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Abstract

This paperdescribesthe constructionof a qualitative spa-
tial reasoningsystembasedon the sensordataof a mobile
robot. The spatialknowledgeof the robot is formalisedin
threesetsof axioms. First of all, axiomsfor relationsbe-
tweenpairsof spatialregionsarepresented.Assumingthe
distancebetweenregionsasa primitive function in the lan-
guage,themainpurposeof this initial axiomsetis theclas-
sification of relationsbetweenimagesof objects(from the
robot’s vision system)accordingto their degreeof displace-
ment.Changesin thesensordata,dueto themovementeither
of objectsin the robot’s environmentor of the robot itself,
arerepresentedby transitionsbetweenthedisplacementrela-
tions. Thesetransitionsareformalisedby the secondsetof
axioms. Thepredicatesdefiningthe transitionsbetweenim-
agerelationsareconnectedto possibleinterpretationsfor the
sensordatain termsof object-observer relations,this issueis
handledby the third setof axioms. Thesethreeaxiom sets
constitutethreelayersof logic-basedimageinterpretationvia
abductionon transitionsin thesensordata.

Introduction
Classicalresearchin roboticsconcernslow-level tasks(e.g.
sensoryprocessing,manipulatordesignand control) leav-
ing asidequestionsabouthigh-level informationprocessing
suchas reasoningaboutspace,time, actionsandstatesof
otheragents(Cox & Wilfong 1990)(Latombe1991). Such
issueshavebeenaddressedby theknowledgerepresentation
sub-fieldof Artificial Intelligence(Shanahan1997)(Reiter
2002). Most knowledgerepresentation(KR) theories,how-
ever, havebeendevelopedin isolationfrom empiricalissues
suchashow theknowledgeabouttheworld is acquiredand
whatarethephysicalmechanismsby which it is embodied
in theagents.

The presentpaperdescribesa logic-basedrepresentation
of the spatialknowledgeconstructedfrom the sensordata
of a mobile robot. One of the main purposesof this the-
ory is to bridgethe gapbetweenKR theoriesandpractical
robotics,equippingthe robot with the basicmachineryfor
deriving and manipulatinginformation aboutphysicalob-
jects(includingtherobotitself).
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Briefly, this work proposesthat incoming robot sensor
datacan be explainedby hypothesisingthe existenceand
the dynamic relationshipsbetweenphysical objects,with
respectto a (possiblymoving) observer. This processre-
calls the sensordataassimilationasabductionproposedin
(Shanahan1996).This framework handlestheissueof spa-
tial occupancy, however, it do not takesinto accountthere-
lationshipbetweenthe observer’s viewpoint andthespatial
objects.Themainmotivationfor thepresentpaperis to pro-
posea spatialrepresentationframework capableof coping
with this issue. The notionsof spaceand time (together)
play a centralrole in the representationalsystemdescribed
in this paper, anissuethathasbeengenerallyoverlookedby
theknowledgerepresentationcommunity, aspointedout in
(Vieu1997).

Consideringqualitative theories of space,particularly
relevant to this work are the Region ConnectionCalcu-
lus ( ����� ) (Randell, Cui, & Cohn 1992)(Cohn et al.
1997)andtheRegion OcclusionCalculus( ����� ) (Randell,
Witkowski,& Shanahan2001).FromRCCthispaperinher-
its the useof regionsandconnectivity relationsin the con-
structionof thespatialontology, on theotherhand,theway
wedealwith observer’sviewpoint recallsROC.Thepresent
framework, however, canbe usedto extendboth RCC and
ROC in the sensethat it assumessensorinformationin the
foundationsof theknowledgerepresentationformalism.

Briefly, Region ConnectionCalculus is a many-sorted
first-order axiomatisationof spatial relations basedon a
dyadicprimitiverelationof connectivity( ���
	 ) betweentwo
regions.Assumingtworegions� and� , therelation��
�������� ,
readas“ � is connectedwith � ” , is trueif andonly if theclo-
suresof � and � haveat leasta point in common.

