
Pushing the Envelope: Programming Reasoning Agents

Michael Thielscher
Department of Computer Science
Dresden University of Technology

Abstract

Formal theories of actions have evolved in recent
years into high-level programming languages for
robots. While these languages allow to imple-
ment complex strategies in a declarative, concise
and modular fashion, they are often doubted to be
sufficiently efficient for practical purposes. In this
paper we push the envelope of reasoning agents,
thereby making a case for state-based solutions
to the frame problem. We analyze the computa-
tional behavior of the logic-based agent program-
ming language FLUX and show that it scales up
well to problems which require reasoning about
the performance of several thousand actions.

Introduction

Problem solving by reasoning about actions is one of the
classical fields of study in AI. For a long time, the major
goal has been to build automated systems exhibiting
intelligence through the capability of planning. This
was also the motivation behind the first formal model
for reasoning about actions, the Situation Calculus with
its concept of situations as plans (McCarthy 1963).

In recent years, however, under the paradigm of Cog-
nitive Robotics theories of actions are applied as a
methodology for programming reasoning agents. Using
an explicit, symbolic representation of the outside world
of a robot, this paradigm allows to implement complex
behaviors in a concise and modular fashion. The most
prominent example is the high-level programming lan-
guage GOLOG, which is grounded in the Situation Cal-
culus (Levesque et al. 1997; Reiter 2001). Yet it is an
open question whether logic-based approaches like this
and others, e.g., (Shanahan & Witkowski 2000), scale
up to problems of non-trivial size and real-time appli-
cations.

We argue that high-level programs based on action
theories can be efficient and can scale up particularly
well provided a slight paradigm shift is made: Instead
of relying on situations as the fundamental concept for
programming agent strategies, we propose to use the
concept of a state, and to appeal to situations only if
an agent shall solve planning problems on its way. Our
argument is supported by an analysis of the compu-

tational behavior of programs written in FLUX (the
Flu___ent Executor (Thielscher 2002)). This high-level
language is grounded in the Fluent Calculus, which
combines the Situation Calculus with a state-based so-
lution to the fundamental frame problem in classical
logic (Thielscher 1999).

In the first part of the paper, we investigate a spe-
cial variant of FLUX for complete states. We report on
experiments with a robot control program for a combi-
natorial mail delivery problem. The results show that
FLUX can compute the effects of hundreds of actions
per second. Most notably, the average time for inferring
the effects of an action remains constant throughout the
course of the program, which shows that FLUX scales
up effortlessly to arbitrarily long sequences of actions.
We compare this result to the original GOLOG, where
the curve for the computation cost suggests a polyno-
mial increase over time.

In the second part of the paper, we investigate the
computational behavior of FLUX in the presence of
incomplete states. Encoding partial state knowledge
as constraints, FLUX employs an efficient constraint
solver to interpret and combine sensor information ac-
quired over time. We report on a series of experiments
with a combinatorial problem that involves exploring
a partially known environment and acting cautiously
under incomplete information. Although incomplete
states pose a much harder problem, FLUX proves to
scale up impressively well again: During the first phase,
where the agent builds its knowledge of the environment
while acting, the curve shows but a linear increase of
the average action computation cost. In the second
phase, where the agent acts under the still incomplete
knowledge, the average time for making decisions and
inferring the effects of actions remains constant again,
which shows that general FLUX, too, scales up grace-
fully to long sequences of actions.

All experiments were carried out on a lightweight
IBM Thinkpad 600 using ECLiPSe Prolog, Release 4.2,
under Red Hat Linux 7.1. All programs are available
for download at our web page http://fluxagent, org.

110

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

1 2 3 4 5 6

Figure 1: The initial state of a sample mail delivery
problem, with a total of 21 requests.

Agent Programs in Special FLUX
Consider the following problem: A robot acting as a
postboy has to pick up and deliver in-house mail ex-
changed between n offices that lie along a hallway. Up
to n - 1 packages may be requested to be delivered
from each office, whereby no two packages from one of-
rice can have the same addressee. The robot can carry
at most k packages at a time. Fig. 1 depicts a sample
initial state in an environment where n = 6 and k = 3.

