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Abstract

This paperdescribesthe constructionof a qualitative spa-
tial reasoningsystembasedon the sensordataof a mobile
robot. The spatialknawledge of the robot is formalisedin

three setsof axioms. First of all, axiomsfor relationsbe-
tween pairs of spatialregions are presented.Assumingthe
distancebetweenregions asa primitive functionin the lan-
guage the main purposeof this initial axiomsetis the clas-
sification of relationsbetweenimagesof objects(from the
robot’s vision system)accordingto their degreeof displace-
ment.Changesn thesensodata,dueto themaovementeither
of objectsin the robot’s ervironmentor of the robot itself,

arerepresentedly transitionshetweerthe displacementela-
tions. Thesetransitionsare formalisedby the secondsetof

axioms. The predicateglefiningthe transitionsbetweenm-

agerelationsareconnectedo possibleinterpretationgor the
sensomatain termsof object-obsersr relations thisissueis

handledby the third setof axioms. Thesethreeaxiom sets
constitutethreelayersof logic-basedmageinterpretatiorvia
abductionon transitionsin the sensodata.

I ntroduction

Classicalresearchn roboticsconcerndow-level tasks(e.g.
sensoryprocessingmanipulatordesignand control) leav-
ing asidequestionsabouthigh-level informationprocessing
suchasreasoningaboutspace time, actionsand statesof
otheragents(Cox & Wilfong 1990)(Latombel991). Such
issueshave beenaddressetly theknowledgerepresentation
sub-field of Artificial Intelligence(Shanaharl997)(Reiter
2002). Most knowledgerepresentatiofiKR) theories how-
ever, have beendevelopedin isolationfrom empiricalissues
suchashaow the knowledgeaboutthe world is acquiredand
whatarethe physicalmechanism&y which it is embodied
in theagents.

The presentpaperdescribesa logic-basedepresentation
of the spatialknowledge constructedrom the sensordata
of a mobile robot. One of the main purposesof this the-
ory is to bridgethe gapbetweerkR theoriesand practical
robotics,equippingthe robot with the basicmachineryfor
deriving and manipulatinginformation about physical ob-
jects(includingtherobotitself).

Copyright (© 2002, American Associationfor Artificial Intelli-
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Briefly, this work proposesthat incoming robot sensor
datacan be explained by hypothesisinghe existenceand
the dynamic relationshipsbetweenphysical objects, with
respectto a (possiblymoving) obsener. This processre-
calls the sensordataassimilationas abductionproposedn
(Shanahar1996). This frameawork handlegheissueof spa-
tial occupang, however, it do not takesinto accounthere-
lationshipbetweerthe obsener’s viewpoint andthe spatial
objects.Themainmotivationfor the presenpaperis to pro-
posea spatialrepresentatioframenork capableof coping
with this issue. The notionsof spaceand time (together)
play a centralrole in the representationadystemdescribed
in this paperanissuethathasbeengenerallyoverlookedby
the knowledgerepresentatiocommunity aspointedoutin
(Vieu1997).

Consideringqualitatve theoriesof space, particularly
relevant to this work are the Region ConnectionCalcu-
lus (RCC) (Randell, Cui, & Cohn 1992)(Cohnet al.
1997)andthe Region OcclusionCalculus(ROC) (Randell,
Witkowski, & Shanaha2001).FromRCCthis paperinher
its the useof regionsandconnectvity relationsin the con-
structionof the spatialontology on the otherhand,the way
we dealwith obsener’'sviewpointrecallsROC. Thepresent
frameawork, however, canbe usedto extendboth RCC and
ROC in the sensahatit assumesensolinformationin the
foundationsof theknowledgerepresentatioformalism.

Briefly, Region ConnectionCalculusis a mary-sorted
first-order axiomatisationof spatial relations basedon a
dyadicprimitive relationof connectivity(C'/2) betweertwo
regions.Assumingtwo regionsz andy, therelationC'(z, y),
readas” z is connectedvithy” , is trueif andonly if theclo-
suresof x andy have atleasta pointin common.

