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Abstract

This paper describes a robot controller which uses proba-
bilistic decision-making techniques at the highest-level of
behavior control. The POMDP-based robot controller has
the ability to incorporate noisy and partial sensor informa-
tion, and can arbitrate between information gathering and
performance-related actions. The complexity of the robot
control domain requires a POMDP model that is beyond
the capability of current exact POMDP solvers, therefore
we present a hierarchical variant of the POMDP model
which exploits structure in the problem domain to accel-
erate planning. This POMDP controller is implemented
and tested onboard a mobile robot in the context of an in-
teractive service task. During the course of experiments
conducted in an assisted living facility, the robot success-
fully demonstrated that it could autonomously provide
guidance and information to elderly residents with mild
physical and cognitive disabilities.

Introduction
High-level robot control has been a popular topic in AI, and
decades of research has led to a reputable collection of archi-
tectures (e.g., (Arkin 1998; Brooks 1985; Gat 1996)). How-
ever, existing architectures rarely take uncertainty into account
during planning. In this paper we describe a high-level robot
control system that uses probabilistic decision-making to act
under uncertainty.

Partially Observable Decision Processes (POMDPs)
(Sondik 1971) are techniques for calculating optimal control
actions under uncertainty. They extend the well-known
Markov Decision Processes (MDPs) (Howard 1960) to do-
mains where considerations of noise and state uncertainty are
crucial to good performance. They are useful for a wide range
of real-world domains where joint planning and tracking is
necessary, and have been successfully applied to problems
of robot navigation (AAAI 1998; Simmons & Koenig 1995;
Nourbakhsh, Powers, & Birchfield 1995; Roy & Thrun
2000) and robot interaction (Darrell & Pentland 1996;
Roy, Pineau, & Thrun 2000).

In this paper we describe a system that uses POMDPs at
the highest-level of behavior control, in contrast with exist-
ing POMDP applications in robotics where POMDP control
is limited to specialized modules. We propose a robot control
architecture where a POMDP performs high-level control by
arbitrating between information gathering and performance-
related actions, as well as negotiating over goals from differ-
ent specialized modules. The POMDP also incorporates high-
level uncertainty obtained through both navigation sensors
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(e.g. laser range-finder) and interaction sensors (e.g. speech
recognition and touchscreen.)

Unfortunately, POMDPs of the size necessary for good
robot control are an order of magnitude larger than today’s
best exact POMDP algorithms can tackle (Kaelbling, Littman,
& Cassandra 1998). However, the robot controller domain
yields a highly structured POMDP, where certain actions are
only applicable in certain situations. To exploit this struc-
ture, we developed a hierarchical version of POMDPs, which
breaks down the decision making problem into a collection of
smaller problems that can be solved more efficiently. Our ap-
proach is similar to the MAX-Q decomposition for MDPs (Di-
etterich 2000), but defined over POMDPs (where states are
unobserved.)

Finally, we apply the high-level POMDP robot controller
to the real-world task of guiding elderly people in a nurs-
ing home. In systematic experiments, the robot successfully
demonstrated that it could autonomously provide guidance for
elderly residents and we found the POMDP approach to be
highly effective.

Review of POMDPs
This section provides a brief overview of the essential con-
cepts in POMDPs (see (Kaelbling, Littman, & Cassandra
1998) for a more complete description of the POMDP prob-
lem formulation.)

A POMDP model is an n-tuple,P = {S,A,Ω, b0, T,O,R},
consisting of:

• States: A set of states, S = {s1, s2, ...}, describes the prob-
lem domain. The domain is assumed to be in a specific state
st at any point in time.

• Actions: A set of actions, A = {a1, a2, ...}, describes the
agent’s interaction with the domain. At any point in time
the agent applies an action, at, through which it affects the
domain.

• Observations: A set of observations, Ω = {o1, o2, ...}, de-
scribes the agent’s perception of the domain. A received
observation, ot, may only partially reflect the current state.

• Rewards: A set of numerical costs/rewards, R(st, at), de-
scribes the reinforcement received by the agent throughout
its interaction with the domain.

