
Interfacing IndiGolog and OAA – A Toolkit for Advanced

Multiagent Applications

Alexei Lapouchnian and Yves Lespérance
Department of Computer Science,

York University,
Toronto, ON M3J 1P3

Canada
email: {alexei, lesperan}@cs.yorku.ca

Abstract
In this paper we describe an interface library IG-
OAAlib that supports the development of Open
Agent Architecture (OAA) agents using the Indi-
Golog agent programming language. OAA is a mul-
tiagent infrastructure that supports facilitated com-
munication. IndiGolog is a high-level agent pro-
gramming language based on logic that supports
planning and allows complex agent behaviours to
be specified. Full-fledged IndiGolog agents written
using our interface library can be both reactive and
proactive, thus overcoming one of the limitations of
the OAA framework. The interface hides all of the
low-level procedures that are used to communicate
with the OAA system as well as OAA initialization,
thereby leaving the IndiGolog programmer free to
concentrate on the functionality of the agent. A
multirobot mail delivery application developed us-
ing the library is presented.

1 Introduction
In recent applications of robotic technology, such as in
space or manufacturing, the software systems used are
generally complex and composed of multiple compo-
nents that need to be integrated. Moreover, the appli-
cations often involve multiple robotic platforms whose
operation needs to be coordinated. Given this, it is
important to develop techniques that facilitate system
integration and evolution. As well, systems need to be
robust and able to cope with failures and unexpected
conditions. In response to this, developers are starting
to adopt agent-oriented architectures, where a system is
composed of agents, autonomous entities that can in-
teract in flexible ways, for instance through negotia-
tion, while working towards their goals and reacting to
changes in the environment. However, such flexibility
cannot be achieved without imparting some intelligence
to some of the agents through the use of knowledge-
based architectures, automated planning, etc. In this
paper, we address the need for tools for implementing
multiagent systems involving intelligent agents for ro-
botics and for other applications.

IndiGolog (De Giacomo & Levesque 1999) is a very-
high-level programming language for intelligent agents
and robots that supports on-line planning and plan exe-

cution in dynamic and incompletely known environ-
ments. It allows the programmer to specify a logical
model of the domain in the situation calculus and uses
it to perform projection in planning/search and update
when actions occur. Complex behaviours combining
planning and reactivity can be specified in a rich con-
current programming language. It has been imple-
mented on top of Prolog and is a very effective tool for
programming individual agents for tasks that require
planning and reasoning.

IndiGolog has been used previously in robotics ap-
plications. Lespérance et al. (1998) showed how a
high-level robot controller written in ConGolog (a pre-
cursor of IndiGolog) could be interfaced cleanly to an
implemented robot architecture and deployed in a mail
delivery application. Lespérance and Ng (2000) ex-
tended IndiGolog so that it could be used to effectively
integrate sensing, planning, and reactive plan execution
for robotics applications. Levesque and Pagnucco
(2000) showed how IndiGolog could be used to control
very inexpensive robots. An IndiGolog-related lan-
guage was also used to implement a very successful
museum guide robot in Germany (Burgard et al. 1998).

Many applications are best delivered as multiagent
systems that involve multiple interacting agents with
specialized skills. Agents programmed in IndiGolog
can be included in such systems, but until recently,
they had always been interfaced using low-level proto-
cols such as TCP/IP. In this paper, we describe a new
interface mechanism IG-OAAlib that allows the easy
integration of IndiGolog agents in multiagent systems
that use SRI's Open Agent Architecture (OAA) (Martin
et al. 1999) infrastructure. OAA provides high-level
brokered communication facilities that can automati-
cally route requests to agents that have the capabilities
to serve them. It uses a Prolog-like Interagent Com-
munication Language that makes it a good match for
IndiGolog. OAA has been used to control multiple ro-
bots in (Guzzoni et al. 1998).

The combination of OAA and IndiGolog provides a
very powerful tool for developing multiagent systems
for advanced applications. As an example, we describe
a multirobot mail delivery system that has been imple-
mented using the framework.

Our IndiGolog-OAA interface mechanism allows In-
diGolog agents to be both proactive and reactive. This

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

overcomes a major limitation of Prolog-based agents in
OAA since both IndiGolog and OAA require them to
run their separate event loops. Here, we propose a solu-
tion that integrates these event loops, therefore allow-
ing an IndiGolog agent to monitor both OAA and Indi-
Golog events concurrently.