Assumingthe C/2 relation,andthatz, y andz arevari-
ablesfor spatialregions,somemereotopologicatlyadicre-
lations can be definedon regions. They are, P(z,y) (x is
part of y), O(z,y) (x overlapsy), DR(z,y) (x is discrete
fromy), PP(z,y) (xis aproperpartofy), Pi/2 andPPi/2
(theinversesf P/2 andPP/2 respectiely), DC(z,y) (xis
disconnectedromy), EQ(x,y) (xis equaltoy), PO(z,y)
(x partially overlapsy), EC(z,y) (xis externallyconnected
with y), TPP(z,y) (x is a tangential proper part of y),
NTPP(z,y) (x is a non-tangential proper part of y), and
TPPi/2 and NTPPi/2 (the inverserelationsof TPP/2
andNT PP/2 respectiely).



Extending RCC, the Region Occlusion Calculus was de-
signedto model spatial occlusion of arbitrary shaped ob-
jects, thus relating images of physical objects to the ob-
server’'s viewpoint. The formal theory is defined on the
degree of connectivity between regions representing two-

dimensional images of bodies as seen from some viewpoint.

In this paper we present a dynamic characterization of occlu-
sion taking into account information from a mobile robot’s
Sensors.

The present work also builds on work reported in (Santos

From a hypothesis, further sensor descriptions can be pre-
dicted. The prediction process is illustrated by the dotted
lines in Figure 1, the dotted labelled circles represent the
predicted scene descriptions. When a prediction is corrobo-
rated (i.e. when a scene description matches to a predicted
scene) the new explanation hypothesis is used to modulate
the confidence in the hypotheses about earlier changes. This
feedback process is depicted by the dashed line in the fig-
ure above. Prediction in this work is assumed as a deductive
process.

& Shanahan 2001), where an ontology based on depth, size A brief discussion about how prediction and explanation

and distance information is proposed for interpreting sensor

interplay in the present framework is presented in a later sec-

data in order to address the problem of anchoring symbols tion of this article.

to sensor data (Coradeschi & Saffiotti 2000). The qualita-

For brevity, this paper assumes that all variables are uni-

tive spatial theory proposed in this paper, however, is base versally quantified, unless explicitly stated.

exclusively on information about thiisplacemensf image

relations. The new theory demonstrates how much can be

achieved using distance information alone.
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Figure 1: Preliminary scheme of the system.
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Figure 1 illustrates the overall architecture of the system
discussed in this paper. The first task in this system is the
translation of snapshots of the world provided by the robot

A Spatial Logic Based on Regions
This section presents a many-sorted first-order axiomatisa-
tion of spatial relations assuming, initially, sorts for spatial
regions and real numbers. Similarly to RCC (briefly intro-
duced in the previous section), the axiomatic system pre-
sented below has spatial regions and the connectivity be-
tween them as fundamental concepts. However, this paper
assumes thdistancebetween pairs of regions as a primitive
function with which the degree of connectivity is defined.
Therefore, the relations between spatial regions are defined
according to the degree displacementrather than connec-
tivity) between them.

The reason for assuming distance as a primitive function
for defining region relations resides in the fact that the rela-
tive distance between objects in a robot’s environment (and
between pairs of regions in images) is one of the features
that can be extracted from the robot sensor data.

The concept of distance in this work should be understood
as a qualitative notion of displacement, i.e., we are not inter-
ested in an accurate measure, but on how the distance be-
tween pairs of regions changes in time. Defining qualitative
notions of distance, however, is not a straightforward task
since the common sense concept of distance is context de-
pendent (Lowe & Moryadas 1975). An initial work on qual-
itative notions of distance for artificial intelligence is pre-
sented in (Hernandez, Clementini, & di Felice 1995).

sensors into logic formulae, this process is represented by For the purposes of this paper, however, we assume a dis-

the scene description module in the diagram above. The

tance function on pairs of spatial regions. This function can

scene descriptions are represented in the figure above by thebe intuitively understood abe size of the shortest line con-

labelled circlesS1, S2 andS3. Changes between two sub-

necting any two points in the two region boundariem

sequent descriptions are explained by assuming hypothesesthis work, assuming spatial regionsandy, the distance
about the dynamic relations between an observer and the betweenz andy is represented by the functiafist(z, y),

objects in the world. Examples of such hypotheses in the
above diagram arél1 and H2 (respectively, the hypothe-
ses explaining the transition froil to S2 and fromS2

read as ‘the distance between the regiorsdy’.
With the dist/2 function, three dyadic relations on spa-
tial regions are definedDC(z,y), standing for % is dis-

to S3). Both processes, scene description and explanation connected fromy’; EC(z,y), read as# is externally con-

of changes, are handled in this work by abduction. In the

nected frony’; and, Co(z, y), read asd is coalescent with

former, abduction is used to assimilate static scenes into a y’. These relations, and the continuous transitions between
logic theory about spatial regions, the next section presents them, are shown in Figure 2.