To fully characterize a specific POMDP model, the follow-
ing probability distributions must be specified:

• Initial state probability distribution:

b0(s) := Pr(s0 = s) (1)

is the probability that the domain is in state s at time t = 0.
This distribution is defined over all states in S.
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• State transition probability distribution:

T (s, a, s′) := Pr(st = s′|st−1 = s, at−1 = a) (2)

is the probability of transitioning to state s′, given that the
agent is in state s and selects action a. This is defined for
all (s, a, s′) triplets and assumes

∑
s′∈S T (s, a, s′) = 1,

∀(s, a).
• Observation probability distribution:

O(s, a, o) := Pr(ot = o|st−1 = s, at−1 = a) (3)

is the probability that the agent will perceive observa-
tion o, given that it is in state s, and has applied action
a. This is defined for all (s, a, o) triplets and assumes∑

o∈S O(s, a, o) = 1, ∀(s, a).
At any given point in time, the system is assumed to be in

some state st, which may not be completely observable, but
is partially observable through observation ot. In general, it
is not possible to determine the current state with complete
certainty. Instead, a belief distribution is maintained to suc-
cinctly represent the history of the agent’s interaction (both
applied and perceived) with the domain:

• Belief :

bt(s) := Pr(st = s|ot, at−1, ot−1, ..., a0, b0) (4)

describes the probability that, at time t, the agent is in state
st, given the history {ot, at−1, ot−1, ..., a0} and the initial
belief b0. This distribution is defined over all states in S.

Assuming a POMDP model as defined above, we now dis-
cuss two interesting problems in POMDPs. The first is state
tracking, that is, the computation of the belief state at each
time step. The second is the optimization of an action selec-
tion policy.

State Tracking
To operate in its domain and apply a belief-conditioned policy,
an agent must constantly update its belief distribution. Equa-
tion 5 defines the update rule for computing a posterior belief,
b′, given the belief at the previous time step, b, and the latest
action/observation pair, (a, o):

b′(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)b(s)

Pr(o|a, b)
(5)

For most POMDP domains, state tracking is easy, relative
to the problem of computing a useful action selection policy.
For very large scale problems the belief updating may become
problematic, this has been addressed by earlier work, in the
context of dynamic Bayesian networks (Boyen & Koller 1998;
Poupart & Boutilier 2000) and probabilistic tracking (Thrun et
al. 2000b).

Computing a Policy
A POMDP policy, π, is an action-selection strategy. It is for-
mally defined as a mapping from belief to action selection:

πPOMDP : bt → a (6)

In this, POMDPs differ significantly from MDPs, where the
policy is a mapping from state to action:

πMDP : st → a (7)

The goal of planning, or POMDP problem solving, is to
learn an action-selection policy that maximizes the (possibly
discounted) sum of expected future reward up to some time T:

E[
T∑

τ=t

R(τ)] (8)

where R(τ) is the reward at time τ .
The most straight-forward approach to finding POMDP

policies remains the value iteration approach, where iterations
of dynamic programming are applied to compute increasingly
more accurate values for each belief state b.

V : B → R (9)
After convergence, the value is the expected sum of all (pos-
sibly discounted) future pay-offs the agent expects to receive
up to time T , if the correct belief is b. A remarkable result by
Sondik (Sondik 1971) shows that for a finite-horizon problem,
the value function is a piecewise linear, convex, and continu-
ous function of the belief, with finitely many linear pieces.

Unfortunately however, the exact algorithms used to com-
pute optimal policies are bounded by a doubly exponential
computational growth in the planning horizon, and in prac-
tice are often at least exponential. More specifically, a single
step of value iteration is on the order of

|Γt| = O(|A||Γt−1||Ω|) (10)
where |Γt−1| represents the number of components necessary
to represent the value function at iteration t − 1. This points
to the need for more efficient algorithms.

Recent efforts have focused on the development of efficient
algorithms that use value-approximation techniques to gener-
ate near-optimal policies for large domains (Hauskrecht 2000;
Littman, Cassandra, & Kaelbling 1995). However many of
these algorithms, though scalable and highly effective in many
domains, generally gain computational advantage at the ex-
pense of information-gathering considerations, thus making
them inappropriate for domains where information-gains are
crucial to good performance.