2 IndiGolog

2.1 IndiGolog Agent Structure
An IndiGolog agent includes the following:

• A specification of the application domain dynam-
ics. This is done declaratively in situation calculus
(McCarthy & Hayes 1979; Reiter 2001).

• Behaviour specification. This is specified proce-
durally in a rich programming language with loops,
non-determinism, concurrency, interrupts, etc. In-
diGolog agents may perform sensing actions to ac-
quire information at runtime as well as react to ex-
ogenous events.

2.2 Specifying Domain Dynamics in
Situation Calculus

In IndiGolog domain theories are specified in the situa-
tion calculus (McCarthy & Hayes 1979; Reiter 2001), a
language of predicate logic for representing dynami-
cally changing worlds. In this language, a possible
world history, which is simply a sequence of actions, is
represented by a first order term called a situation. The
constant So is used to denote the initial situation and
the term do(a,s) denotes the situation resulting from
action a being performed in situation s.

Relations and functions that vary from situation to
situation, called predicate fluents and functional fluents
respectively, are represented by predicate and function
symbols that take a situation term as last argument. A
domain of application will be specified by theory that
includes the following types of axioms (De Giacomo &
Levesque 1999; Reiter 2001):

• Axioms describing the initial situation, So.

• Action precondition axioms, one for each primitive
action a, characterizing Poss(a,s), which means that
primitive action a is possible in situation s.

• Successor state axioms, one for each fluent F,
which characterize the conditions under which
F(x,do(a,s)) holds in terms of what holds in situa-
tion s; they provide a solution to the frame problem
(Reiter 1991).

• Sensed fluent axioms, which relate the value re-
turned by a sensing action to the fluent condition it
senses in the environment.

• Unique names axioms for the primitive actions.

• Some foundational, domain independent axioms.
In the current IndiGolog implementation, the initial

situation is specified as a set of Prolog clauses, which
means that only completely specified initial situations

can be handled. We hope to accommodate limited
forms of incompleteness in the future implementations

2.3 Behaviour specification
The behaviour of an IndiGolog agent is specified pro-
cedurally using a rich set of high-level programming
constructs which include recursive procedures, if-then-
else, while loops, non-deterministic execution of two
programs, non-deterministic choice of arguments, non-
deterministic iteration of a program, concurrent execu-
tion of two programs with or without prioritization,
interrupts, etc.

A powerful search block facility is available in In-
diGolog. By default IndiGolog programs are executed
in an on-line fashion: all the non-deterministic choices
are treated as random ones and, any action selected is
executed immediately. On the other hand, for a pro-
gram in a search block the interpreter does an offline
search. It looks for a sequence of actions constituting a
legal execution of the program resolving non-
deterministic choices appropriately, before actually
executing them. After a sequence of actions is found
for the search block, it needs to be rechecked if an ex-
ogenous action occurs to see if it still leads to the final
situation for the search block. If the previously found
sequence of actions is no longer valid, replanning (a
new search) is done.

3 The Open Agent Architecture
The Open Agent Architecture is a framework for con-
structing multiagent systems developed at SRI Interna-
tional (Martin et al. 1999). The primary goal of OAA is
to provide a means for integrating heterogeneous appli-
cations in a distributed infrastructure. OAA incorpo-
rates some of the dynamism and extensibility of black-
board approaches, the efficiency associated with dis-
tributed objects (e.g. CORBA, DCOM), and the rich
and complex interactions of communicating agents.
 OAA provides a communication infrastructure for
the agents as well as the Interagent Communication
Language (ICL) that is used to exchange information
between agents. The system has at least one special
agent called facilitator. This agent acts as a bro-
ker/matchmaker and all interagent communication goes
through it. The facilitator keeps track of all the agents
in its system, their addresses, and their capabilities.
Requests are automatically routed to agents that have
the capabilities to handle them. It is possible to create a
hierarchy of facilitators, each with its own subsystem
of agents. The current version of OAA supports such
agents written in Java, Quintus and SICStus Prolog,
C/C++, and Compaq's Web Language.