Assumingthe ����	 relation,andthat � , � and � arevari-
ablesfor spatialregions,somemereotopologicaldyadicre-
lationscanbe definedon regions. They are, ��
�������� (x is
part of y), ��
�������� (x overlapsy), ����
�������� (x is discrete
fromy), ����
�������� (x is a properpart of y), �� ��
	 and ���� ��
	
(theinversesof �!�
	 and ���!��	 respectively), �"��
�������� (x is
disconnectedfromy), #%$�
�������� (x is equalto y), �&��
��������
(x partially overlapsy), #%��
�������� (x is externallyconnected
with y), '!����
�������� (x is a tangential proper part of y),( '!����
�������� (x is a non-tangential proper part of y), and'!���� ��
	 and

( ')���� *��	 (the inverserelationsof ')���!�
	
and

( '!���!�
	 respectively).
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Extending RCC, the Region Occlusion Calculus was de-
signed+ to model spatial occlusion of arbitrary shaped ob-
jects, thus relating images of physical objects to the ob-
server’s viewpoint. The formal theory is defined on the
degree of connectivity between regions representing two-
dimensional images of bodies as seen from some viewpoint.
In this paper we present a dynamic characterization of occlu-
sion taking into account information from a mobile robot’s
sensors.

The present work also builds on work reported in (Santos
& Shanahan 2001), where an ontology based on depth, size
and distance information is proposed for interpreting sensor
data in order to address the problem of anchoring symbols
to sensor data (Coradeschi & Saffiotti 2000). The qualita-
tive spatial theory proposed in this paper, however, is base
exclusively on information about thedisplacementof image
relations. The new theory demonstrates how much can be
achieved using distance information alone.
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Figure 1: Preliminary scheme of the system.

Figure 1 illustrates the overall architecture of the system
discussed in this paper. The first task in this system is the
translation of snapshots of the world provided by the robot
sensors into logic formulae, this process is represented by
the scene description module in the diagram above. The
scene descriptions are represented in the figure above by the
labelled circles,,.- , ,/	 and ,10 . Changes between two sub-
sequent descriptions are explained by assuming hypotheses
about the dynamic relations between an observer and the
objects in the world. Examples of such hypotheses in the
above diagram are23- and 24	 (respectively, the hypothe-
ses explaining the transition from,.- to ,/	 and from ,/	
to ,10 ). Both processes, scene description and explanation
of changes, are handled in this work by abduction. In the
former, abduction is used to assimilate static scenes into a
logic theory about spatial regions, the next section presents
this theory. In the second case, abduction is used to explain
changes in the scene descriptions according to a theory about
dynamic spatial predicates representing object-observer re-
lations.

From a hypothesis, further sensor descriptions can be pre-
dicted. The prediction process is illustrated by the dotted
lines in Figure 1, the dotted labelled circles represent the
predicted scene descriptions. When a prediction is corrobo-
rated (i.e. when a scene description matches to a predicted
scene) the new explanation hypothesis is used to modulate
the confidence in the hypotheses about earlier changes. This
feedback process is depicted by the dashed line in the fig-
ure above. Prediction in this work is assumed as a deductive
process.

A brief discussion about how prediction and explanation
interplay in the present framework is presented in a later sec-
tion of this article.

For brevity, this paper assumes that all variables are uni-
versally quantified, unless explicitly stated.

A Spatial Logic Based on Regions
This section presents a many-sorted first-order axiomatisa-
tion of spatial relations assuming, initially, sorts for spatial
regions and real numbers. Similarly to RCC (briefly intro-
duced in the previous section), the axiomatic system pre-
sented below has spatial regions and the connectivity be-
tween them as fundamental concepts. However, this paper
assumes thedistancebetween pairs of regions as a primitive
function with which the degree of connectivity is defined.
Therefore, the relations between spatial regions are defined
according to the degree ofdisplacement(rather than connec-
tivity) between them.

The reason for assuming distance as a primitive function
for defining region relations resides in the fact that the rela-
tive distance between objects in a robot’s environment (and
between pairs of regions in images) is one of the features
that can be extracted from the robot sensor data.

The concept of distance in this work should be understood
as a qualitative notion of displacement, i.e., we are not inter-
ested in an accurate measure, but on how the distance be-
tween pairs of regions changes in time. Defining qualitative
notions of distance, however, is not a straightforward task
since the common sense concept of distance is context de-
pendent (Lowe & Moryadas 1975). An initial work on qual-
itative notions of distance for artificial intelligence is pre-
sented in (Hernández, Clementini, & di Felice 1995).

For the purposes of this paper, however, we assume a dis-
tance function on pairs of spatial regions. This function can
be intuitively understood asthe size of the shortest line con-
necting any two points in the two region boundaries. In
this work, assuming spatial regions� and � , the distance
between� and � is represented by the function56 *798:
�������� ,
read as ‘the distance between the regions� and � ’.