An alternative approach for scaling decision-making is to
exploit hierarchical structure and partition a complex problem
into many smaller problems. The idea of leveraging structure
has been extensively studied in the context of Markov Deci-
sion Processes (MDPs) (Singh 1992; Dayan & Hinton 1993;
Kaelbling 1993; Dean & Lin 1995; McGovern et al. 1998;
Parr & Russell 1998; Dietterich 2000). These algorithms do
not extend naturally to POMDPs because they define struc-
tured hierarchies in terms of modular subtasks with fully ob-
servable start and termination conditions. We now describe a
novel algorithm to perform hierarchical POMDP planning and
execution.

Hierarchical POMDPs
The basic idea of the hierarchical POMDP is to partition the
action space—not the state space, since the state is not fully
observable—into smaller chunks. Therefore the cornerstone
of our hierarchical algorithm is an action hierarchy. We as-
sume that it is provided by a designer and represents the struc-
tural prior knowledge included to facilitate the problem solu-
tion. Figure 1 illustrates the basic concept of an action hierar-
chy.

Formally, an action hierarchy is a tree, where each leaf is
labeled by an action from the target POMDP problem’s action
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Figure 1: Sample Action Hierarchy

set. Each action a ∈ A0 (henceforth called primitive action)
must be attached to at least one leaf (e.g. RingDoorBell, Go-
toPatientRoom, etc.) In each internal node (shown as circles
in figure 1) we introduce an abstract action. Each of these
provides an abstraction of the actions in the nodes directly be-
low it in the hierarchy (e.g. Contact is an abstraction of Ring-
DoorBell and GotoPatientRoom.) Throughout this paper we
use notation āi to denote an abstract action.

A key step towards hierarchical problem solving is to use
the action hierarchy to translate the original full POMDP task
into a collection of smaller POMDPs. The goal is to achieve
a collection of POMDPs that individually are smaller than the
original POMDP, yet collectively define a complete policy.

We propose that each internal node āi in the action hierar-
chy spans a corresponding subtask Pi. The subtask is a well-
defined POMDP composed of:

• a state space Si, identical to the full original state space S0;

• an observation space Ωi, identical to the full original obser-
vation space Ω0;

• an action space Ai, containing the children nodes (both
primitive and abstract) immediately below āi in the sub-
task.

For example, figure 1 shows a problem that has been di-
vided into seven subtasks, where subtask Premind has ac-
tion set: Aremind={aRemindPhysioAppt, aRemindV itamin,
aUpdateChecklist, āContact}, and so on.

Given that the action hierarchy spans a collection of sepa-
rate POMDP subtasks, we can independently optimize an in-
dependent policy for each subtask, such that we obtain a col-
lection of corresponding local policies:

DEFINITION: Given Pi, a POMDP subtask with action set
Ai. We say that πPi

, a POMDP policy defined over action
subset Ai, is a local policy.

Using this representation, we introduce two key algorithms:
a hierarchical planning algorithm which is used to optimize
local policies for all subtasks, and a hierarchical execution al-
gorithm which is used to extract a global action policy from
the collection of local policies.

Hierarchical POMDP Execution
We first present the execution algorithm, which assumes that
local policies have been computed for all subtasks and from

these extracts a global policy mapping belief to action. Rather
than computing a full global policy, we propose an online al-
gorithm that consults the local policies at every time step. Be-
fore doing a the policy lookup, the belief is first updated us-
ing equation 5 (except at time t = 0, where the initial belief
bt = b0). The execution algorithm then begins by invoking
the policy of the top subtask in the hierarchy, and then operates
through a sequence of recursive calls such that the hierarchy is
traversed in a top-down manner, invoking a sequence of local
policies until a primitive action is selected. The precise proce-
dure is described in the EXECUTE function of table 1. The
routine is initially invoked using the top subtask as the first
argument, P , and the current belief as the second argument,
bt.