When a client agent enters the system, it connects to
the facilitator agent and provides it with a list of solv-
ables – the agent's capabilities. These provide the high
level interface to the agent. A callback method associ-
ated with a capability is invoked when a request involv-
ing that capability is received. Agents can dynamically
add and remove solvables. The solvables can be of two
types: procedure and data. Procedure solvables de-
scribe some service that can be performed by the agent,
while data solvables are most commonly used to create

a data storage that is shared among the agents in the
system.

When an agent wants some services performed by
other agents, it issues an oaa_Solve(goal, parameters)
request that is forwarded to an appropriate agent by the
facilitator. The goal part of such request is an ICL de-
scription of the service to be performed. A number of
parameters can be used in the oaa_Solve request to
specify, for example, whether this call should be block-
ing, or to say whether multiple agents are allowed to
attempt to solve the problem simultaneously. The result
of the query is returned by binding variables as in
Prolog.

4 Our IndiGolog-OAA Interfacing
Scheme

Our interfacing scheme is designed to integrate full-
fledged IndiGolog agents in an OAA-based system
without giving up any of the usual functionalities (e.g.
data solvables, interrupts, etc.) of either tool. It sup-
ports the integration into an OAA system of IndiGolog
agents that are both reactive and proactive, thus over-
coming one of the major limitations of Prolog-based
agents in OAA (see Figure 1). To be able to execute
IndiGolog program while keeping track of incoming
OAA events, we need to integrate the event loops of
IndiGolog and OAA.

To allow this, we need to use an asynchronous com-
munication scheme. Other agents should be using non-
blocking calls when requesting services from Indi-
Golog OAA agents built using this interface. It is up to
the IndiGolog program to decide when and how to re-
spond to these requests. We advise that the calls to
OAA made from an IndiGolog agent using this inter-
face also be non-blocking, to allow the agent to react
promptly to its incoming events.

An IndiGolog OAA agent using this interface will be
able to execute its program (e.g. reasoning/planning)
while still keeping track of incoming OAA messages
(most notably requests for service coming from other
agents in the system). Support for exogenous events in
IndiGolog allows us to automatically check the OAA
library for incoming events after every action executed
by the IndiGolog interpreter. The process of receiving
OAA events is completely transparent to the program-
mer: they appear in the program as IndiGolog exoge-
nous actions.

The OAA primitives can be used in the implementa-
tions of IndiGolog primitive actions. The interface lets
the OAA library handle all the incoming messages that
are not calls to the solvables the agent has defined.
Such events may be related to the management of data
solvables defined at this agent and auxiliary activities
such as message tracing.

In order to be able to react to OAA events appropri-
ately, an IndiGolog agent needs to have exogenous ac-
tions defined, one for every procedure solvable that the
agent declares. Incoming OAA events that are inter-
cepted by this interface appear in IndiGolog program as
these exogenous actions. They are inserted into the ac-
tion history in the order that they are received. Succes-
sor state axioms involving these exogenous actions

Figure 1. IndiGolog-OAA Interface

should be defined, changing the values of certain flu-
ents in accordance with the event received.

The interface also hides all of the code that is needed
to connect to the OAA facilitator, declare solvables,
etc. However, here we concentrate on the other benefits
of this interface.

We next present an example application before re-
turning to the details of the interface implementation.

5 Example Application: Multirobot
Mail Delivery

5.1 Overview
Let us now describe an application that we have im-
plemented with our toolkit. It involves a multirobot
mail delivery system. The setting is a virtual office
environment, which models the graduate labs area in
our department. This environment is populated by a
varying number of robots capable of delivering pack-
ages (the robots are currently simulated). The assign-
ment of packages to robots is the responsibility of a
dispatcher agent. The dispatcher and the robots imple-
ment a variant of the contract net protocol to select the
best robot to deliver a package. The system is open in
the sense that the robots can come online and go offline
(presumably after completing the orders they were as-
signed) at any time. If no robot can deliver a package,
the order is queued until there is a robot available. The
GUI agent is used to get users’ orders and visualize the
system by displaying the status and locations of all the
robots in the system.