With the 56 ;7<8���	 function, three dyadic relations on spa-
tial regions are defined:�=��
�������� , standing for ‘� is dis-
connected from� ’; #%��
�������� , read as ‘� is externally con-
nected from� ’; and, ��>�
�������� , read as ‘� is coalescent with� ’. These relations, and the continuous transitions between
them, are shown in Figure 2.

The relations�=� , #%� and ��> receive a special status
in this work (amongst all of the possible relations between
spatial regions) due to the fact that they can be distinguished
via analyses on the sensor data.



Assuming the symbol? as representing a pre-defined dis-
tance+ value, and� and � as variables for spatial regions, the
relations�=� , #%� and ��> are axiomatised by the formulae
�@%-A� , 
�@�	�� and 
�@)06� .
�@%-A�B�=��
��������DCE
�56 *798:
��������GFH?
�
�@�	��B#%��
��������DCE
�56 *798:
��������GIH?
��J
K5� *7<8:
���������LMON �
�@)06�P��>�
��������QCR5� *7<8:
�������� MSN
The distance? is determined with respect to the application
domain. For instance, in the domain of a mobile robot, as-
suming that the spatial regions in the calculus represent the
regions of space occupied by physical bodies,? can be as-
sumed to be the size of the robot. Therefore the axiom (A2)
can be understood as “two objects areexternally connected
if the distance between them constitutes an obstacle to the
robot’s motion”. Thus,#T� in this case can be used to define
paths within a spatial planning system. Similar arguments
apply for ��> and �=� .
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Figure 2: Relations on regions and the continuous transitions
between them.

Transitions between spatial relations play a central role
in this work. Next section describes the set of axioms (T1)
to (T4) characterising the possible transitions between the
relations above.

Interpreting Transitions
In this section the set of axioms (A1), (A2) and (A3) are
extended in order to express the images of physical bodies
with respect to viewpoints and the transitions between these
images in time.

In order to represent transitions, the ontology for space
described above is extended by assuming a sort for time
points. New sorts forviewpointsandvisual objectsare also
introduced in order to represent, respectively, the observer’s
viewpoint and the objects noted by the sensors. It is worth
pointing out that thevisual objectssort represent all informa-
tion noted by the robot sensors, which includes object reflex-
ions, occlusions and sensor noise. A discussion of how these
issues affect the logic-based interpretation of a robot sensor
data was initiated in (Santos & Shanahan 2001). However,
further investigation should be conducted in order to prop-
erly solve these problems.

In order to represent the images ofvisual objectsas noted
by a robot sensor, the image function ��c0 is introduced (Ran-
dell, Witkowski, & Shanahan 2001). The function d
����fe���8��
is read as ‘the image of� as seem frome at time 8 ’. I.e.,  ��c0
represents a mapping fromvisual objects, viewpointsand
time pointsto spatial regionsin the sensor images.

Assuming the arguments of��> , �=� and #%� as being the
output of the function ��c0 , the axioms (A1), (A2) and (A3)
(as described in the previous section) can be included in the
extended ontology.

In this language, the transitions between the displace-
ment relations are represented by the dynamic pred-
icates gchji:hj5� lknmo�c0 , pAq6qogc>cpri9s� lknmo�c0 , 7�qut� l8;8; lknm��
0 andi:>cprt�hc7Aid lknm��
0 . Assumingp and v as two distinct visual ob-
jects in the environment noted by the robot sensors, these
predicates are intuitively defined below.w pAq�qxgc>cpyi<s� lknmz
� d
�pu�fe���8��:�� d
Kvj�{e���8���� , read as ‘the image ofp

and v areapproachingeach other as noted from the view-
point e at time 8 ’;w gchji:hj5� lknmz
� d
�pu�{e���8��:�� d
Kvc�fe���8���� , read as ‘the images ofp
and v are receding from each other as noted from the
viewpoint e at time 8 ’;w i:>cprtKhj7Aid lknmz
� d
�pu�{e���8��:�� d
Kvc�fe���8���� , ‘the images ofp and v
arecoalescingas noted from the viewpointe at time 8 ’;w 7�qxt� l8;8; |knmz
� d
Kpx�{e���8��d�� d
|vj�fe���8���� , ‘the images ofp and v are
splitting from each other as noted from the viewpointe at
time 8 ’.
These predicates are axiomatised in the formulae ('&- ) to

( '~} ). Axioms ('%- ) to ('~} ) are defined over time intervals
( � 8��A��8*�9� ). In this paper� 8��c��8*�:� is assumed to be shorter than
the time for an object to suffer two consecutive changes
in the world. The left hand side of ('&- ) to ('!} ) repre-
sents high-level hypotheses to explain the world at a time8~��
�8��
��8*�A� ; thus, the assumption that� 8��j��8*�d� is a short time
interval guarantees that the interpretation at8 is a possible
explanation for one single change in the robot’s environ-
ment.

