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Abstract

We describe in this paper a high level recognition system. The
system implements a new approach to model-based object
recognition, fully exploiting compositionality of representa-
tions : from the analysis of the elementary signs in the im-
age to the analysis and description of an object structure and,
finally, to the interpretation of the scene. Perceptual reason-
ing, likewise the symbolic description of the scene are stated
in the Situation Calculus. A description is a specification of
an object in terms of its single components which, in turn,
are specified using SymGeons, a generalization of parametric
Geons. The cognitive process of recognition relies on Sym-
Geons recognition. Here we extend the concepts of aspect
graphs and hierarchical aspect graph to obtain a Bayes net-
work integrating composition of aspects together with com-
position of features.

Introduction
In this paper we present the basic ideas governing the high
level recognition system of Mr. ArmHandOne, a tiny mo-
bile manipulator endowed with a pan-tilt binocular head
equipped with two color cameras PC100XS from Supercir-
cuits. We have implemented (MIL libraries and C++) all
the image processing leading to the Syntactic Analyzer (see
item 4 below), the Bayes-Aspect Network for SymGeons
recognition (C++ and Eclipse-Prolog), and the high-level
descriptions of few simple objects. We have not yet defined
the Bayes-network for object descriptions, that would allow
us to have a probability distribution on the presence of given
objects in the scene, and we are still working on binocular
reconstruction of SymGeons. The system has been tested
over simple artifacts, although part of it has not yet been
implemented. Its architecture is structured as follows:

1. Cognitive level. At this level we represent perception as
the reasoning component of the recognition process. Per-
ception is formalized in the Situation Calculus (Pirri &
Finzi 1999), and it is essential for solving any dichotomy
between what is perceived and what is inferred by an
agent using a priori knowledge and premises. There
are several cognitive problems in connection with the
reasoning process concerning perception and knowledge
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(see e.g. (Reiter 2001a)), requiring a continuous con-
frontation between an agent inner world representation
and sensed/perceived information, like e.g. the anchoring
problem1.

2. Description level. It provides objects and scene descrip-
tions in terms of categories. Here a category is a kind
gathering the simplest representation of a certain object,
using SymGeons as primitive components. E.g. a table
can be described as follows: a flat top with one or more
vertical supports. The flat top is either a cylindroid or
cuboid etc., and it is orthogonally connected with the sup-
ports, that could be either cylindroid or cuboid and if there
is more than one support each is parallel to the others... So
far we have not considered physical or functional spec-
ifications in connection with descriptions although they
would be very useful.

3. Recognition level. At this level recognition is concerned
only with primitive components of the image. Each shape
in the image is classified as an aspect/view of a Sym-
Geon, and is given a probability, according to the traits
of the shape itself. Classification is done by a Bayes net
integrating a hierarchical aspect graph (see (Dickinson &
Metaxas 1994)): the two DAGs are fused into an Aspect-
Bayes net, that is, a Bayes-net in which causal relations
between nodes are enriched with compositional relations
concerning aspects.

4. Syntactic analyzer. This level is concerned with the con-
struction of a labeled graph of the image. The labeled
graph is defined in FOL. The syntactic image analysis de-
livers a set of segments that we call primits. This set forms
a graph that we call the syntactic graph.

5. Image processing, which is achieved with standard
methodologies.

In synthesis our approach is based on the following idea.
It is not possible to separate the recognition process from the
presence or absence of the knowledge of a specific environ-
ment. For the unknown elements of a scene a crucial role is
played by the following abilities:

1Anchoring is the process of creating and maintaining the cor-
respondence between symbols and sensors data that refer to the
same physical object (Coradeschi & Saffiotti 2000)
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1. Reference ability. The ability to conform (map) the cur-
rent environment to one already known, individuating dis-
tinguishing features.

2. Abstraction ability. The ability to provide a context free
representation of an artifact which is described by its
components, drawn from a small set of primitives, and
bound together by relations specified in a combinatorial
language respecting the principle of compositionality.

3. Reasoning ability. The ability to draw hypotheses that can
be confirmed: “it could be a hat, a pot, or a lamp shade,
and since it is on a lamp it must be a lamp shade”.