EXECUTE(P , bt)
Let ai = πP (bt)
If ai is a primitive action

Return ai

Else if ai is an abstract action (i.e. āi

Let Pchild be the subtask spanned by āi

EXECUTE(Pchild, bt)
end

end

Table 1: Execution function

It is important to emphasize that the full top-down trace
through the hierarchy is repeated at every time step. This is
a departure from many hierarchical MDP planning algorithms
which operate within a given subtask for multiple time steps
until a terminal state is reached. It is however consistent with
Dietterich’s polling approach (Dietterich 2000), and in our ap-
proach is strongly motivated by the fact that the partial observ-
ability characteristic of POMDPs would limit the detection of
terminal states, thus preventing us from using the execution
approach common to hierarchical MDPs.

Hierarchical POMDP Planning
We now describe the planning algorithm which is responsible
for optimizing the collection of local policies. Table 2 de-
scribes in pseudo-code the planning algorithm.

PLAN(P )
forall primitive actions aj in P

PARAMETERIZE(aj)
end
forall abstract actions ām in P

Let Pm be the subtask spanned by ām

PLAN(Pm)
PARAMETERIZE(ām)

end
SOLVE(P )

end

Table 2: Planning function

The recursive PLAN(P ) routine is responsible for travers-
ing the hierarchy and is initially invoked using the top subtask
in the hierarchy as the argument. However it traverses the hier-
archy in a bottom-up manner. Namely, each subtask is solved
only after all the subtasks directly below it in the hierarchy



have been solved. The routine uses a simple two-part process,
applied in succession to all subtasks in the hierarchy.
• PART 1 (PARAMETERIZE): Infer the necessary parame-

ters for the given subtask.

• PART 2 (SOLVE): Apply policy optimization to the subtask.
The SOLVE function contains the actual policy optimiza-

tion subroutine, which is implemented as a call to an exact
POMDP planning algorithm: the incremental pruning algo-
rithm. This exact POMDP solution is described in detail
in (Cassandra, Littman, & Zhang 1997); implemented code
can be obtained from (Cassandra 1999). The assumption is
that each subtask is sufficiently small to be solved exactly, yet
the full POMDP problem is much too large for an exact solu-
tion.

The PARAMETERIZE routine is used to infer the neces-
sary model parameters (transition, observation, and reward)
for each subtask. We assume we have a known model of
the original full POMDP task, and use these to infer a sub-
set of parameters for each subtask. We consider two separate
issues: that of defining parameters for primitive actions (i.e.
PARAMETERIZE(aj)), and that of defining parameters for
abstract actions (i.e. PARAMETERIZE(ām).) In general, the
parameters that are conditioned on primitive actions can be di-
rectly extracted from the original parameter set. We formally
define:

Initial belief (11)

bi(s) := b0(s), ∀s ∈ S0

Transition probabilities (12)

Ti(s, aj , s
′) := T0(s, aj , s

′), ∀(s, s′) ∈ S0,

∀{aj , ..., al} ∈ Ai

Observation probabilities (13)

Oi(s, aj , o) := O0(s, aj , o), ∀s ∈ S0,

∀o ∈ Ω0, ∀{aj , ..., al} ∈ Ai

Reward function (14)

Ri(s, aj) := R0(s, aj), ∀s ∈ S0,

∀{aj , ..., al} ∈ Ai

Parameterization of the abstract actions is the main motiva-
tion for adopting a bottom-up procedure during planning. A
key insight is the fact that the algorithm uses the local pol-
icy learned for subtask Pm when modelling the corresponding
abstract action ām in the context of the higher level subtask.
Going back to the example in Figure 1, the goal is to first learn
a local policy for subtask PContact, and then use this policy to
infer model parameters for action āContact, such that it is then
possible to proceed and apply SOLVE(PRemind). Equations
15-17 describe the exact procedure for inferring those param-
eters.