Herein, the notions oflocation and aviewpoint at a lo-
cationare assumed as interchangeable. In other words, we
are not considering in this work that none direction of gaze
in privileged and that at a certain location the observer could
have a0�� N6� view of the world. Distinguishing the notions of
location and viewpoint in the ontology is a matter for further
investigation.

The axioms ('%- ) to ('~} ) assume a primitivevdhA8;�!hjhAk��c0
in order to express an order on viewpoints. The statementvdhA8;�!hjh<k/
������u�f�y� is read as “� lies in between� and � ”. In
practice, the viewpoints of a mobile robot are chronologi-
cally ordered, i.e., if a robot has a viewpointe � at time 8 �
and ec� at time 8*� , a viewpointe is considered in betweene6�
and e
� if the robot hase at an instant that falls inside the
interval � 8��j��8*�:� .


�'&-A��pAq�qxgc>cpyi<s� lknmz
� d
�pu�fe���8��:�� d
Kvj�{e���8�����J
�8��)��8���J�
�8���8*�<���u�vdhA8;�!hjhAk/
Ke��fe��j�fec�A�J��"��
� d
�pu�fe � ��8 � �d�� d
Kvj�{e � ��8 � ����J� ��>�
� d
�pu�fe
����8*�<�d�� d
Kvj�{ec�
��8*�<��J
�56 *798:
� d
�pu�fe��
��8��9�d�� {
|vj�fe6�j��8��9����F5� *7<8:
� d
Kpx�{e � ��8 � �:�� d
Kvj�{e � ��8 � �����
Axiom ( '&- ) expresses that if two images areapproaching
each other at a time point8 then at some time point8�� be-
fore 8 the images weredisconnected; it is not the case that



the images ofp and v were coalescing at8*� , and the distance
between� them was larger than at a time instant8*� after 8 .
The condition that {
Kpu�fe � ��8 � � and  {
|vj�fe � ��8 � � are non coales-
cent at8 � guarantees thatpAq�qxgj>cpri9so lknm���	 does not includei:>cprt�hc7Aid lknmo�
	 , as described in axiom
�')	6� .
�'�	���i:>cprt�hc7Aid lknmn
� d
�pu�fe���8��d�� d
Kvj�{e���8�����J
�8 � ��8��zJ�
�8��H8 � �.�x�vdhA8;�!hjhAk/
Ke��fe � �{e � ��J
K#%��
� d
�pu�{e��c��8��:�:�� d
Kvj�{e��A��8��9������=��
� {
Kpu�fe��c��8��<�d�� d
|vj�fe��j��8��:����J��>�
� {
Kpu�fe � ��8 � �d�� d
|vj�fe � ��8 � ���
If two images arecoalescingat a time instant8 (as repre-
sented by (')	 )) then they areexternally connectedat a time
point 8�� before8 andcoalescent( ��> ) at a 8*� later than8 .
�'!0y��7�qut� l8;8; lknmn
� {
Kpu�fe���8��d�� {
|vj�fe���8�����J
�8����H8��zJ�
�8D��8*�<�.�x�v:h<8;�)hAhAk/
|e��fe6�j�fe
�<��J��>�
� d
�pu�{e � ��8 � �d�� d
Kvj�{e � ��8 � ����J
�#T��
� d
�pu�fe � ��8 � �d�� d
Kvj�{e � ��8 � ������=��
� d
�pu�fe��c��8*�A�d�� d
|vj�fe��c��8*�A�����
Axiom ( '!0 ) expresses that if two images aresplitting at a
time instant 8 then they arecoalescentat 8�� before 8 and
externally connectedat 8 � after 8 .
�'~}y��gchji:hj5� lknmz
� d
�pu�fe���8��:�� d
Kvj�{e���8�����J
�8�����8��zJ�
�8��H8*�A�.�x�vdhA8;�!hjhAk/
Ke��fe � �fe � ��J
K�=��
� d
Kpx�{e��j��8��9�:�� d
Kvc�fe��A��8��9�����#%��
� d
�pu�{e��j��8��:�d�� d
Kvj�{e��j��8��:������J
�56 *798:
� d
�pu�fe � ��8 � �d�� d
|vj�fe � ��8 � �����5� *7<8:
� d
�pu�{e � ��8 � �d�� d
Kvj�{e � ��8 � �����
If two images arerecedingeach other at a time point8 , ac-
cording to (T4), then at some time point8�� before 8 the im-
ages weredisconnected(or externally connected) and the
distance between them was shorter than the distance at a
time instant8*� after 8 .

