of IndiGolog in combination with FIPA-
compliant platforms and would like to develop tools for 
this. 
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