This mail delivery problem illustrates nicely the un-
derlying principles of Cognitive Robotics, where robots
use an explicit model to keep track of their actions. To
program strategies for the mail robot, we use the lan-
guage FLUX (Thielscher 2002) grounded in the action
theory of the Fluent Calculus, which, based on earlier
work (Fikes & Nilsson 1971; HSlldobler & Schneeberger
1990; Bibel 1986), provides a state-based solution to the
frame problem in classical logic (Thielscher 1999).

The Fluent Calculus is a many-sorted language with
four standard sorts, namely, for actions and situations
(as in the Situation Calculus) and for fluents and states,
resp. The program for the mail delivery robot, for ex-
ample, uses these four fluents: At(r), representing that
the robot is at room r; Empty(b), representing that
the robot’s mail bag b is empty; Carries(b,r), repre-
senting that the robot carries in bag b a package for
room r; and Request(r,r’), indicating a delivery re-
quest from room r to room r~. States are composed of
fluents (as atomic states) using the standard function
of sort STATE X STATE ~ STATE and constant 0 : STATE
(denoting the empty state). As in the Situation Calcu-
lus, the constant So denotes the initial situation and
Do(a, s) the situation after performing action a in sit-
uation s. Finally, the state of a situation s is denoted
by the standard function State(s). For example, the
initial state in the mail delivery scenario of Fig. 1 may
be axiomatized as

State(So) At(l) o Empty(Bag1) o Empty(Bag2) o
Empty(Bag3) o Request(l, 2) o... o Request(6, 4)

The foundational axioms of the Fluent Calculus ensure
that the composition function "o" exhibits the proper-
ties of the union function for sets, so that a state can
be identified with the fluents that hold. On this basis,
the macros Holds(f,z) and Holds(f,s) are defined as
follows:

Holds(f, z) ~f (qz’) z = f o z’

Hotds(L s) ~ef= Holds(y, State(s))

The three elementary actions of our mail delivery
robot are: PickUp(b,r), picking up and putting into
bag b a package for room r; Deliver(b), delivering
the contents of bag b; and Go(d), moving d = Up or
d -- Down the hallway to the next room. The Fluent
Calculus expression Poss(a,z) denotes that action a
is possible in state z. The fundamental frame problem
is solved in the Fluent Calculus by a so-called state up-
date axiom for each action A(g), which describes the
effects of the action as the difference between the states
before and after performing it. E.g., the Go(d) action
may be specified as

Ross(Go(d), D
(3r) (Holds(At(r),

d = Up A State(Do(Go(d), s))
(State(s) - At(r)) + At(r 1)

V
d = Down A State(Do(Go(d),s))

(State(s) - At(r)) + At(r 1)

where Poss(a,s) defT"
,, ,,

= ross(a, State(s)), and where -
and "+" are macros for fuent removal and addition.

For the mail delivery problem, we use a special vari-
ant of FLUX suitable for agents with complete state
information. Fig. 2 depicts the general architecture of
FLUX programs. The agent program itself implements
the behavior of the agent with the help of two basic
commands which are defined in the kernel. The expres-
sion Holds(f, z) is used to evaluate conditions against
the current state of the environment, as in the Flu-
ent Calculus. Secondly, agent programs use the state-
ment Execute(a, zl,z2) to trigger the agent to actu-
ally perform an action a in the outside world. This
command has the side-effect that current state Zl is
updated to z2 according to the changes effected by
action a. This computation in turn relies on a speci-
fication of the elementary actions of the agent. As in
the Fluent Calculus, the effects of actions are encoded
as state update axioms. For this purpose, the FLUX
kernel provides a definition of the auxiliary predicate
Update(zl,~O+,~-,z2). Its intuitive meaning is that
state z2 is the result of positive and negative effects zg+
and ~-, resp., in state Zl. In other words, the predi-
cate encodes the state equation z2 = (Zl - z9-) + ~+.
On this basis, the agent programmer can easily encode
the update axioms by clauses which define the predicate
State Update (zl, A (£), z2).