Finally, if two images are static in8 then the distance be-
tween them do not change from time point8�� to 8*� as ex-
pressed by axiom (')� ).
�'����B7<8*p68; ;i

� d
�pu�fe���8��d�� d
Kvj�{e���8�����J
�8 � �H8���J�
�8��H8 � ���u�
�56 *798:
� d
�pu�fe���8 � �:�� d
Kvc�fe���8 � ��� M56 ;7<8:
� {
Kpu�fe���8*�<�:�� d
Kvj�{e���8*�9�����

It is assumed, in axioms ('&- ) to (')� ) above, that no infor-
mation is available in between the end-points of every open
time interval 
�8 � ��8 � � . This assumption is plausible since the
borders of the interval (8�� and8*� ) represent the instants when
information was acquired from the world by the robot sen-
sors. Thus, the robot will have toguesswhat happened dur-
ing the intervals given data about their borders. This hypoth-
esised interpretation can be a wrong explanation for the sen-
sor data but at least it can give a hint about the environment.
Misleading hypothesis can be further updated (or revised)
according to further perceived data about the development
of the states of the world. This, however, is an issue for
further investigation.

The next section explores the relationship between the
dynamical predicates above and the physical bodies in the
robot’s environment.

From Transitions to Object Relations

In this section the predicates on images presented above
( pAq�qxgc>cpyi<s� lknm , i9>cpytKhc7<i: |knm , 7�qut� l8;8; lknm , gchji:hj5� lknm and798*py8; ;i ) are understood as abstract definitions of the relations
on physical bodies described below.

1. m�hA8;8; |knm i:t�>
7AhAg�
�pu�fvj�{e���8�� , read as ‘objectsp and v areget-
ting closerto each other at time8 as noted from the view-
point e ’;

2. pAq m�hA8;8; |knm i:t�>
7AhAg�
�pu�fvj�{e���8�� , read as ‘objectsp and v are
apparently getting closerto each other at time8 due to
motion of the observer’;

3. m�hA8;8; |knm �u�xgj8�sxh<g�
Kpx�{vj�fe���8�� , read as ‘objectsp and v are
getting furtherto each other at time8 as noted from the
viewpoint e ’;

4. pAq m�hA8;8; |knm �u�xgj8�sxh<g�
Kpx�{vj�fe���8�� , read as ‘objectsp and v
areapparently getting furtherto each other at time8 due
to motion of the viewpointe ’;

5. >ci:i9t��n5� lknmz
�pu�fvj�{e���8�� , read as ‘one of the objectsp and v
is >ci:i9t��n5� lknm the other at time instant8 as noted by the
viewpoint e ’;

6. 8*>j�ni9so |knmz
�pu�{vj�fe���8�� , read as ‘p and v are touching each
other at time8 as noted bye ’;

7. 7<8*py8; ;i

�pu�fvc�fe���8�� , read as ‘p and v are static at time8 ’.
For the purposes of rigorously presenting the connection be-
tween the previous set of relations and the abstract defini-
tions defined in the previous section, herein we assume the
predicatetK>ci:py8*hj5r�
0 ; tK>ci:py8*hA5u
�pu�{e���8�� represents the fact that
a physical bodyp is located ate at time 8 . Therefore, the
remaining sections assume that the robot is equipped with a
map with which it is able to locate itself in its environment.
This simplification should be relaxed in future research, so
that a similar framework to that described in this paper could
be used in a robot map building process.

Herein, for brevity, we assume a physical body variable -gj>
v:>j8 - whenever a robot is referred to.
By assuming these definitions, the connections between

the predicates on images (described the previous section)
and the predicates on physical bodies are represented by the
axioms 
��r��-j� to 
K�y��}r� below.