This example system includes six different agents.
Five of them are implemented in Java. The mail deliv-
ery robots are actually implemented using an architec-
ture that involves two agents: a high-level control agent
written in IndiGolog and a low-level control agent writ-
ten in Java. The IndiGolog-based High-Level Control
agent (HLC) is responsible for bidding for available
mail delivery orders and for constructing optimal plans
for carrying out the orders awarded to the robot. It

takes full advantage of the IndiGolog-OAA interface
through which it can execute its package delivery plan
while responding to requests for bids coming from the
dispatcher and modifying the plan to incorporate newly
awarded orders. The Java-based Low-Level Control
agent (LLC) simulates the movement of the robot
through the environment. Each robot has a unique ID.
This ID is given to both the LLC and the HLC and is
used by them to find each other and form a single logi-
cal robot controller while still remaining two separate
agents.

5.2 Individual Agent Details

5.2.1 The GUI, PathPlanner, and DB Agents
The GUI agent displays the virtual environment with
the current position and status of every mail delivery
robot and package as well as the status of all delivery
orders. It is used by the user of the system to place or-
ders for package delivery. This agent is multithreaded
and all the synchronous calls to OAA are executed in
their own threads, thus allowing it to accommodate a
large number of robots and orders. The robots use the
GUI’s solvables action_update (we omit parameters
here) and position_update to send information
about their current activity and location respectively.

The PathPlanner agent knows the distances and paths
between any pair of locations. It is used mainly by the
robots to prepare bids for new orders and for traveling
from location to location. It has two solvables: dis-
tance returns the distance between a pair of locations
while path returns a list of locations that constitutes a
path from one location to another.

The DB agent accepts bids from robots and sends
them to the Dispatcher while also keeping track of
queued orders. Since the DB agent acts like a black-
board, its functionality could have been easily imple-
mented by the OAA facilities such as triggers and data
solvables. Unfortunately, there were difficulties with
that approach and we decided to have a dedicated DB
agent instead of relying on the OAA functionality.

5.2.2 The Dispatcher
The Dispatcher is responsible for taking orders from
the GUI agent and distributing them among available
robots. After receiving an order, the Dispatcher checks
it for validity and then issues a call for bids that is sent
to all the mail delivery robots currently online. The
Dispatcher does not have to know the addresses of the
agents it is sending this call for bids to, or how many
such agents are currently in the system. The OAA Fa-
cilitator automatically forwards this query to all the
agents that are capable of handling it, thus illustrating
the openness and scalability of OAA.

The robots will reply to the call for bids by sending
their bids to the Dispatcher. It will then compare the
bids and select the robot that is the closest to the origin
of the mail package being processed by the Dispatcher
and award the order to that robot. If there are no replies
to the call for bids, the order is queued. The request for
bids will then be sent to any robot that posts “avail-
able” status and automatically awarded to the first ro-
bot that replies with a bid.

The GUI uses the Dispatcher’s solvable re-
quest_delivery to inform it of a new order.

5.2.3 The Low-Level Robot Control Agent
The LLC is the low-level motion control subsystem of
a mail delivery robot. It acts on orders from the corre-
sponding High-Level Control agent. From the point of
view of the HLC moving from one location to another
is a primitive action go(Loc1,Loc2). On the other
hand, the LLC is interested in the exact path it needs to
follow. The LLC uses the PathPlanner’s path solvable
to get that path. While following the path the LLC
sends updates on the position of the robot to the GUI
agent. To simulate the lengthy task of moving from one
location to another, the time that the LLC “travels”
between two locations is proportional to the distance
between them. When LLC reaches its destination, it
sends a movement_complete event to its HLC.

5.2.4 The High-Level Control Agent
The HLC is the high-level reasoning part of the mail
delivery robot. It is implemented in IndiGolog and is
responsible for bidding for new delivery orders and
constructing and executing plans for delivering the
awarded packages. This agent uses the IndiGolog-OAA
interfacing mechanism described earlier and is able to
effectively execute its package delivery plans while
monitoring for incoming OAA events and reacting ap-
propriately to calls for bids and new contract assign-
ments.

The following fluents are used by the HLC to model
the world state:

• current_location – stores the current loca-

tion of the robot
• next_location – stores the next location of

the robot, where it is currently moving
• canmove – true when the robot is stationary,

false otherwise
• delivery(From,To,OrderNo) – stores or-

der status (ordered / onboard / completed)
• bid_requested(From,To,OrderNo) – true

when the robot has to bid on the order
• llc_address – stores the OAA address of the

corresponding LLC agent
• dist(From,To) – stores the distance between

From and To locations

The agent has three solvables defined: re-
quest_for_bids is used by the Dispatcher to ask the
robot to bid on a newly placed order; the deliver
event is sent by the Dispatcher to award an order to the
robot; and the movement_complete event is used by
the LLC to notify the HLC of its arrival at the destina-
tion.