FLUX being a logic programming-based language,
complete states are encoded as ground lists of fluents.
For example, the initial state depicted in Fig. 1 may be
specified by this clause:

init(ZO)
Z0= [at (1), empty (bag1), empty (bag2), empty (bag3),

request (1,2) request (6,4)].
Our program for the mail delivery problem uses the
following axioms for preconditions and state update:

poss(pickup(B,R) ,Z)
holds(empty(B) ,Z), holds(at (R1)
holds (request (R1 ,R) ,Z).

iii

I
Agent Program StateUpdate(zl,A(~),z2) [

I

J
FLUX Kernel

Update (zl, tO+, tO-, z2)

Execute (a, zl, z2)

Holds(f, z)

Physical Agent

Figure 2: The architecture of a FLUX program with complete state knowledge.

poss(deliver(B),Z)
holds(at(R),Z), holds(carries(B,R),Z).

poss(go(D),Z) :-
holds(at(R),Z), (D=up, R<6 ; D=down, R>I

state_update(Zl,pickup(B,R) ,Z2)

holds (at (R1), Zl),
update (Z1, [carries (B,R)],

[empty (B), request (R1, R)],
state_update(Zl,deliver(B) ,Z2)

holds(at(R) ,Z1),
update (Zl, [empty (B)], [carries (B, R)],

state_update(Zl,go(D) ,Z2)
holds (at (R) ,Zl),
(D=up -> R1 is R+I ; R1 is R-1),

update (Zl, [at (R1)], [at (R)],

See (Thielscher 2002) for the formal relation between
Fluent Calculus axioms and their encoding in FLUX)

The following program for the automatic postboy re-
alizes a simple strategy: Whenever possible, a bag is
emptied or a package is picked up; otherwise, as long
as it carries a package or there are still open requests,
the robot goes to the next office in the corresponding
direction.

main :- init(Z), main_loop(Z).
main_loop(Z)
poss (deliver (B), Z) -> execute (deliver (B),

main_loop (Zl)
poss (pickup (B, R), Z) -> execute (pickup (B, R), Z,

main_loop(Z1)
continue(D,Z) -> execute(go(D) ,Z,Zl),

main_loop (Zl)
true.

continue (D,Z) :-
(holds (empty (_), Z), holds (request (RI,_),

; holds(carries(_,R1),Z)
holds(at(R),Z), (R<R1 -> D=up ; D=down).

The reader may notice how the cut, hidden in the "->"
operator, ensures that no backtracking occurs over ex-
ecuted actions.

We ran a series of experiments with this FLUX prc~
gram applied to maximal <n,k = 3> problems, i.e.,
where packages from each office to each other office need

1For efficiency reasons, executability is not checked in
the state update axioms in FLUX, as it is assumed that the
agent executes actions only if they are known to be possible.

n act time 71 act thne
9 368 0.19 20 3382 9.66

10 492 0.31 21 3880 12.62
11 640 0.48 22 4424 16.60
12 814 0.72 23 5016 20.87
13 1016 1.05 24 5658 26.24
14 1248 1.53 25 6352 33.02
15 1512 2.12 26 7100 40.87
16 1810 3.07 27 7904 50.09
17 2144 4.24 28 8766 61.20
18 2516 5.66 29 9688 73.55
19 2928 7.40 30 10672 88.39

Table 1: Solution length and overall run-time in sec-
onds CPU time for the FLUX program for mail deliv-
ery problems with n offices, k = 3 mall bags, and
maximal number of requests.

to be delivered. 2 The resulting lengths of the action se-
quences and the measured run-time for all problem sizes
from n = 9 up to n = 30 are listed in Table 1. The
results show that up to a thousand actions per second
are selected and their effects computed. Even for the
largest problem, where the initial state contains 874 flu-
ents, the average processing time for an action is less
than the hundredth of a second.