��r��-A��t�>ci9p68*hj5u
�gc>
vd>j8d�{e���8���J� mrhA8;8; lknm i:tK>
7<hAg�
�pu�{vj�fe���8����pAq m�hA8;8; |knm i:t�>
7AhAg�
�pu�fvj�{e���8��l��n��pAq�qogc>cpri9so lknmn
� {
Kpu�fe���8��d�� {
|vj�fe���8����
��r��	���t�>ci9p68*hj5u
�gc>
vd>j8d�{e���8���J� >ci:i:t��n56 |knmz
�pu�{vj�fe���8����8*>j�ni9so |knmz
�pu�{vj�fe���8��l��n��i:>cprt�hc7Aid lknmn
� d
�pu�fe���8��d�� d
Kvj�{e���8����




��r��0y��t�>ci:py8*hj5x
�gc>
vd>j8d�fe���8���J� m�hA8;8; |knm �u�xgj8�sxh<g�
Kpx�{vj�fe���8����pAq mrhA8;8; lknm �u�ugA8�sxhAg�
�pu�fvj�{e���8��l��u�E� 7�qxt� |8;8; lknmz
� d
�pu�{e���8��:�� d
Kvc�fe���8������gchji:hj5� lknmz
� d
�pu�{e���8��:�� d
Kvc�fe���8����;�
��r�O}r��t�>ci:py8*hj5x
�gc>
vd>j8d�fe���8���J798*py8; ;i

Kpx�{vj�fe���8��Q�u�7<8*p68; ;i

� d
�pu�fe���8��d�� d
Kvj�{e���8����
These axioms involve important issues concerning the re-

lationship between the knowledge about objects and related
knowledge about images. Issues such as the distinction of a
moving viewpoint from moving objects, grounding symbols
to sensor data, creating knowledge about the 3D world from
under-constrained 2D images, etc. In order to solving these
problems, the framework presented above has to consider
(at least) information about the observer’s motion, about the
changes in the observer-relative positions of the background
features and range data. This, however, warrants further in-
vestigation.

Inference
The purpose of inference within the framework presented in
this paper is two fold: explanation of sensor data and pre-
diction of their future configurations. Explanation is accom-
plished by assuming abduction as the inference rule in a sim-
ilar way as proposed in (Shanahan 1996). Prediction, on the
other hand, is handled by deduction. This duality betweenp�vd56�uid8; ;>jk and 5yhA56�nid8; ;>jk was first explored in (Shanahan
1989) for temporal reasoning.

We briefly introduce the concept of abduction and relate
it to the definitions presented in the previous sections1. Ab-
duction is the process of explaining a set of sentences  by
finding a set of formulae¡ such that, given a background
theory ¢ ,   is a logical consequence of¢¤£¥¡ . In order to
avoid trivial explanations, a set of predicates is distinguished
(theabducible predicates) such that every acceptable expla-
nation must contain only these predicates.

Assuming the framework proposed in the previous sec-
tions, the description of sensor data in terms of displace-
ment relations comprises the set  . The background theory¢ is, then, assumed to be composed of the set of axioms
( '&- ) to (')� ) and (�y�¦- ) to (�r��} ). Finally, the abducibles
are considered to be the abstract predicates,gchji:hj5� lknmo�c0 ,pAq�qxgj>cpri9so lknm��
0 , 7�qut� l8;8; lknm��
0 and i:>cprtKhj7Aid lknmo�c0 , defined
above.

In order to clarify the concepts introduced in this paper
and to give a first approach to inference in this framework,
we present the example below. This example is a sketch of
the inference procedures in the present framework. A com-
plete discussion of these procedures is a matter for further
investigation.

In this section we assume, as abbreviation, that the order
of time points is implicit in their own representation, i.e.,8*§���8|¨ if and only if  &��© (for time points8*§ and 8|¨ , and
integers and © ) and that the viewpointec§ is related to the
time point8 § . Moreover, lower case roman letters are used to

1For brevity an explanation of deduction is omitted in this pa-
per.

represent ground terms, while upper case letters are reserved
for variables.

Skolemisation is also implicit in this example, lower
case bold letters are used to represent the skolem func-
tions of their non-bold counterpart variables (i.e.,ª is the
skolemised version of« ). Here, skolem functions are used
to keep the reference of variables in one step of inference
throughout its further steps.

For the sake of brevity, we omit in the example below
details about how to make inferences about the location of
the robot in its environment.

The example below assumes depth maps taken from the
viewpoint of a robot navigating through an office-like envi-
ronment (Figures 3 and 4). For the sake of simplification, the
framework developed in this paper is applied on cylindrical
objects with added textures.

Figure 3: Depth maps at viewpointsej¬ and e6� .
Considering the sequence of snapshots of the world in

Figure 3, the first step of sensor data assimilation is the de-
scription of this sequence in terms of the displacement rela-
tions. The result of this task is exemplified in the formula (1)
below (where> � and > � represent the two objects — rectan-
gular areas — in the scene; and,ej¬ and e�� represents the
viewpoints where both pictures in Figure 3 were taken).