Generally speaking, the reasoning process taking place in
recognition is based on previous (not necessarily accurate)
knowledge of the environment from which the current scene
is taken. In order to arrange knowledge of objects or scenes
into patterns we have to exploit the inner structure of both
human artifacts and environments, and this naturally leads to
a compositional and constructive representation. This way
of thinking is also known as visual perceptual organization
which was explored by (Pentland 1986) in his seminal pa-
per on perception. Pentland, in fact, pointed out that per-
ception is possible (likewise intelligent prediction and plan-
ning) because of an internal structuring of our environment
and because of the human ability to identify the connec-
tions between these environmental regularities and primi-
tive elements of cognition. All the model-based approaches
to perception have been influenced by this view and the
use of knowledge-based models of the world has become
a standard paradigm in vision (see e.g. (Edelman 1997;
Wu & Levin 1993; Pope & Lowe 1993; Chella, Frixione,
& Gaglio 2000; Rock 1997)). Among the model-based ap-
proaches, the constructive approach, known as recognition
by components (RBC), was pioneered by (Marr & Nishihara
1978), who introduced generalized cylinder, by (Shapiro et
al. 1984) who use stick, blobs and plates, by (Pentland 1986)
who first introduced the use of superquadrics (Barr 1981) in
cognitive vision, by (Biederman 1987) who introduced the
novel idea of Geons (geometric icons), and finally by (Wu
& Levin 1993) who modeled parametric Geons combining
Biederman’s ideas with superquadrics.

Following the above line of research on visual perception,
we develop our formalization on the recent approach of (Pa-
tel 2000) who introduces SymGeons, that are an extension
of the above mentioned parametric Geons. The advantage
of SymGeons over parametric Geons is that, by loosing the
symmetry property which we do not need to preserve in our
approach, they can be used as coarse descriptions also of
asymmetrical objects (e.g. the well known snicker exam-
ple that was Ullman’s point against recognition by compo-
nents (Ullman 1996)). On the other hand SymGeons have
several views, and views are composed of faces which, in
turn, are composed of simpler elements as coarse descrip-
tions of primitives geometric signs depicted in the image.
This earlier compositional construction is obtained using an
Aspect-Bayes network, which plays a role similar to the as-
pect graph, but here causal relationships are enriched with
compositional relationships.

The Syntacticanalizer

The Bayes-Aspectnet

Description Level
Cognitive level

O utcom e ofsensing:thereisatablein
thescene

Perception:tableA isin theroom
M eaningfulPerception:tableA can be

added to theKnow ledgeBase

Figure 1: The reasoning process behind perception

Preliminaries
The paper exploits several techniques to model perceptual
reasoning. In particular for the scene and object descrip-
tion and for the high level perceptual reasoning, the Situa-
tion Calculus is used at all the levels of reasoning for the
purpose of formalizing definitions, and also for simple geo-
metric primitives. We consider the Situation Calculus (��)
((McCarthy & Hayes 1969; Reiter 2001b)) as the core of our
logic and language, and we suitably extend it to include new
sorts, new symbols for its alphabet and new axioms. We re-
fer the reader to (Pirri & Reiter 1999) for a full presentation
of the core logic and language and to (Pirri & Finzi 1999)
for more details related to extensions concerning perception.
For reasoning on the elementary geometric structure of the
image, i.e. at the lines, faces, and aspects levels, both prob-
abilistic and causal reasoning are exploited: hypotheses are
drawn about the geometric structure of the image, and these
hypotheses are used by perceptual reasoning. However the
core of the whole perceptual architecture and the link be-
tween the two levels of reasoning, from the image to the
scene, are the SymGeons.