Of particular interest is the computational behav-
ior of the program as it proceeds. Fig. 3 depicts for
four selected problem sizes the average time for action
selection and state update computation in the course
of the execution of the program. The curves show
that the computational effort remains essentially con-
stant throughout. The slight general descent can be
explained by the decreasing state size due to fewer re-
maining requests.

To compare these results with the original GOLOG as
presented in (Levesque et al. 1997), we have encoded
the mall delivery problem by the following successor

2We have kept the value for k constant because while
it influences the overall number of actions needed to carry
out all requests, this parameter turned out to have negligi-
ble influence on the computational effort needed for action
selection and state update.

112

0.8"

0.6-

0.4-

0.2-

O%

~n=30

i

n=20
" ~ n----15

~~-~ in= 10

100%

Figure 3: The computational behavior of the simple
FLUX program for the mail delivery robot in the course
of its execution. The horizontal axis depicts the degree
to which the run is completed while the vertical scale
is in seconds per 100 actions.

state axioms:3

holds(at(R),do(A,S)) :-
A=go(up), holds(at(R1),S), R is
A=go(down), holds(at(R1),S), R is
\+ A=go(_), holds(at(R),S).

holds (empty (B),do (A, S)
A=deliver (B) ;
holds(empty(B) ,S), \+ A=pickup(B,_).

holds (carries (B, R), do (A, S)
A=pickup(B,R) ;
holds(carries(B,R) ,S), \+ A=deliver(B).

holds (request (R,RI) ,do (A, S)
holds (request (R, R1),
(A=pickup(_,R1) -> holds(at (R2),S),

; true).

The following GOLOG program implements the same
strategy as the FLUX program:

proc(main, [deliver(_) ,main] # [pickup(_,_) ,main]

[continue,main] # []).

proc (continue,

[[? (empty (_)), ? (request (R, _))] #? (carries

? (at (RI)), [? (less (RI, R)), go (up)] # go (down)

holds(less(RI,R2),_) :- RI<R2.

For a fair comparison, we have tuned the GOLOG ker-
nel so as to avoid the creation of unnecessary back-
tracking points. For the details, we refer to our web
page containing the programs as mentioned in the in-
troduction. Fig. 4 shows how the runtime increases
drastically with the length of the solution, in compari-
son to FLUX. The detailed analysis reveals why: Fig. 5
depicts for three selected problem sizes the average ac-
tion selection time in the course of the execution of the
GOLOG program. The curves show that the compu-
tational effort increases polynomially as the program
proceeds. This can be explained by the increasing size
of the situation term, which carries the entire history of
actions and which needs to be completely regressed to
the initial situation for every evaluation of a Holds (f, s)
statement.

3For details regarding syntax and semantics of GOLOG,
we refer to (Levesque et al. 1997; Reiter 2001).

seconds

60-

40-

20-

GOLOG

/
1000 2000 3000

FLUX

/
/

I I ~actions
4000 5000

Figure 4: Runtime of GOLOG and FLUX (vertical
axis) depending on the solution length (horizontal axis).

High-level programming languages like FLUX make
it easy to implement complex strategies for agents. In
the following program, our mail delivery robot always
chooses the closest destination when picking up a pack-
age, and it also chooses to go in the direction of the
closest room in which it can either drop or pick up a
package:

main :- init(Z), main_loop(Z).

main_loop(Z)

poss (deliver (B), Z) -> execute (deliver 7., Zl),

main_loop (ZI)
fill_a_bag(B,R,Z) -> execute(pickup(B,R),Z,Zl),

main_loop(Zl)
continue(D,Z) -> execute(go(D) ,Z,ZI),

main_loop(Zl)
true.

fill_a_bag(B,RI,Z)
poss (pickup (B,_), Z)

holds (at (R), Z), holds (request (R, RI),
\+ (holds (request (R, R2), Z), closer (R2,R1,

conZinue (D,Z)
holds (at (R),
(holds(empty(_) ,Z), holds(request(_,_)

-> (holds (request (RI ,_),
\+ (holds (request (R2, _), Z), closer (R2, R1,

; (holds (carries (_, R1), Z),
\+ (holds (carries (_, R2), Z), closer (R2,R1,R))

), (R<R1 -> D=up ; D=down
closer (RI,R2,R) : - abs (RI-R) <abs (R2-R).