*-j�Bt�>ci:py8*hj5x
�gc>
vd>j8��c�{ej¬���8;¬A��J­tK>ci:py8*hA5u
�gc>
vd>j8��c�fe��c��8��<��J�"��
� d
�> � �fe ¬ ��8 ¬ �d�� {
K> � �{e ¬ ��8 ¬ ����J"�"��
� d
�> � �fe � ��8 � �d� d
K> � �{e � ��8 � ����J4
K5� *7<8:
� d
K> � �fe ¬ ��8 ¬ �d�� d
�> � �{e ¬ ��8 ¬ ����F56 *7<8:
� d
�>��
�fe��c��8��9�d�� d
K>c���{e��j��8��:�����
Assuming formula (1) and the axioms described in the pre-
vious sections, formulae (2) and (3) can be inferred as an
interpretation of the sensor information in Figure 3 .


K	6�P®�¯°'�tK>ci:py8*hA5u
�gc>
vd>j8��
�f¯Q��'��zJ­v:h<8;�)hAhAk/
|¯/�{ej¬
�fe6�:�J�pAq6qogc>cpri9s� lknmz
� d
�>��c�f¯Q��')�:�� d
�>c���f¯Q��')���zJ"8;¬���'J±'��H8 � from (1) and axiom
�'%-A� ;
�0y�Bp<q mrhA8;8; lknm i:tK>
7Ah<g�
K> � ��> � ��²���³T�d� from (2), axiom
(IO1) and the assumption of object immovably.´

Formula (3) is a hypothesis on the state of the objects in the
world to explain the given sensor data.

From formulae (1), (2) and (3) we would like to derive
a set of expectations (predictions) about the future possible
sensor data and their interpretations in terms of object rela-
tions. One possible set of predictions is comprised by the



formulae in thePredictions I set.

Predictions I:µ¶¶¶¶¶¶¶¶¶¶¶¶
·


��x¸¹-j�º®�» � « � t�>ci:py8*hj5u
�gc>
vd>j8 � �f» � �d« � ��JvdhA8;�!hjh<k/
|»��c�fe��c�fec�A��J#%��
� d
�>��
�f»¤�j�d«Q�9�d�� d
K>c���{»��c�{«Q�9���J±8 � �S« �
��x¸ 	6�º®�» � « � t�>ci:py8*hj5u
�gc>
vd>j8 � �f» � �d« � ��Ji:>cprt�hc7Aid lknmn
� {
K>��<�f»4���d«1�A�d�� d
K>c�
�f»4�6�{«1�A���J�ª½¼T�¾«1� from (I.1) and axiom (T2).´
��x¸ 0y�P>ci:i:t��u56 lknmn
K> � ��> � ��¿ÁÀr�fª­À6�d´
from 
��x¸Â	�� , axiom 
K�y��	6� and
the assumption of immovably of objects;

Ã9ÄÄÄÄÄÄÄÄÄÄÄÄ
Å

Formula 
K�o¸ 06� is a hypothesis about the future relationship
between objects> � , > � and the observer.

These predictions assume that the observer continued its
motion in the same direction as taken when the snapshots
of Figure 3 were obtained. In the general case, however,
many possible predictions can be supposed. Further research
should a mechanism for handling the predictions according
to assumptions about the motions of objects and the actions
of the observer.

Figure 4 shows the images from the robot’s camera at
viewpoints ec� , ecÆ and ecÇ .

Figure 4: Depth maps at viewpointsec� , ecÆ and ejÇ .
The sensor data noted ate � is described by formulae (4).

Formulae (5) and (6) follow from (4) and the axioms.


�}y�BtK>ci:py8*hA5u
�gc>
vd>j8��c�fec����8*�j��J
�56 *798:
� d
�> � �{e � ��8 � �:�� d
�> � �fe � ��8 � ���.I�?
� from sensor
data;
|���B#%��
� d
�>��
�fec����8*�<�:�� d
�>c���fec�6��8*�A��� from (4) and axiom
�@�	�� ;
K�6�P®�¯È'�t�>ci:py8*hj5x
�gc>
vd>j8 � �{¯/��')�nJ½vdhA8;�!hjh<k/
|¯/�{e � �{e Æ �J�pAq�qogc>cpri9so lknmn
� {
K> � �{¯/��')�d�� {
K> � �f¯Q��'����zJ"8 � �H'�J'��H8*�QJ½e��)�S¯ from (4), (5) and axiom
�'&-A� ;

Similarly to the first set of predictions,Predictions II hy-
pothesises about the future possible sensor data and about
the relationship between objects>�� and >c� , and the observer.