The concept of SymGeon, introduced by (Patel 2000), is
part of a families of related concepts, that have been used
in visual recognition, to describe the shape of an object in
terms of a relatively few generic components, joined by spa-
tial relationships. SymGeons (which we can consider as
a simple generalization of parametric Geons introduced by
Kenong Wu and Martine Levine (Wu & Levin 1993) ) have
their origins, in qualitative Geons (Biederman 1987) and in
the computer graphic concept of Superquadrics (Barr 1981).
The Biederman original Geons are 36 volumetric compo-
nent shapes described in terms of the following qualitative
attributes of generalized cylinders: symmetry, size, edge,
axis: each of these properties can be suitably varied in so
determining a unique Geon. Superquadrics were first intro-
duced in computer graphics by Barr in his seminal paper



(Barr 1981). Petel and Holt (Patel 2000) extended the con-
cept of the parametric Geons of Wu and Levine considering
the possibility to apply the tapering and bending transfor-
mations at the same time. In such a way they eliminated
the intrinsic symmetry of the parametric Geons allowing to
model a larger number of asymmetrical objects.

In the rest of the paper we use ���� ����� � to denote a
generic SymGeon, where � � ���� ��� ��� is the scale vec-
tor, � � ���� ��� is the squareness vector, � � �������
is the tapering vector and � is the bending parameter. To
refer to the coordinates of a SymGeon in the scene we
shall use a term ��	, so the position of a specific Sym-
Geon ���� ����� �, with 
 � ��� ����� � will be denoted
by ����	�
 � (see (Wu & Levin 1993)).

A classification of SymGeons is given in Figure 2.

Figure 2: A classification of SymGeons

Finally, we refer the reader to Judea Pearl’s Book (Pearl
1988) for an accurate analysis of Bayesian networks.

Cognitive and Description levels
The cognitive part of perception is described and axioma-
tized in the Situation Calculus. We refer the reader to (Pirri
& Finzi 1999) for a full presentation of Perception at the
cognitive level. Here we recall some essential features in-
troduced in (Pirri & Finzi 1999). Asserting a “perception”
about something that can be perceived, i.e. a perceptible, is
denoted by a predicate �
��
�� �����	 �, in which � is the
perceptible of the kind �	����
 ���, � � ��� �� is the out-
come of a sensing action of the kind 	
�	
��	����
 ���� ��,
and 	 is a term of sort situation. For each fluent � ����	 � in
the language, which is observable, i.e. it can be sensed, a
perceptible �	� ���� is introduced in the language, together
with a successor state axiom of the kind:

�
��
�� ��	� ����� �� �� ���	 �� � ���� ������ ��	 � (1)

Here ���� ������ ��	 � is a sentence describing what should
be true both in terms of other previous percepts and in terms
of properties holding in the domain, to make perception hold

about the perceptible �	� in the situation in which a sensing
action has taken place. Obviously there is a frame problem
also for �
��
�� and we adopt Reiter’s solution (see (Reiter
2001b) for a full and very well detailed description). Each
sensing action, in turn, has a precondition axiom of the kind:

��		 �	
�	
��	� ����� ��� 	� � ���� ������	 �

Observe that a successor state axioms like the one for
�
��
�� does not interfere with the successor state axioms
for fluents, which means that we have two threads of trans-
formations: an inner thread (the agent inner world) traced by
the history of actions, through �
� �
�� plus the perceptible
�	� , and an outer thread (the agent’s external world ) traced
by the history of actions, through the fluent � . This two
threads can be convergent or divergent. If they converge,
what is perceived can be added to the database, although the
addition is non monotonic, since it is added as an hypoth-
esis. If they diverge, nothing can be added and the agent
records a mistake. A mistake is not an inconsistency, which
can never occur through sensing and percept. This reasoning
process is called meaningful perception. Inference, accord-
ing to meaningful perception, is done using regression, so if
� is the theory of action and perception, and

� ��
�
��
�� ��	����
 ���� �� 	�	 �
��
�� ��	������ �� �� 	�
	�
��
�� ��	���
 ���� �� 	� 	 	 � �	
�	
��	����
 ���� ��� ��

	
�	
��	������ �� ��� 	
�	
 ��	���
 ���� ���	

��� � �	����
 ���� � � �	���
 ���
�� � �	������ �� 
��	 ���
����	 �

then meaningful perception would allow the fluents
����
���� ��� ��� 
���� ��, and �	�������� �� to be added
to the initial database; if the history 	 were mentioning ac-
tions other than sensing actions, then meaningful perception
would allow the regression of the above fluents to be added
to the initial database ��� .