While the computation time for action selection is
slightly increased under the refined strategy, all prob-
lem instances are solved much faster due to considerably

fewer actions needed, as the results listed in Table 2
show. The detailed analysis reveals that the average
computation time does not change drastically through-
out the execution of this program, too; see Fig. 6. The
slightly steeper descent can be explained by the faster
decrease of the state size due to generally shorter de-
livery times. Due to space restrictions we refrain from
discussing the corresponding GOLOG program, which

113

40-

30-

20-

10-

0%

~
n=14

n=13

n=12

I
100%

Figure 5: The computational behavior of the GOLOG
program for the mail delivery problem in the course of
its execution. The horizontal axis depicts the degree to
which the run is completed while the vertical scale is in
seconds per 100 actions.

n act time n act time
9 264 0.14 20 2020 5.06

10 344 0.22 21 2274 6.43
11 430 0.33 22 2600 8.02
12 534 0.47 23 2930 10.03
13 656 0.68 24 3254 12.39
14 798 0.93 25 3676 15.51
15 956 1.29 26 4098 18.80
16 llO0 1.66 27 4470 22.76
17 1286 2.26 28 4996 27.78
18 1516 2.99 29 5478 33.27
19 1760 3.98 30 5980 39.18

Table 2: Solution length and overall run-time in seconds
CPU time for the improved FLUX program.

behaves computationally similar to the one analyzed
above.

1.2

1.0

0.8

0.6

0.4

0.2-

o%

n=30

2o
15

I 10
100%

Figure 6: The computational behavior of the improved
FLUX program for the mail delivery robot in the course
of its execution. The horizontal axis depicts the degree
to which the run is completed while the vertical scale
is in seconds per 100 actions.

T ’ F

2

---V---I--V-I@
1 2 3 4 5

V--

- --I- LL_ J- -~_ _

1 2 3 4 5

Figure 7: Layout of the office floor and sample scenario,
where four offices are occupied. In the right hand side
are depicted the locations in which the cleaning robot
senses light.

Agent Programs in General FLUX

While the restriction to complete states enables the
particularly fast execution of agent programs, the ex-
pressive power of logic-based action theories and FLUX
agents is displayed in problems where agents have to act
under partial information.

Consider the following problem: After hours, a clean-
ing robot has to empty the waste bins in the alley and
rooms of the floor of an office building. The robot
shall not, however, disturb anyone working in late. The
robot is equipped with a light sensor which is activated
whenever the robot is adjacent to a room that is oc-
cupied, without being able to tell which direction the
light comes f~om. An instance of this problem is de-
picted in Fig. 7. The task is to write a program that
allows the cleaning robot to empty as many bins as
possible without risking bursting into an occupied of-
rice. This problem illustrates two challenges raised by
incomplete state knowledge: Agents must ensure that
all their decisions are cautious, and they need to inter-
pret and logically combine sensor information acquired
over time. For example, suppose our robot starts with

cleaning (1,1), (1,2), and (1,3), where it senses
Since it cannot know whether the light comes from of-
rice (1,4) or (2,3), the cautious robot must not continue
with either of these rooms. Going back and continu-
ing with (2,2) without detecting light from an adjacent
office at this point, it follows that (2,3) cannot be oc-
cupied and, hence, that the light in (1,3) comes from
office (1,4). In the end, the robot should be able
clean all bins except for the ones in the occupied offices
and the one in room (5,1), for the robot cannot deduce
that this room is empty.