Transition probabilities (15)

Ti(s, ām, s′) := T (s, πPm(s), s′),

∀(s, s′) ∈ S0, ∀ām ∈ Ai

Observation probabilities (16)

Oi(s, ām, o) := O(s, πPm(s), o), ∀s ∈ S0,

∀o ∈ Ω0, ∀ām ∈ Ai

Reward function (17)

R(s, ām) := R(s, πPm(s)),

∀s ∈ S0, ∀ām ∈ Ai

An important assumption of our approach, implicit to the
above discussion of local policy optimization, is that each
subtask must contain some discriminative reward information.
This means that we cannot have a uniform reward function
over all actions and/or states, otherwise local policies could
not be meaningfully optimized. This is a common assump-
tion in hierarchical reinforcement learning (Dietterich 2000),
and the assumption is easily met in the robot control domain,
where the cost of accomplishing various tasks naturally pro-
vides the necessary local reward structure. In domains where
this assumption is not met, we can (as suggested in (Dietterich
2000)) introduce reward shaping to provide subtasks with the
required local reward information.

State and Observation Abstraction
The hierarchical algorithm, as described so far, proposes
to reduce the computational overhead of POMDP plan-
ning by partitioning the action set. In terms of compu-
tational complexity, the number of linear pieces represent-
ing an exact POMDP value function is recursively given by:
|Γt| = O(|A||Γt−1||Ω|), and can be enumerated in time:
O(|S|2|A||Γt−1||Ω|). Therefore our hierarchical POMDP al-
gorithm, by solving subtasks with reduced action sets, can sig-
nificantly reduce the computational complexity of computing
POMDP policies. However these savings are partially offset
by the fact that we now have to compute many policies, in-
stead of just one. We now discuss how in many domains it is
possible to further reduce computational costs by also apply-
ing state and observation abstraction. The key idea is to define
reduced state and observation sets for each subtask and apply
planning using this smaller representation.

The formal conditions under which to apply exact state and
observation abstraction are directly related to the model pa-
rameters. We consider a POMDP subtask Pi, with action set
Ai, state set Si and observation set Ωi, where the state set is
spanned by state features Xi = {X1,X2, . . . , Xp} and the ob-
servation set is spanned by features Zi = {Z1, Z2, . . . , Zq}.
We now consider a case where the state features can be divided
into two disjoint sets, X+ and X−, and similarly observation
features can be divided into two disjoint sets, Z+ and Z−. We
say that state features X− and observation features Z− are ir-
relevant to subtask Pi if ∀aj ∈ Ai:

R(X+, X−, aj) = R(X+, aj) (18)

P (X
′
+, X− | X+, X−, aj) = P (X

′
+ | X+, aj)P (X

′
− | X+, X−, aj)

P (Z+, Z− | X+, X−, aj) = P (Z+ | X+, aj)P (Z− | X−, aj)

Figure 2 illustrates these constraints in the form of a dy-
namic belief network. In essence, we see that state features
in set X− have no effect on the reward function, and further-
more provide no transition or observation information regard-
ing those features (namely X+) that do have an effect on the
reward function. Consequently, state features X− and obser-
vation features Z− can have no effect on the value function,
and therefore can be safely ignored. It is important to note
that the feature irrelevance condition must hold for all actions
(primitive and abstract) in a given subtask.

For general POMDP planning, applying abstraction is
equivalent to finding a minimum-size representation for the
problem, but once the problem is specified there is little op-
portunity for further abstraction. In the context of hierarchical
planning however, abstraction can be applied independently to
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state/observation abstraction conditions (dashed line in-
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each subtask—thus reducing |S| and |Ω|—without influencing
the policy optimization any further than what is attributed to
the action decomposition. The overall resulting computational
savings can be tremendous (several orders of magnitude).

It is important to note that state and observation abstraction
is a natural consequence of the action decomposition. In fact
we observe that action decomposition and state/observation
abstraction often work hand in hand. In general, a domain
with a structured state set will lend itself to hierarchical plan-
ning without significant performance loss. Furthermore the
same structure that gives rise to a good action decomposition
often allows substantial state and observation abstraction.

A Real-World Application Domain
In this section, we present results from the real-world im-
plementation and testing of our hierarchical POMDP robot
controller in the context of an interactive robot-human task.
This implementation was conducted as part of a larger project
dedicated to the development of a prototype nursing assistant
robot. The overall goal of the project is to develop personal-
ized robotic technology that can play an active role in provid-
ing improved care and services to non-institutionalized elderly
people. The target user is an elderly individual with mild cog-
nitive and/or physical impairment.