A causal law (causes_val) specifies the effect of a
certain primitive/exogenous action on a fluent. Causal
laws for the same fluent are automatically compiled
into successor state axioms by the IndiGolog inter-
preter. The first argument of causes_val is the action
that causes the fluent (the second argument) to acquire
a new value (the third argument) provided the condi-
tion (the last argument) holds. The following causal

laws are used to update the values of the HLC’s fluents
when OAA events arrive.

Fluent bid_requested becomes true for a particu-
lar order when request_for_bids is received:

causes_val(request_for_bids(F,T,ON),

bid_requested(F,T,ON),true,true).

Fluent delivery becomes 'ordered' when the agent

is awarded the delivery:

causes_val(deliver(F,T,ON),
delivery(F,T,ON),ordered,true).

The movement_complete message from the associ-
ated Low-Level Control agent signals that the robot has
reached the destination:

causes_val(movement_complete,

canmove,true,true).
causes_val(movement_complete,

current_loc,N,N=next_location).

Most of the primitive actions used by HLC have self-
explanatory names and we will only mention that the
delivery_completed action sends a message to the
GUI agent saying that the robot has successfully com-
pleted the delivery; the primitive action
go(LLC_addr,From,To) sends the go(From,To)
event to LLC agent. The extra parameter LLC_addr is
used in the call to oaa_Solve to tell the Facilitator that
this event has to be sent only to the one particular LLC
agent associated with the given robot, not all the agents
capable of handling go. Similarly the LLC uses the
address of the corresponding HLC to send move-
ment_complete events. Presented below is the main
procedure of the HLC agent (see
http://www.cs.yorku.ca/~lesperan/IG-OAAlib/ for
the complete source code).

proc(control, [

prioritized_interrupts([
 %high priority: handles bid requests
 interrupt([f,t,o],
 bid_requested(f,t,o)=true,
 pi([l,d], [?(l=next_location),
 ?(d=dist(l,f)), bid(o,d)])),
 %medium priority: handles newly assigned orders
 interrupt([f,t,o], and(canmove,
 delivery(f,t,o)=ordered),
 search(pconc(minimize_distance(0),
 envSimulator))),
 %low priority interrupt: when nothing to do, wait
 interrupt(true,no_op)])]).

%Environment simulator – simulates exogenous actions
proc(envSimulator,while(canmove=false,
 sim(movement_complete))).

The high priority interrupt fires when the agent re-
ceives a request_for_bids event from the Dis-
patcher. It produces a bid that is sent back to the Dis-
patcher. Presently, the bid is simply based on the dis-
tance from the location where it is currently heading

(for simplicity we do not allow the robots to change
directions midway) to the new package sender’s loca-
tion; more interesting bidding strategies could be used.
The medium priority interrupt fires when the Dis-
patcher awards a new delivery to this robot. Then, the
HLC plans an optimal delivery route that serves all
orders assigned to the robot. The lowest priority inter-
rupt is there simply to prevent the HLC from terminat-
ing when it has nothing to do.

To plan a delivery route, the second interrupt runs an
iterative deepening search procedure (mini-
mize_distance) to come up with an offline plan that
minimizes the distance the agent has to travel. In our
domain theory the precondition axiom for the go action
requires the robot to be stationary – the canmove fluent
has to be true. The only way for canmove to become
true is through one of the causal laws above. This in
turn is triggered by the arrival of a move-
ment_complete event from the LLC. Since HLC is
doing offline planning, and the plan has to be ready
before it is executed, we run the offline planning rou-
tine concurrently with an environment simulator
(Lespérance & Ng 2000) that simulates move-
ment_complete events. When the plan is executing,
HLC will actually wait for the arrival of move-
ment_complete before asking LLC to move to a new
location.

The HLC code for route planning appears below.
serve_customers is the main behaviour of a mail
delivery robot:

proc(serve_customers(Max),
 ndet([%Have all the orders been delivered?