this theory. In the second case, abduction is used to explain

The relationsDC, EC and Co receive a special status

changes in the scene descriptions according to a theory aboutin this work (amongst all of the possible relations between

dynamic spatial predicates representing object-observer re-

lations.

spatial regions) due to the fact that they can be distinguished

via analyses on the sensor data.



Assuming the symbadl as representing a pre-defined dis- Assuming the arguments 6fo, DC and EC as being the
tancevalue, andr andy as variables for spatial regions, the  output of the functiori/3, the axioms (A1), (A2) and (A3)
relationsDC, EC andCo are axiomatised by the formulae  (as described in the previous section) can be included in the
(A1), (A2) and(A3). extended ontology.

In this language, the transitions between the displace-

(ﬁl) gg(%y) H(g?'s'f(x’y)zg) ment relations are represented by the dynamic pred-
(A2) (:;; y) ¢ ( 186(93731) <A icates receding/3, approaching/3, splitting/3 and
(dist(z,y) # 0) coalescing/3. Assuminga andb as two distinct visual ob-

(43) Co(z,y) ¢ dist(z,y) =0 jects in the environment noted by the robot sensors, these

The distancé is determined with respect to the application ~Predicates are intuitively defined below.

domain. For instance, in the domain of a mobile robot, as- e approaching(i(a,v,t),i(b, v,t)), read as ‘the image af
suming that the spatial regions in the calculus represent the  andb areapproachingeach other as noted from the view-
regions of space occupied by physical bodiesan be as- pointy at timet’;

sumed to be the size of the robot. Therefore the axiom (A2)
can be understood as “two objects asgernally connected

if the distance between them constitutes an obstacle to the
robot’s motion”. ThusEC in this case can be used to define
paths within a spatial planning system. Similar arguments e coalescing(i(a,v,t),i(b,v,t)), ‘the images ofa andb
apply forCo andDC. arecoalescingas noted from the viewpoint at timet’;

e splitting(i(a, v, t),i(b,v,t)), ‘the images ofx andb are

e receding(i(a,v,t),i(b,v,t)), read as ‘the images af
and b arerecedingfrom each other as noted from the
viewpointy at timet’;

pete. ) Fe@n) @b splitting from each other as noted from the viewpairdt
% = timet'.
> - % T % These predicates are axiomatised in the formulae o
ds@n s — ] dean = (T4). Axioms (I'1) to (T'4) are defined over time intervals
2 % -— ([t1,t=2]). In this papefty, t2] is assumed to be shorter than
% Z the time for an object to suffer two consecutive changes

in the world. The left hand side off(l) to ('4) repre-
Figure 2: Relations on regions and the continuous transitions sents high-level hypotheses to explain the world at a time
between them. t € (t1,t2); thus, the assumption thig, 2] is a short time
interval guarantees that the interpretatiort & a possible
Transitions between spatial relations play a central role explanation for one single change in the robot's environ-
in this work. Next section describes the set of axioms (T1) ment.
to (T4) characterising the possible transitions between the  Herein, the notions olfocation and aviewpoint at a lo-

relations above. cationare assumed as interchangeable. In other words, we
are not considering in this work that none direction of gaze
Interpreting Transitions in privileged and that at a certain location the observer could

In this section the set of axioms (A1), (A2) and (A3) are have a360° view of the world. Distinguishing the notions of

extended in order to express the images of physical bodies location and viewpoint in the ontology is a matter for further

with respect to viewpoints and the transitions between these nvestigation. _
images in time. The axioms T'1) to (7'4) assume a primitivéetween /3