Now, the problem of perception consists essentially in
managing the input data obtained by sensors (e.g. the cam-
era), processing them and suitably adding the results to the
theory of action and perception as hypotheses so that the fol-
lowing will hold:

� �� �� ��	��
��
�� ��� �� 	� 	 ���� � �	����
 ���

To understand what � is and the role of sensing actions,
consider the following simple example. There is a table and
a chair in a room and an observation of the scene is per-
formed, i.e. a shot of the scene is taken (we open our eyes
and look into the room); let us cut the instant before we
make sense out of what there is in the room. Clearly, at
the very moment in which the image is taken no distinction
among objects is made. Therefore it is not a single sens-
ing action like 	
�	
��	����
 ���� �� that takes place, but a
scene/image acquisition.

From the image acquisition till the inference, leading to
an hypothesis that there might be a table in the room, a
complex process of revelation takes place. One bringing
the shapeless and scattered components identified in the im-
age, to the surface of cognition2, by giving a structure to

2Re-cognition, indeed, means knowing again, to reveal again to
cognition.



these components. And there is a step in the structuring
that reveals the meaning: “that’s a table”. In other words
the re-cognition process is a thread of revelations (the ap-
perception) giving, attributing, meaning to the elements of
the image. This is achieved by conjugating the construc-
tion of a tight data structure (a graph of all the SymGeons
occurring in the scene together with their topological rela-
tions), which is the hypothesis�, together with the meaning
given by a description and denoted by a sensing action like
	
�	
��	����
 ���� ��. Therefore the 	
�	
��	����
 ���� ��
action has, indeed, the double meaning of giving sense to the
elements of the data structure and of bringing to the surface
of cognition the existence of an object, a table, in fact.

To understand what we mean let’s go through the example
of the table. We might simplify the successor state axiom in
(1) as follows:

�
��
�� ��	����
 ���� �� �� ���	 �� �
� � 	
�	
��	����
 ���� �� 	  �!��"�	��
� �� 	
�	
��	����
 ���� ��	 �
��
����	����
 ���� �� 	 ��

(2)
Now, we constrain the sensing action so that it can be per-
formed just in case a data structure has been released by the
re-cognition process. To this end let us distinguish between
the object to be localized (the table) and the data structure
accounting for the reference primitives of the scene, i.e. the
set of all elementary objects appearing in the image, includ-
ing the legs and the top of the table.

��		 �	
�	
��	����
 ���� ��� 	� �
�� � � 	 ��
#
�
��
���
�
 ��	����
 ���� �
#
�
��
 ���
�� � � 	 
�
#
�
 ��
� 
��
�
��	����
 ���� �
#
� 
��
���

(3)
The above action precondition axiom says that the outcome
of sensing is � if the description matches over the data struc-
ture, the reference, otherwise it will be �.

We introduce in the following the data structure matching
with the term �
#
�
��
. First of all observe that we ex-
pect to recover, from the image, a set of SymGeons. This
process is just hinted in this paper. Once a SymGeon has
been recovered, via a Bayes-Aspect Network, see Figure
11, its 3D structure and its localization in the image (depth,
height width, etc..) are also returned together with its rela-
tionships with the other SymGeons recovered. This process
leads to the construction of a scene graph, which is totally
connected. That is, the graph mentions all the SymGeons re-
covered in the scene and their relationships: the relationship
among each SymGeon and all the others. The set of rela-
tions that label the edges of the graph are depicted in Table
1. Although their simplicity, these five relation allow us to
describe a large number of complex man made objects, for
example in Figure 3 an hammer and a table is represented
using connection, orthogonal and parallel relationship be-
tween SymGeons. Each relation is suitably defined in terms
of a distance and an angle, between two SymGeons. We
omit these definitions here.