Robot Platform
The robot Pearl (shown in figure 3 interacting with some
users) is the primary test-bed for the behavior management
system. The robot uses a differential drive system and is
equipped with two on-board Pentium PCs, wireless Ethernet,
a SICK laser range finder, sonar sensors, a microphone for
speech recognition, speakers for speech synthesis, a touch-
sensitive graphical display, actuated head unit, and stereo cam-
era system.

On the software side, the robot features off-the-shelf au-
tonomous mobile robot navigation system (Burgard et al.
1999; Thrun et al. 2000a), speech recognition software (Rav-
ishankar 1996), speech synthesis software (Black, Talor, &
Caley 1999), fast image capture and compression software
for online video streaming, and face detection tracking soft-
ware (Rowley, Baluja, & Kanade 1998). A final software
component is a prototype of a flexible reminder system us-
ing advanced planning and scheduling techniques (McCarthy

Figure 3: Pearl, the robotic nursing assistant, interacting with
elderly users at a nursing facility

& Pollack 2002). For information on additional research in-
volving this robot, the reader is referred to (Montemerlo et al.
2002).

The robot’s environment is a retirement resort located in
Oakmont, PA. All experiments so far primarily involved peo-
ple with relatively mild cognitive, perceptual, or physical in-
abilities, though in need of professional assistance.

Task description

From the many services such a robot could provide (see (En-
gelberger 1999; Lacey & Dawson-Howe 1998)), the work re-
ported here has focused on the task of reminding people of
events (e.g., appointments) and guiding them through their
environment. At present, nursing staff in assisted living fa-
cilities spends significant amounts of time escorting elderly
people walking from one location to another. The number of
activities requiring navigation is large, ranging from regular
daily events (e.g., meals), appointments (e.g., doctor appoint-
ments, physiotherapy, hair cuts), social events (e.g., visiting
friends, cinema), to simply walking for the purpose of exer-
cising. Many elderly people move at extremely slow speeds
(e.g., 5 cm/sec), making the task of helping people around one
of the most labor-intensive in assisted living facilities. Fur-
thermore, the help provided is often not of a physical nature, as
elderly people usually select walking aids over physical assis-
tance by nurses, thus preserving some independence. Instead,
nurses often provide important cognitive help, in the form of
reminders, guidance and motivation, in addition to valuable
social interaction.

The particular task we selected requires the robot to nav-
igate to a person’s room, alert them, inform them of an up-
coming event or appointment, and inquire about their willing-
ness to be assisted. It then involves a lengthy phase where
the robot guides a person, carefully monitoring the person’s
progress and adjusting the robot’s velocity and path accord-
ingly. Finally, the robot also serves the secondary purpose
of providing information to the person upon request, such as



information about upcoming community events, weather re-
ports, TV schedules, etc.

From an AI point of view, several factors make this task
a challenging one. In addition to the well-developed topic of
robot navigation (Kortenkamp, Bonasso, & Murphy 1998), the
task involves significant interaction with people. The robot
Pearl interacts mainly through speech and visual displays.
When it comes to speech, many elderly have difficulty under-
standing even simple sentences, and more importantly, artic-
ulating an appropriate response in a computer-understandable
way. Those difficulties arise from perceptual and cognitive
deficiencies, often involving a multitude of factors such as
articulation, comprehension, and mental agility. In addition,
people’s walking abilities vary drastically from person to per-
son. People with walking aids are usually an order of mag-
nitude slower than people without, and people often stop to
chat or catch breath along the way. It is therefore imperative
that the robot adapts to individual people—an aspect of people
interaction that has been poorly explored in AI and robotics.
Finally, safety concerns are much higher when dealing with
the elderly population, especially in crowded situations (e.g.,
dining areas.)

POMDP Modelling
The robot interface domain for the selected task was mod-
elled using 576 states, which are described using a collection
of multi-valued state features. Those states were not directly
observable by the robot interface manager; however the robot
was able to perceive 18 distinct observations. The state and
observation features are listed in table 3.