In order to represent transitions, the ontology for space N Order to express an order on viewpoints. The statement
described above is extended by assuming a sort for time Petween(z,y, z) is read as £ lies in betweery and2". In
points. New sorts foviewpointsandvisual objectsare also ~ Practice, the viewpoints of a mobile robot are chronologi-
introduced in order to represent, respectively, the observer's Cally ordered, i.e., if a robot has a viewpoint at timet,
viewpoint and the objects noted by the sensors. It is worth andvz attimet,, a viewpoint is considered in between
pointing out that theisual objectsort represent allinforma- ~ andez if the robot hasv at an instant that falls inside the
tion noted by the robot sensors, which includes object reflex- Intervallti, 2].

ions, occlusions and sensor noise. A discussion of how these T1 hinali D.i(b. v. A
issues affect the logic-based interpretation of a robot sensor (1) aza(gjozct)zxgéz(g,tzi )’_lf v:t)
data was initiated in (Santos & Shanahan 2001). However, between (v, v1, vs)

further investigation should be conducted in order to prop- /\DC(i(a’ Vl’ t1),i(b, v1, t1))A

erly solve these problems.

. . . =Co(i(a,vs,t2),i(b,va, t2)A
In order to represent the imageswigual objectsas noted (i(a, v2, 12), i (b, v, t2)

(dist(i(a, v, tl), l(b, v, tl)) >

by a robot sensor, the image functigf3 is introduced (Ran- dist(i )i (b. . t

dell, Witkowski, & Shanahan 2001). The functiofa, v, ) ist(i(a, v2, 82),1(b, v2,12))

is read as ‘the image af as seem frony at timet’. l.e.,4/3 Axiom (T'1) expresses that if two images approaching
represents a mapping fromisual objects viewpointsand each other at a time pointthen at some time poirtt be-

time pointgo spatial regionsn the sensor images. fore t the images werdisconnectegit is not the case that



the images ofi andb were coalescing at, and the distance
betweenthem was larger than at a time instdptafter ¢.
The condition that(a, vs, t2) andi(b, v», t5) are non coales-
cent att, guarantees thatpproaching/2 does not include
coalescing/2, as described in axiof¥'2).

(T2) coalescing(i(a,v,t),i(b,v,t))A
(tl <t)/\(t<t2) —
between (v, vy, va) A
(EC(Z(G, vy, tl), Z(b, v, tl))V
DC(i(a,v1,t1),i(b, v1,t1))A
Co(i(a, v, t2)7 Z(b7 va, t2))

If two images arecoalescingat a time instant (as repre-
sented byT'2)) then they ar@xternally connectedt a time
pointt, beforet andcoalescen{Co) at at. later thant.

(T'3) splitting(i(a,v,t),i(b,v,t))A
(th <t)A(t < ty) —
between(v, v1,v2)A
Coli(a,v1,t1),i(b, v1,t1))A
(EC(i(a,va, t2),i(b,v2,t2))V
DC(i(a, V17t2)7 Z(ba V17t2)))

Axiom (T'3) expresses that if two images asplitting at a
time instantt then they arecoalescentat ¢; beforet and
externally connectedtt, aftert.

(T4) receding(i(a,v,t),i(b,v,t))A
(tl <t)/\(t<t2) —
between (v, vy, vs)A
(DC(Z(CL, Vlatl)ai(baylatl))v
Ec(i(aaylatl)ai(ba Vlatl)))/\
(dist(i(a, Vl,tl),i(b,lll,tl))
< dZSt(Z(aa v, t2)7 Z(b7 Vo, t2)))

If two images argecedingeach other at a time point ac-
cording to (T4), then at some time pointbeforet the im-
ages werdalisconnectedor externally connectgdand the

The next section explores the relationship between the
dynamical predicates above and the physical bodies in the
robot’s environment.

From Transitionsto Object Relations

In this section the predicates on images presented above
(approaching, coalescing, splitting, receding and
static) are understood as abstract definitions of the relations
on physical bodies described below.