Therefore the scene graph is a triple ���$�� �, where � is
the set of the nodes each labelled by a SymGeon recovered
in the image, $ is the set of ��� � ��%	 edges, if � � ���,
and � is the set of labels. A label � � � is defined according

Figure 3: Representation of simple man made objects

to the algebra of connection��, which is a sestuple

�� � ��� �� ����
���������� ��������� & ��
���

Here � � �� ���� ����� is the set of elementary shapes
forming our features taxonomization. � is the set of
���"��	 (Figure 8), � is the set of �������	 (Figure 5), � is
the set of #��
	 (Figure 4), � is the set of �	�
��	, and � is
the set of �'"(
��	 (Figure 2). � is the set of terms of the

Quadrilateral Faces

Trilateral Faces

Elliptical Faces

Figure 4: Faces
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algebra, � � ��������� & � is the set of relations reported
in Table 1,� is a relation over the set of terms � . 
 is a con-
catenation operation on � and ����

��������� is a family
of � 
 �-ary connection operators on � . For each ) � �,
there is a set of ���

�����, over � , one for each � � �, and
� bounded to the number of SymGeons recovered from the
scene. An example of scene graph representing a table is
depicted in Figure (7).

The set of terms � of the algebra can be further decom-
posed into a set of connection terms �� and a set of concate-
nation terms ��. The rules of formation are the following:

1. If � � �, with � � � then � � � .



2. If �� �� � � then �
 �� � ��. �
 �� is also denoted by ���.

3. If * � ��, * � �� � � � ��, � � � , and each �� � � , � �
� � �, then � ��

� * � ��, for any ) � �. In this case
we call � the head and * the tail of �.

4. Nothing else is a term of ��.

When in ��
� , � � � we shall simply write �� , and when

) is any relation in � then we shall omit it. Precedence
between the two operators is: �, 
. E.g. � ��

� �� 
 �� �	



�� � �� ��
� ��� 
 ��� �	


 ���. Substitution of terms for
variables is defined as usual.

For a term � � � we can give a notion of length (denoted
as ���) defined inductively on its structure. In fact if � � �
or � � �� then ��� � �, otherwise if � � �� we can write
� � �� 
 �� where ��� �� � � and we have ��� � ����
 ���� if
�� �� ��, or ��� � ����� � � ��� 	� if �� � ��.

Example 1 Let � � � ��
� �� 
 � � � 
 ��� ��

� ��� 
 ���� 

��� ��


 ���� 
 �����. Then � is the head in � ��
� �� 
 � � � 


��� ��
� ��� 
 ���� and �� 
 � � � 
 ��� ��

� ��� 
 ���� is the
tail. The length of � is ��� � 	.

We shall make use of the relation � to mention a term � oc-
curring in a term ��, e.g. � � �� ��

� �� 
 �. Let ��� � � �,
� � �, let � denote a term according to the above defini-
tion of term of �� and let ��� � �, with � the equality
already defined in the language of ��:

Axioms 0.1

�� �
 � � ��
�� �
 �� � �� 
 ��
	� � � �� � �� � ��
�� � �� � � ��
�� � ���� �� � � � ���� � � �� �� � � � �� 
 � � �����

� (distributive law 1)

�� ��
� *� 
 �� �	


 * �� � � ��
� �	


 �*��*
���

�� (distributive law 2)
�� �	

� *� 
 �� �	

 *� � �����
 �

	*�
�� (connection)

�� �� 
 �� � ��� � �� ��� � �����
�� � �� � � �� �� �� � � � �� 	 � � ���
�� �� 
 �� � �� 
 ��� � �� � �� 	 �� � ����
��� � �� ��
��� * � � op * � � * � * �� op � �� �
��
�	� (transitivity of �)

� � �� 	 �� � ��� � � � ����

Other derived properties of ��, whose proofs is omitted
here, are:

a. 
 is reflexive for all � � � ;

b. � is reflexive for all � � �, � � ��
�;

c. � � �� 
 � � �
 � � ���� � � ���� ��� � � � �����;

d. �� �� *� 
 �� �	 * �� � � �� ** �, � � �** ��.

We show, now, how to represent a scene graph using a
suitable tree. First of all we introduce the definition of prin-
cipal node. Given a term �, it has a principal node �, with
� � +�+ � �, if � � ��, i.e. � � � �

�� �
� * . We can proof

that given a term � � � of �� denoting a connected graph,
there exist a term ��, s.t. �� � � and �� has a principal node.