?(neg(some([from,to,orderNo],
or(delivery(from,to,orderNo)=ordered,

 delivery(from,to,orderNo)=onboard)))),
 no_op %Ground case - done
],[% Nondet. pick up or drop off an order
 ndet([% Pick values s.t. the tests (?) succeed
 pi([f,t,on,llc,l,m,d],[
 ?(delivery(f,t,on)=ordered),
 ?(l = current_location),
 ?(llc = llc_address),
 %Execute actions with the picked params
 go(llc,l,f), pickUp(on),
 ?(d=dist(l,f)), ?(m is Max - d),
 %If the distance allowed is not used up,
 %recurse, else fail

?(m>=0), serve_customers(m)
])
],[
 pi([f,t,on,l,llc,m,d],[
 ?(delivery(f,t,on)=onboard),

 ?(l = current_location),
 ?(llc = llc_address),
 go(llc,l,t), dropOff(on),

 delivery_completed(on,f,t),
 ?(d=dist(l,t)), ?(m is Max - d),
 ?(m>=0), serve_customers(m)

])
])
])
).

The iterative deepening search routine tries to come
up with a plan to deliver all of the assigned packages
with a given distance bound. If unable to do so, it in-
crements the bound:

proc(minimize_distance(Max),

ndet(serve_customers(Max),
 pi(nd,[?(nd is Max+1),

 minimize_distance(nd)]))).

6 Interface Implementation Details
To allow IndiGolog agents to be both proactive and
reactive, we want our IndiGolog-OAA interface to
process incoming OAA events without giving complete
control to the OAA library. A special exogenous action
get_event is defined as part of the interface (see be-
low). It runs after every primitive action in an Indi-
Golog program (unless it is specifically disabled).
get_event first executes the procedures found in the
main OAA event loop: it gets the top priority OAA
event from the communication library and lets OAA
process it. It repeats this until there are no more events
waiting (i.e., until it receives 'timeout' event).

exog_occurs(get_event,E,H) :-
%Get OAA events. For events that we are interested in,
%get_event will automatically add them to oaa_event_queue
 oaa_loop,
 oaa_event_queue(Q), %Get the queue
 \+ Q = [], %Succeeds if the queue is not empty
 %Add OAA events to IndiGolog history
 extract_events(E,H,Q).

The reason why we need to let OAA process the
events rather than extract them manually is simple: in
addition to events that result from some agents request-
ing the services of our IndiGolog agent there are other
OAA events that we don't want to deal with. These
could be events that update a data solvable declared at
this particular agent, or these could be events that turn
on the system's tracing facility, and so on. We let the
OAA library handle these events since we want the
combined IndiGolog OAA agent to be compliant with
OAA specifications to the maximum degree possible.

To achieve the task of separating OAA events that
are calls to user-defined solvables from other OAA
events, we define and register with OAA a default call-
back that is called every time some agent requests the
services of our IndiGolog OAA agent. This callback is
given the goal (the problem that we have to solve) and
adds this goal to a queue that holds the OAA events to
be processed by the IndiGolog agent. The OAA library
sends the success message to the caller immediately.
This is why other agents should only send non-blocking
requests for the services provided by IndiGolog OAA
agents. If some other agent waits for the answer to its
query, its oaa_Solve call will return successfully, but
the variables through which that agent expects to get
the answer will remain unbound.
get_event then calls the extract_event proce-

dure that processes the queue and extracts the events
from it. It adds the events to IndiGolog program his-

tory, thus turning the newly received goals into exoge-
nous actions that appear to have been executed and
changing the value of fluents appropriately. The pro-
grammer has to provide the appropriate causal laws/
successor-state axioms. Suppose that we register the
solvable: movement_complete(Location). This
could be a notification from a certain mobile robot that
our IndiGolog agent controls. The following axiom
specifies one of the possible changes in the system
caused by the arrival of the goal move-
ment_complete(Location):

causes_val(movement_complete(Loc),

current_location,Loc,true).

This effectively says that the value of the fluent
current_location changes to become the location
that the robot has just arrived at.