1. getting_closer(a, b, v,t), read as ‘objects andb areget-
ting closerto each other at timeas noted from the view-

pointv’;

. ap_getting_closer(a,b,v,t), read as ‘objecta andb are
apparently getting closeto each other at time due to
motion of the observer’;

. getting_further(a,b,v,t), read as ‘objects andb are
getting furtherto each other at time as noted from the
viewpointy’;

. ap_getting_further(a,b,v,t), read as ‘objecta andb
areapparently getting furtheto each other at timedue
to motion of the viewpoint’;

. occluding(a,b,v,t), read as ‘one of the objectsandb
is occluding the other at time instaritas noted by the
viewpointy’;

(o]

. touching(a,b,v,t), read asd¢ andb are touching each

other at time as noted by/’;
7. static(a,b,v,t), read asd andb are static at time'.

For the purposes of rigorously presenting the connection be-
tween the previous set of relations and the abstract defini-

distance between them was shorter than the distance at ations defined in the previous section, herein we assume the

time instantt, aftert.

Finally, if two images are static itithen the distance be-
tween them do not change from time pointto ¢> as ex-
pressed by axion(5).

(T5) static(i(a,v,t),i(b,v,t))A
(tl <t)/\(t<t2)—)
(dist(i(a,v,t1),i(b,v,t1)) =
diSt(i(a7 v, t2)7 Z(ba v, t2)))

Itis assumed, in axiomd 1) to (7'5) above, that no infor-
mation is available in between the end-points of every open
time interval(ty, t2). This assumption is plausible since the
borders of the intervat{ andts) represent the instants when
information was acquired from the world by the robot sen-
sors. Thus, the robot will have tuessvhat happened dur-
ing the intervals given data about their borders. This hypoth-
esised interpretation can be a wrong explanation for the sen-
sor data but at least it can give a hint about the environment.
Misleading hypothesis can be further updated (or revised)
according to further perceived data about the development
of the states of the world. This, however, is an issue for
further investigation.

predicatdocated/3; located(a, v, t) represents the fact that

a physical bodw is located aw at timet. Therefore, the
remaining sections assume that the robot is equipped with a
map with which it is able to locate itself in its environment.
This simplification should be relaxed in future research, so
that a similar framework to that described in this paper could
be used in a robot map building process.

Herein, for brevity, we assume a physical body variable -
robot - whenever a robot is referred to.

By assuming these definitions, the connections between
the predicates on images (described the previous section)
and the predicates on physical bodies are represented by the
axioms(IO 1) to (10 4) below.

(IO 1) located(robot,v,t)A

[getting_closer(a,b,v,t)V

ap-getting_closer(a, b, v, t)

— approaching(i(a, v, t
located(robot, v, t)A
[occluding(a, b, v, t)V
touching(a, b,v,t)
— coalescing(i

]
),i(b, v, 1))
(I0 2)

]
(a,v,t),i(b,v,t))



(10 3) lOfated(TO’}OtaV;lt)/z bt represent ground terms, while upper case letters are reserved
getting_further(a,b,v,t for variables.

vap'gettl.n‘q'further(a’l?’V’t)] Skolemisation is also implicit in this example, lower
— [splitting(i(a,v,t),i(b,v,t))V
C . case bold letters are used to represent the skolem func-
receding(i(a,v,t),i(b,v,t))] . : ; 20
tions of their non-bold counterpart variables (i.¥.,is the
(IO 4) located(robot,v,t)A . : i

static(a, b, v, {) skolemised version df’). Here, skol_em functions are used

Y . to keep the reference of variables in one step of inference
static(i(a,v,t),i(b,v,t)) :
_ ) _ _ ) throughout its further steps.
These axioms involve important issues concerning the re- For the sake of brevity, we omit in the example below

lationship between the knowledge about objects and related . . ;
knowledge about images. Issues such as the distinction of adet"’“IS abpqt how .to make inferences about the location of
the robot in its environment.

moving viewpoint from moving objects, grounding symbols
to sensor data, creating knowledge about the 3D world from ~ The example below assumes depth maps taken from the
under-constrained 2D images, etc. In order to solving these Viewpoint of a robot navigating through an office-like envi-
problems, the framework presented above has to consider ronment (Figures 3 and 4). For the sake of simplification, the
(at least) information about the observer’s motion, about the framework developed in this paper is applied on cylindrical
changes in the observer-relative positions of the background objects with added textures.