C= Connected: ��



P= Parallel: ��
�

S= Symmetric: ��
�

T= Orthogonal: ��
�

V= Angular: ��
�

Table 1: Relations between SymGeons in the scene and their
functional denotation. All relations are reflexive.

Example 2 Consider the completely connected graph de-
picted in Figure 6(i), labeled by some relation in �. The
term denoting the graph is the following: then * can be trans-
formed into a term * � having a principal node, as follows:

a

b

c

d

V

P

P

V C

C

i.

b

a

c

c
d

c
a

V
V

P

P C C

ii.

Figure 6:

The above term can be seen as one denoting a tree, e.g. the
one depicted in Figure 6 (ii).

This transformation is used in the notion of description.
First of all suppose that the graph referencing the scene
is the one given in Figure 7. Let (������ 
� ���� � be the
cylindroid representing the top of the table, for suitable val-
ues of ����
� ��, and �, and let (������ �
�� �� �� ��� be the ta-
pered cuboid representing the legs of the table, for suit-
able values of ���� �
�� �� �, and ��. Let 
� � ����� 
� ���� � and

� � ����� �
�� �� �� ���. Finally let ������� denote the position
��	 of each SymGeon (by stereopsis). The term describing
the graph is the following:

������
 ��
 �� �����

�� 
 �����
 ��
 �� �����


��

�����
 ��
 �� �����


�� 
 �����

���� �����


��

�����


���� �����

�� 
 �����


���� �����

���

This can be transformed into the following term, with a
principal node.

������
 ���
�� �
�

������

����

� ������

����

� �����

���������


����
������


���
������


����
(4)

The term represents the transformation of the graph depicted
in Figure 7 into a tree. Now the point is, how do we in-
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Figure 7: The graph of the scene representing a table, as the rela-
tions between SymGeons identified in the image

fer from the above term that it is a term denoting a table?
This is, in fact, achieved by parsing the term denoting the
scene graph, looking for the term denoting a table. Parsing
is activated by a description which, in turn, is activated by a
sensing action; as we mentioned above, a sensing action is a
query to a data structure, namely the graph of the scene.

We shall now use the term �
#
�
��
, accounting for the
data structure, to define a description. When the inference
matches the term ��		 �	
�	
��	����
 ���� ��� 	�, a descrip-
tion of the table is asked for. In other words, the description
is the semantics of a term of the algebra, while its syntax is
the structure of the object: e.g. the graph of the table (see
4) is the syntactic structure of a table, the meaning of the ta-
ble is given through its description (see the next axiom (5).
Matching is achieved by a ���	
 function. The ���	
 func-
tion is a call to a parsing algorithm that analyzes the term
while transforming it by applying the rewriting rules intro-
duced in (0.1).

��
�
��	����
 ���� �
#
� 
��
� �
�� ���� �	��� �� � ����
 �� 	����	
�� � ���	
��
#
�
��
��	

� ���� � ���	
�	���� 	 �� � ���	
�	����	

� �� �� 	 ����� �
 � � ���	
��
#
�
��
�	
����� �
 �� � ���	
��
#
�
��
�	
� �� �� � ���	
�	����	
���
���� � ����
 � 	 ,�
�� � 	 � � ��	

�����
��� � ���	
�	����� � � ����� 
��	
,��
�� �����

(5)

Here ,�
�� � and ,��
�� ��� denote the possible SymGeons
(e.g. cylindroid, cuboid, etc.) that, respectively, can repre-
sent a top and a leg, and in this last case also the possible
number of legs. Observe, also, that � � �, in the eighth
line of the description, is the anchoring of the perceptible
�	����
 ��� to the object, described by the term, through its
principal node, which in this case is the top of the table. For
each description, in fact, we shall find a major component
identifying the term denoting the object we are describing.

Let � � �� be the term given by the description
��
�
��	� ����� �
#
�
��
 �. The ���	
 algorithm verifies
if � matches the term �
#
�
��
, performing a depth search
on �
#
�
 ��
, and performing the following steps:

1. � � -
������
� � � ���

�����������, )� � � �)� � �.