Observations were perceived through 5 different modalities;
in many cases the listed observations constitute a summary of
more complex sensor information. For example, in the case of
a user-emitted speech signal, a keyword filter was applied to
the output of the speech recognizer (e.g. “Give me the weather
forecast for tomorrow.” → SpeechKeyword=weather); for
the laser sensor, the raw laser data was processed and cor-
related to a map to determine when the robot had reached a
known landmark (e.g. → Laser=robotAtHome.) In general
the speech recognition and touchscreen input were used as re-
dundant sensors to each other, passing in very much the same
information, but assumed to have a greater degree of reliabil-
ity when coming from the touchscreen. The Reminder obser-
vations were received from a high-level intelligent scheduling
module (see (McCarthy & Pollack 2002) for details about this
component.)

In response to the observations, the robot could select from
19 distinct actions, falling into three broad categories:

• Communicate={RemindPhysioAppt, RemindVitamin,
UpdateChecklist, CheckUserPresent, TerminateGuidance,
TellTime, TellWeather, ConfirmGuideToPhysio, Verify-
InfoRequest, ConfirmWantTime, ConfimWantWeather,
ConfirmGoHome, ConfirmDone}

• Move={GotoPatientRoom, GuideToPhysio, GoHome}
• Other={DoNothing, RingDoorBell, RechargeBattery}

Each discrete action enumerated above invoked a well-
defined sequence of operations on the part of the robot
(E.g. GiveWeather → SpeechSynthesis=“Tomorrow’s
weather should be sunny, with a high of 80.”.) The actions
in the Communicate category involved a combination of re-
dundant speech synthesis and touchscreen display, where the

State features Feature values
RobotLocation home, room, physio
UserLocation room, physio
UserPresent yes, no
ReminderGoal none, physio, vitamin, checklist
UserMotionGoal none, toPhysioWithRobot
UserInfoGoal none, wantTime, wantWeather
Observation features Feature values
Speech yes, no, time, weather, go, unknown
Touchscreen t yes, t no, t time, t weather, t go
Laser atRoom, atPhysio, atHome
Reminder g none, g physio, g vitamin, g checklist

Table 3: Component description for human-robot interaction
scenario

selected information or question was presented to the user
through both modalities simultaneously. Given the sensory
limitations common in our target population, we found the
use of redundant audio-visual important for both communica-
tion to and from the robot. The actions in the Move category
were translated into a sequence of motor commands by a mo-
tion planner, which uses dynamic programming to plan a path
from the robot’s current position to its destination.

The POMDP model parameters were selected by a designer.
The reward structure, also hand-crafted, reflects the relative
costs of applying actions in terms of robot resources (e.g.
robot motion actions are typically costlier than spoken veri-
fication questions), as well as reflecting the appropriateness of
the action with respect to the state. For example, we use:

• positive rewards for correctly satisfying a goal
E.g. R(ai = TerminateGuidance)=+50

if si(UserMotionGoal) = {toPhysioWithRobot}
and si(RobotLocation) = {physio}
and si(UserLocation) = {physio};

• a large negative rewards for applying an action unnecessar-
ily
E.g. R(ai = GuidetoPhysio)=-200

if si(UserMotionGoal) = {none};
• a small negative reward for verification questions

E.g. R(ai = ConfirmGuidetoPhysio)=-2

given any state condition.

and so on. This reward function satisfies the local reward
assumption for each subtask, assuming the action hierarchy
proposed in figure 1.

Finally, we also applied state/observation abstraction to this
domain, following the conditions specified in figure 2. We
were thus able to eliminate between one and five state fea-
tures for each subtask. In general, lower-level subtasks yielded
more abstraction (e.g. subtask PInform required only the
UserInfoGoal state feature and the {speech, touch} obser-
vation features), whereas higher subtasks required access to
most state features.