7 Conclusion and Future Work
In this paper, we have presented an IndiGolog-OAA
interfacing mechanism that we think adds value to both
tools. It provides easy access to a multiagent platform
for IndiGolog, allowing us to use this language in a
wide range of new applications. Moreover, since
OAA’s ICL is Prolog-based, it makes it a great match
to the current implementation of IndiGolog. On the
other hand, the built-in concurrency of IndiGolog al-
lows IndiGolog-based OAA agents to be both reactive
and proactive and thus much more powerful than the
previously supported Prolog-based agents. This inter-
face adds a new powerful high-level programming lan-
guage to the set of languages supported by OAA. The
system is available for download at
http://www.cs.yorku.ca/~lesperan/IG-OAAlib/.

We are interested in applying this work in a variety
of domains. One area of interest is personal service
robotics with robots having multiple skills such as find-
ing people, giving tours, etc. With Erich Leung, we
have started integrating software agents into the system
that locates people based on where they logged-in and
their typical schedule. We would also like to use Indi-
Golog to program a smarter matchmaker for some do-
main, one that supports compound queries. Other po-
tentially interesting applications include semantic web
services (McIlraith et al. 2001).

The choice of OAA as a multiagent platform to inter-
face IndiGolog to arose from their common Prolog
heritage, which suits them to developing agents that
perform reasoning and planning. We are also examin-
ing the use of IndiGolog in combination with FIPA-
compliant platforms and would like to develop tools for
this.

References
Burgard, W., Cremers, A.B., Fox, D., Haehnel, D.,

Lakemeyer, G., Schulz, D., Steiner, W., and Thrun,
S. The Interactive Museum Tour-Guide Robot. In
Proc. of the 15th National Conference on Artificial
Intelligence (AAAI-98), pp. 11-18, AAAI Press, 1998.

De Giacomo, G. and Levesque, H. An incremental in-
terpreter for high-level programs with sensing. In
Logical Foundations for Cognitive Agents, Contribu-
tions in Honor of Ray Reiter, pages 86–102, 1999.
Agent-Based Systems, LNCS. Springer-Verlag, 2000.

De Giacomo, G., Lespérance, Y., and Levesque, H.
ConGolog, a concurrent programming language
based on the situation calculus. Artificial Intelli-
gence, 121, 109-169, 2000.

Guzzoni, D., Konolidge, K., Meyers, K., Cheyer, A.,
and Julia, L. Robots in a Distributed Agent System.
In Cognitive Robotics - Papers from the 1998 AAAI
Fall Symposium, Technical Report FS-98-02, AAAI
Press, pp. 61-67, Orlando, FL, October, 1998.

Levesque, H. and Pagnucco, M. LeGolog: Inexpensive
experiments in cognitive robotics. In Proc. of the 2nd
International Cognitive Robotics Workshop, pp. 104-
109, Berlin, Germany, August 2000.

Lesperance, Y., Tam, K., and Jenkin, M. Reactivity in a
Logic-Based Robot Programming Framework. In
Cognitive Robotics - Papers from the 1998 AAAI Fall
Symposium, Technical Report FS-98-02, AAAI Press,
pp. 98-105, Orlando, FL, October, 1998.

Lespérance, Y. and Ng, H.-K. Integrating Planning into
Reactive High-Level Robot Programs. In Proceed-
ings of the Second International Cognitive Robotics
Workshop, 49-54, Berlin, Germany, August, 2000.

Martin, D.L., Cheyer, A.J., and Moran, D.B. The open
agent architecture: A framework for building distrib-
uted software systems. Applied Artificial Intelligence,
13:91–128, January-March 1999.

McCarthy, J. and Hayes, P. Some philosophical prob-
lems from the standpoint of artificial intelligence. In
Meltzer, B. and Michie, D. eds. Machine Intelli-
gence, volume 4, 463–502, Edinburgh University
Press, Edinburgh, UK, (1979).

McIlraith, S. and Son, T.C. Adapting Golog for Pro-
gramming the Semantic Web. Proceedings of the
Fifth Symposium on Logical Formalizations of Com-
monsense Reasoning (Common Sense 2001), May
2001.

McIlraith, S., Son, T.C., and Zeng, H. Semantic Web
Services. In IEEE Intelligent Systems. Special Issue
on the Semantic Web. 16(2):46-53, March/April,
2001. Copyright IEEE, 2001.

Reiter, R. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Sys-
tems, MIT Press, 2001.

Reiter, R. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V. editor, Ar-

tificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy,
pp. 359-380, Academic Press, San Diego, CA, 1991.