2. If no match for -
�� is found in �
#
�
��
 exit with fail-
ure. Otherwise:

3. If a match for -
�� is found in �
#
 �
��
, then:

(a) If a match for -
������
� � � ���

������� in �
#
�
��

is found, then let �� � ����, and go to item (1) with
� � ��. Otherwise let � � -
����
� � � ��
��

����������
be the current, where �
� � � ��
� is rearranged w.r.t.
���

� � � ���
, and " � �:

(b) If for some �, � � � � ", and for some ., a match for
-
����


�
in �
#
�
��
 is found, then:

i. If there is only one term �
#
�
��
� matching
-
����


�
, and for no other sub-terms �
#
�
��
 �� of

�
#
�
��
 there is a match for -
����

�

, / �� �, then
exit with failure. Otherwise:

ii. rearrange the set of sub-term �
#
�
��
�, � � � � 0,
of the term �
#
�
��
 , matching -
����


�
, accord-

ing to the rewriting rules provided, so that -
�� is
the principal node of �
������
���
#
�
��
�; let
�
#
�
��
 � �
������
���
#
�
��
� and go to (a).

4. Exit with success.

Observe that a match is always reflexive, e.g. ���� matches
with ����. It is easy to see that the algorithm deals with a re-
arrangement of a sub-term of the initial term reference until
only one term can be rearranged, and therefore it terminates.
We have still to prove its completeness: if a description can
be matched then it will.

Syntactic Image Analysis
The purpose of the Syntactic Image Analysis is to recog-
nize, in the acquired image, the syntactical categories which
are the primitives of the scene structure. The results of such
analysis is an image syntactic graph which is a graph record-
ing all the elementary traits of the image. Each node of the
graph represents a junction point between segments and it is
labeled by the information of its 2D positions in the image.
Each edge of the syntactic graph represents a segment and
is labeled accordingly (straight line or arc of ellipse). At the
earlier steps of the analysis we use just classical techniques.
In fact, for the execution of some basic operations like fil-
tering and edge detection we use the Matrox Library (MIL),
and a convolution based edge detection operator is applied
to the image, after filtration. After that a classical edge fol-
lowing algorithm, suitably adapted to filter isolated points
or short segments, is used to generate an ordered list of con-
nected points (chain pixels). The resulting edge elements
are further approximated with straight lines and ellipse arcs
which turn out to be the primitive elements of our taxono-
mization. We call the set of these primitive elements primits
i.e. primitive traits. A primit, see Figure 8, is a primitive
trait defined using the parameters ��,��,1, ������ ����,�	
and �� , defined in the image reference frame ���� � as de-
picted in Figure 9.

The set of primits, independently of any other image fea-
tures (as color or texture) constitutes the pure syntactic struc-
ture of perception. In fact, from this set we obtain the de-
scription of the image structure graph, �P� ��� �. Here P is a
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set of primits recovered in the image and ��� is a cotermi-
nation relation between primits defined as follows:

��� ���'�� � ���� ���� ��� ��� ������"������ �� ���	
���"���'�� �� ��� 	 �0����'�� � 	 � 2 �

Here �0� is a point wise connection relation between prim-
its, defined as follows:

�0����� ��� �� �
���"������ ��� ��� 	 ���"������ ��� ���	
�� � "�����Æ���� ��� 	 �� � Æ���� ���	
��� � �� � �� � ��� 	 ��� � �� � �� � ���	
��� � �� � �� � ��� 	 ��� � �� � �� � ���	
��� �� ��� 	 ��� �� ��� 	 � � ��

��

Here Æ��� is the Euclidean distance between points:

Æ������� ���� ������ ���� �
�
��� � ���� 
 ��� � ����

Two primits are coterminant if they have a common end
point, i.e. a point whose position is in the range of a given
distance.

Figure 10: The syntactic analysis of a table

In the sequence of Figure 10 the resulting output of the
above steps, applied to the image of a table, is shown.