features and range data. This, however, warrants further in-

vestigation.
i ."411_,,‘._ = [ B e S
Inference R IE r;; e
The purpose of inference within the framework presented in '@ ’ <z
this paper is two fold: explanation of sensor data and pre- 01 02 o1 02
diction of their future configurations. Explanation is accom- :

plished by assuming abduction as the inference rule in a sim-

ilar way as proposed in (Shanahan 1996). Prediction, on the Figure 3: Depth maps at viewpoinig andu; .
other hand, is handled by deduction. This duality between

abduction anddeduction was first explored in (Shanahan

1989) for temporal reasoning. _Considering the sequence of snapshots of the world in
We briefly introduce the concept of abduction and relate Figure 3, the first step of sensor data assimilation is the de-
it to the definitions presented in the previous secfiord- scription of this sequence in terms of the displacement rela-
duction is the process of explaining a set of senteficby tions. The result of this task is exemplified in the formula (1)
finding a set of formula\ such that, given a background below (whereo, ando, represent the two objects — rectan-
theoryX, T is a logical consequence &fU A. In order to gular areas — in the scene; ang, and v, represents the

avoid trivial explanations, a set of predicates is distinguished Viewpoints where both pictures in Figure 3 were taken).
(theabducible predicatdssuch that every acceptable expla-

nation must contain only these predicates. (1) located(roboty, vy, to) A located(roboty, vy, t1)A

Assuming the framework proposed in the previous sec- DC(i(o1,v0,t0),4(02,v0,t0)) A DC(i(01,v1,t1),
tions, the description of sensor data in terms of displace- i(02,v1,t1)) A (dist(i(o1,vo, to), (02, Vo, t0)) >
ment relations comprises the $&t The background theory dist(i(o1,v1,t1),4(02,v1,11)))

¥ is, then, assumed to be composed of the set of axioms
(T'1) to (T'5) and (O1) to (I04). Finally, the abducibles
are considered to be the abstract predicateseding/3,
approaching/3, splitting/3 and coalescing/3, defined
above.

In order to clarify the concepts introduced in this paper
and to give a first approach to inference in this framework, (2) 3 V T located(robot1,V,T) A between(V, vo,11)

Assuming formula (1) and the axioms described in the pre-
vious sections, formulae (2) and (3) can be inferred as an
interpretation of the sensor information in Figure 3 .

we present the example below. This example is a sketch of Aapproaching(i(o1,V,T),i(02, V,T)) ANt <T
the inference procedures in the present framework. A com- AT < t, from (1) and axion(T'1); _
plete discussion of these procedures is a matter for further (3) ap-gettingcloser(o1,02,V,T), from (2), axiom
investigation. (101) and the assumption of object immovably.

In this section we assume, as abbreviation, that the order
of time points is implicit in their own representation, i.e., Formula (3) is a hypothesis on the state of the objects in the
t; < t; ifand only ifi < j (for time pointst; andt;, and world to explain the given sensor data.
{ime poit,  Moreover lower case roman etters are used o F1OM formulae (1) (2) and (3) we would like to derive
’ a set of expectations (predictions) about the future possible
!For brevity an explanation of deduction is omitted in this pa- Sensor data and their interpretations in terms of object rela-
per. tions. One possible set of predictions is comprised by the



formulae in thePredictions| set.

Predictions|:

(I.1) 3 W, U located(roboty, W1, Ur)A
between (W1, vy, v2)A
EC(i(Ol,Wl,Ul),i(OQ,Wl,Ul))
At < Uy

(1.2) AW, U, located(roboty, Wa, Us) A
coalescing(i(o1, Wa, Us), i(02, Wa, Uz))
AU; < U; from (1.1) and axiom (T2).
(1.3) occluding(o1, 02, Wa,Uz);

from (1.2), axiom(I02) and
the assumption of immovably of objects;

Formula(I.3) is a hypothesis about the future relationship
between objects;, 0, and the observer.

(7) located(roboty,vs,ta)A
(dist(i(o1,vs,t4),4(02,v3,t4)) = 0) from sensor
data;

(8) Col(i(o1,vs,t4),i(02,v3,t4)) from (6) and axiom
(A3);

(9) 3V T located(robot1,V,T) A between(V,vs, vy)

Acoalescing(i(o1,V,T),i(02, V,T)) ANtz < TA
T < t4 from (7) and axiom (T2);

Formula (9), derived from the axioms and the descriptions of
the images, confirms the prediction (1.2) and, consequently,

(1.3).