Predictions II:µ¶¶¶¶¶¶¶¶
·


K�6�x¸É-A�P®�»��!«Q��t�>ci9p68*hj5u
�gc>
vd>j8��c�f»¤�c�d«Q�:��JvdhA8;�!hjh<k/
|»��c�fec���fejÇj��J��>�
� d
�> � �f» � �d« � �:�� d
�> � �f» � �d« � ����J8 � �S« �
K�6�x¸Â	��P®�»���«1�Gt�>ci9p68*hj5u
�gc>
vd>j8��c�f»4���d«1�<��J7�qxt� |8;8; lknmz
� d
�>��<�{»��6�{«/�9�d�� d
�>c�6�f»4���d«1�9���
K�6�x¸ 06�BpAq m�h<8;8; lknm �u�ugj8�sohAg�
�> � ��> � ��¿ÁÀr�fª­À6�
from 
K�6�x¸¹-j� and axiom
K�y��0y� ;

Ã9ÄÄÄÄÄÄÄÄ
Å


|Ê
�BtK>ci:py8*hj5x
�gj>
v:>j8��j�fe
Æ
��8;Çc��J
�56 *7<8:
� d
�>��c�fecÆ���8;Çc�d�� d
K>c�
�fe
Æ
��8;Çj��� MON � from sensor
data;
�Ë6�P��>�
� d
�>��
�fecÆ���8;ÇA�:�� d
�>c�6�fe
Æ
��8;Çj��� from (6) and axiom
(A3);
�Ì6�P®�¯È'�t�>ci:py8*hj5u
�gc>
vd>j8 � �f¯Q��')�nJ½vdhA8;�!hjhAk/
K¯Q�fe Æ �fe Ç �J�i:>cprt�hc7Aid lknmz
� d
�> � �{¯/��')�d�� d
�> � �{¯/��')���zJ"8 Æ ��')J'È��8;Ç from (7) and axiom (T2);

Formula (9), derived from the axioms and the descriptions of
the images, confirms the prediction (I.2) and, consequently,
(I.3).

Discussion
This paper described three sets of axioms constituting a
logic-based hierarchy for scene interpretation. The first
layer of this hierarchy, constituted by the axioms
�@%-A� , 
K@)	6�
and 
K@!06� , formalises relations between pairs of spatial re-
gions assuming a distance function as primitive. The pur-
pose of this first set of axioms is to classify, in terms of dis-
placement relations, images of the objects in space as noted
by a mobile robot’s sensors. Transitions between these rela-
tions in a sequence of sensor data were, then, axiomatised by
the second set of axioms (
�'&-A� to 
�')�6� ), defining the second
layer of the image interpretation system.

The second layer of the hierarchy aims the classification
of transitions in the sensor data by means ofabstractpredi-
cates (the left-hand side of axioms
��r�¦-A� to 
��r��}y� ). These
predicates were, then, rewritten into possible explanations
for the sensor data transitions in terms of object-observer
relations. The last set of axioms (
��r�¦-A� to 
��r��}y� ) charac-
terises this process, which constitutes the final layer of the
hierarchy.

The purpose of the qualitative spatial theory presented in
this paper is to demonstrate how much can be achieved using
distance information alone. This simple theory composes
the foundations of a more complex, practical, system.

The use of abstract predicates in sectionFrom Transitions
to Object Relationsrecalls the idea of abstract reasoning
(Console & Dupre 1994)(Giunchiglia & Walsh 1989). Ab-
stract reasoning frameworks have concentrated mainly on
using abstractions to provide general proofs in automated
theorem proving in order to guide proofs in the ground space
(Giunchiglia 1990). In the present paper, however, abstrac-
tion is used to give a general interpretation of an ordered pair
of sensor data description. In this sense, the main purpose
of using abstract definitions is to overlook the ambiguities
in the sensor data, keeping every plausible interpretation of
a scenario inside a more general abstract concept. Axioms
��r�¦-A� to 
K�y��}r� define the abstract predicates in terms of the
more specific equally-plausible hypotheses to explain par-
ticular transitions. Therefore, not only can abstraction inter-
leaveplanning and execution(as proposed in (Nourbakhsh
1998)) but also it can interleave sensor data interpretation
and planning. The development of this issue is a problem
for future research.

Another important subject for further development of this
research is the exploration of the framework for percep-
tion incorporating feedback and expectation, as proposed in



(Shanahan 2002), into the sensor data interpretation process
describedÍ in this paper.
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