From HAG to BAN: Hypotheses Formation
In this section we roughly describe the formation of hy-
potheses drawing the existence of a SymGeon in the im-
age. In the previous Section we have described the primi-
tive components of the image, i.e. the ���"��	. By suitably
composing primits we form boundits, and by suitably com-
posing boundits we form faces, and finally composing faces
we form aspects, where aspects are views from different van-
tage points of a SymGeon. This composition process is for-
mulated in FOL, by explicit definitions. However, due to the
image noise and the uncertainty of its structure, the presence
of a SymGeon in the scene is gathered using Bayesian infer-
ence. E.g. a given closed region of the Syntactic Graph is a
cylindroid with probability �.

To this end we construct a Bayes-Aspect Network (BAN),
integrating the structure of a HAG (Dickinson & Metaxas
1994) together with causal relations specified by the connec-
tion relations � � �, defined in the algebra ��. The basic
BAN topology is obtained by a deterministic construction
procedure. Such a procedure, starting from the set of nine
SymGeon primitives 3�� , extracts the set of aspects 3�,
characterizing each primitive 	 � 3�� , the set of faces 3� ,
describing each aspect � � 3�, and finally, the set of bound-
its 3�, composing each face # � 3� . 3� is composed of
two element �� and ��, representing the two kind of primits.

Between each level of the basic BAN, we introduce a con-
nection level. Each node of a connection level is labeled
with a relation � � !, defined in �� (see Figure 11). The
conditional probability tables (CPT) linking nodes of a lower
level to the nodes of the upper level are defined, in the case of
� � !, according to the distance of the features composing
the nodes. E.g. the �
 compositional operator CPT, of the
portion of the BAN represented in Figure 11, is given below
(Table 2) where � �! is the gaussian distribution with mean

�� �� ���
 ���� ���
T T ���!��� �
 ���
T F 0
F T 0
F F 0

Table 2: CPT for connection nodes.

4 and variance 5. The CPT for a feature node is suitable
defined case by case. Below (Table 3) is shown a feature
node’s CPT, representing a quadrilateral face with curved
boundaries, depicted on the right-hand side feature node in
Figure 11. The inference process for recognising a Sym-
Geon, with a given probability, is the following. First of all
the root nodes �� and �� of the BAN are decorated with the

�
 �� ����� ��
 ��� �
T T �
T F ��

F T 0
F F 0

Table 3: CPT for feature nodes.
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Figure 11: A portion of the Aspect-Bayes.

position of each primits in P, with a probability of 1. Once
the network is initialized its root nodes constitutes the net-
work evidence.

The inference consists in querying the BAN about the
probability that, in the image Syntactic Graph, a specific as-
pect of a SymGeon is mentioned, given the evidence. The
query is as follows:

����� � � ����	�
������ � � � � ���	
���� ��	�
����� � � ������� � � ���� � �

(6)

It is easy to see that the required inference is double:

1. The first inference requires to construct the terms
�� � � ��� such that each �� will be a term in ��, e.g.
�� � ������ �
 ������������ �����, mentioning only prim-
its, here ��� ��� and ���� denote the set of values characteriz-
ing primits. This can be achieved because each aspect is
defined in terms of faces and connections, and each face
is defined in terms of boundits and connections.

2. The second inference is possible just in case the first re-
turns the set of terms defined by the primits. It is a clas-
sical diagnostic inference, requiring to compute the com-
posed probabilities of the paths leading from the specific
aspect node to the evidence nodes constituted by the prim-
its composing the specified query.

Once all the primits of the Syntactic Graph have been se-
lected then a list of SymGeons, with their associated prob-
ability, is delivered. Obviously the SymGeons with highest
probability are chosen, in such a way that they constitute a
cover w.r.t. the primits occurring in the Syntactic Graph.

In conclusion we have been trying to define a perceptual
architecture that fully exploits compositionality of represen-
tation: from the analysis of the elementary signs in the image
to the analysis and description of an object structure, and fi-
nally to the interpretation of a scene. To achieve this we
have been defining a reasoning process that draws suitable
hypotheses about each primitive occurring in the observed
scene. Hypotheses are evaluated according to their proba-
bility and the most probable one is added to the knowledge
base for interpreting the scene.
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