Experimental Results
The planning problem described here is far beyond the reach
of exact POMDP solvers. Using the hierarchical POMDP, the
high-level decision making problem in Pearl is tractable, and
a near-optimal control policy can be computed off-line. Thus,



Observation True State Action Reward

pearl hello request begun say hello 100
pearl what is like start meds ask repeat -100
pearl what time is it

for will the want time say time 100

pearl was on abc want tv ask which station -1
pearl was on abc want abc say abc 100

pearl what is on nbc want nbc confirm channel nbc -1
pearl yes want nbc say nbc 100

pearl go to the that
pretty good what send robot ask robot where -1

pearl that that hello be send robot bedroom confirm robot place -1
pearl the bedroom any i send robot bedroom go to bedroom 100

pearl go it eight a hello send robot ask robot where -1
pearl the kitchen hello send robot kitchen go to kitchen 100

Table 4: An example dialog with a test subject. Actions in
bold font are clarification actions, generated by the POMDP
because of high uncertainty in the speech signal.

during execution time the controller simply monitors the state
(calculates the posterior) and looks up the appropriate control.

An important property of the computed POMDP policy is
the inclusion of information-gathering actions. These actions
have the specific purpose of gathering state-disambiguating
data, as opposed to getting closer to the goal. In the domain
described here, information-gathering actions are used to clar-
ify or confirm the user’s intent.

Table 4 shows an example dialog between the robot and
a test subject (using a different task domain, developed for
earlier in-lab experiments.) Because of the uncertainty man-
agement in POMDPs, the robot chooses to ask a clarification
question at three occasions. The number of such questions de-
pends on the clarity of a person’s speech, as detected by the
Sphinx speech recognition system.

In the nursing home environment, we tested the robot in five
separate experiments, each lasting one full day. The first three
days focused on open-ended interactions with a large number
of elderly users, during which the robot interacted verbally
and spatially with elderly people with the specific task of de-
livered sweets. This allowed us to gauge people’s initial reac-
tions to the robot.

Following this, we performed two days of formal experi-
ments using the exact domain described in table 3. During
these experiments, the robot autonomously led 12 full guid-
ances, involving 6 different elderly people. Figure 4 shows
an example guidance experiment, involving an elderly person
who uses a walking aid. The sequence of images illustrates
the major stages of a successful delivery: from contacting the
person, explaining to her the reason for the visit, walking her
through the facility, and providing information after the suc-
cessful delivery—in this case on the weather.

In all guidance experiments, the task was performed to
completion. Post-experimental debriefings illustrated a uni-
form high level of excitement on the side of the elderly. Over-
all, only a few problems were detected during the operation.
None of the test subjects showed difficulties understanding the
major functions of the robot. They all were able to operate the
robot after less than five minutes of introduction. However,
initial flaws with a poorly adjusted speech recognition system
led to occasional confusion, which was fixed during the course
of this project. An additional problem arose from the robot’s
initial inability to adapt its velocity to people’s walking pace,

(a) Pearl approaching elderly (b) Reminding of appointment

(c) Guidance through corridor (d) Entering physiotherapy dept.

(e) Asking for weather forecast (f) Pearl leaves

Figure 4: Example of a successful guidance experiment. Pearl
picks up the patient outside her room, reminds her of a phys-
iotherapy appointment, walks the person to the department,
and responds to a request of the weather report. In this in-
teraction, the interaction took place through speech and the
touch-sensitive display.

which was found to be crucial for the robot’s effectiveness.
We are currently engaged in experimental work that builds

on the results presented here, including comparing our hierar-
chical POMDP approach to alternative solutions. Future ex-
periments will include carrying out longer and more complex
scenarios in the nursing home, where the robot will carry on
tasks such as taking residents for walks, in support of varied
physical and social activities.

Discussion
This paper describes a POMDP approach to high-level robot
behavior control and presents an algorithmic approach to
POMDPs which uses the structured nature of the robot plan-
ning domain to facilitate planning. The POMDP-based con-
troller has been tested successfully in experiments in an as-
sisted living facility.

This work demonstrates that POMDPs have matured to a
level that makes them applicable to real-world robot control
tasks. Furthermore, our experimental results suggest that un-
certainty matters in high-level decision making. These find-
ings challenge a long term view in mainstream AI that un-
certainty is irrelevant, or at best can be handled uniformly at
the higher levels of robot control (Giacomo 1998; Lakemeyer
2000). We conjecture instead that when robots interact with
people, uncertainty is pervasive and has to be considered at all
levels of decision making, not solely in low-level perceptual
routines.
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