Discussion
This paper described three sets of axioms constituting a

These predictions assume that the observer continued its/09ic-based hierarchy for scene interpretation. The first
motion in the same direction as taken when the snapshots l2yer of this hierarchy, constituted by the axio(msl), (A2)
of Figure 3 were obtained. In the general case, however, @hd(43), formalises relations between pairs of spatial re-
many possible predictions can be supposed. Further research@ions assuming a distance function as primitive. The pur-
should a mechanism for handling the predictions according POSe of this first set of axioms is to classify, in terms of dis-
to assumptions about the motions of objects and the actions Placement relations, images of the objects in space as noted

of the observer.
Figure 4 shows the images from the robot's camera at

viewpointsys, v anduy.
02

o ':"-f‘ﬁ‘{ ""“-’." -
ey, ' g,
. o1 9 o1

Figure 4: Depth maps at viewpointg, v3 andv;.

The sensor data noted @t is described by formulae (4).

Formulae (5) and (6) follow from (4) and the axioms.

(4) located(roboty, va,ta) A
(dist(i(o1,va,t2),4(02,va,t2)) < 4) from sensor
data;
EC(i(Ol, vy, tz), i(OQ, vy, tg)) from (4) and axiom

(A2);
3V T located(roboty, V,T) A between(V, va, v3)
Aapproaching(i(o1,V,T), (02, V,T)) ANt1 < TA
T < ta Avy <V from (4), (5) and axion{T'1);

()
(6)

Similarly to the first set of prediction®redictions Il hy-

pothesises about the future possible sensor data and abouf

the relationship between objeetsando,, and the observer.

Predictions||:

(II.1) 3 W, Uy located(roboty, Wy, Ur)A
between (W1, va,vs)A
Co(i(o1, W1, Ur),i(o2, W1, Up))A
ty < Uy
3 Wy Us located(roboty, Wa, Ua)A
splitting(z'(ol, Wz, UQ), 7:(02, Wz, Uz))
ap-getting_further(oy,02, Wa,U3)

from (11.1) and axiom(I03);

(I1.2)

(I1.3)

by a mobile robot’s sensors. Transitions between these rela-
tions in a sequence of sensor data were, then, axiomatised by
the second set of axiomgI(1) to (7'5)), defining the second
layer of the image interpretation system.

The second layer of the hierarchy aims the classification
of transitions in the sensor data by meansloétractpredi-
cates (the left-hand side of axiortBO1) to (I04)). These
predicates were, then, rewritten into possible explanations
for the sensor data transitions in terms of object-observer
relations. The last set of axiom&I01) to (104)) charac-
terises this process, which constitutes the final layer of the
hierarchy.

The purpose of the qualitative spatial theory presented in
this paper is to demonstrate how much can be achieved using
distance information alone. This simple theory composes
the foundations of a more complex, practical, system.

The use of abstract predicates in seckosm Transitions
to Object Relationgecalls the idea of abstract reasoning
(Console & Dupre 1994)(Giunchiglia & Walsh 1989). Ab-
stract reasoning frameworks have concentrated mainly on
using abstractions to provide general proofs in automated
theorem proving in order to guide proofs in the ground space
(Giunchiglia 1990). In the present paper, however, abstrac-
tion is used to give a general interpretation of an ordered pair
of sensor data description. In this sense, the main purpose
f using abstract definitions is to overlook the ambiguities
n the sensor data, keeping every plausible interpretation of
a scenario inside a more general abstract concept. Axioms
(I01) to (I04) define the abstract predicates in terms of the
more specific equally-plausible hypotheses to explain par-
ticular transitions. Therefore, not only can abstraction inter-
leaveplanning and executiofas proposed in (Nourbakhsh
1998)) but also it can interleave sensor data interpretation
and planning. The development of this issue is a problem
for future research.

Another important subject for further development of this
research is the exploration of the framework for percep-
tion incorporating feedback and expectation, as proposed in



(Shanahan 2002), into the sensor data interpretation process Shanahan, M. 2002. A logical account of perception incor-

describedn this paper.
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