Fig. 8 gives an overview of the architecture of gen-
eral FLUX programs: Facing incomplete states, evalu-
ating conditions amounts to testing knowledge via the
predicate Knows defined in the FLUX kernel. Fur-
thermore, the update axioms now define a predicate
StateUpdate(zl, A(~), z2, v), which includes the argu-
ment v for sensed values and which define knowledge
update in the sense of (Thielscher 2000). The FLUX
kernel appeals to the paradigm of constraint logic pro-
gramming, which enhances logic programs by mecha-
nisms for solving constraints. In particular, so-called

114

Agent Program [StateUpdate(zl,A(~),zz, v)

Knows(f, z) Update(z1, ~+, ~-, z2)
FLUX
CHRs

Execute (a, z x , z2

Physical Agent

Figure 8: The architecture of a FLUX program for incomplete states.

----~ lib(fd)

Constraint Handling Rules (Frfihwirth 1998) support
declarative specifications of rules for processing the
FLUX constraints which express negative and disjunc-
tive state knowledge. In turn, these rules use finite
domain constraints for handling variable arguments of
fluents, which can be natural or rational numbers or of
any user-defined finite domain.

Incomplete states are encoded in FLUX as open lists
(i.e., which have a tail variable) of fiuents (possibly con-
taining further variables) along with constraints rep-
resenting both negated and disjunctive state knowl-
edge. The constraints are of the form -~Holds(f,z),
(Vx-’)-~Holds(f,z) (where ~ are the variables in
and Holds(fl,z) V... Holds(f.,z) (where n > 1)
denoted by not_holds(F, Z), not_holds_all(F, Z),
or(IF1, ..., Fn], Z), resp.

In our FLUX program for the cleaning robot, we
use these four fiuents: At(x,y), representing that the
robot is at (x,y); Facing(d), representing that the
robot faces direction d 6 {1,...,4} (denoting, resp.,
north, east, south, and west); Cleaned(x, y), represent-
ing that the waste bin at (x, y) has been emptied;
and Oceupied(x,y), representing that (x,y) is occu-
pied. For example, the initial knowledge of our clean-
ing robot includes its unique location, its facing north,
the fact that neither the cleaning room nor any location
in the alley or any point beyond the surrounding walls
can be occupied, plus the fact that no light is perceived
in (1,1):4

init(Z0)
Z0 = [at(l,l),facing(1) I Z],

not_holds_all (at (_ ,_),
not_holds_all (facing (_) , Z),
not_holds (occupied (1,1),
not_holds(occupied(I,5) ,Z), ~, alley
not_holds (occupied (2,5), Z)
not_holds_all(occupied(_,0) ,Z), Y, boundary
not_holds_all (occupied (_, 6),
not_holds_all (occupied (0,_),
not_holds_all (occupied (6, _),
light_perception (1,1, false, Z0),
duplicate_free (Z0).

light_perception (X, Y, Percept, Z) :

4The auxiliary constraint duplicate_free (Z) stipulates
that list Z does not contain multiple occurrences.

XE#=X+I, XW#=X-1, YN#=Y+I, YS#=Y-I,
(Percept=false, not_holds (occupied (XE, Y),

not_holds (occupied(XW, Y) ,Z),
not_holds (occupied(X, YN) ,Z),
not_holds (occupied (X, YS),

; Percept=true,
or([occupied (XE, Y), occupied (X,

occupied(XW,Y) ,occupied(X,YS)] ,Z)

The kernel of general FLUX includes a high-speed con-
straint solver, which combines special constraint han-
dling rules (based on the standard chr-library) with
the standard fd-library for finite domains.5

The theoretical underpinnings of FLUX are given by
an extension of the Fluent Calculus for reasoning about
knowledge and sensing (Thielscher 2000). In particular,
the update of incomplete states in FLUX is grounded in
the concept of knowledge update axioms, which a/low
to incorporate sensor information. The three elemen-
tary actions of our cleaning robot are: Clean, emptying
the waste bin at the current location; Turn, turning
clockwise by 90°; and Go, going to the adjacent point
in the faced direction. Knowledge update axioms are
specified in FLUX just like ordinary state update ax-
ioms but with an additional argument encoding sensor
information. Our program for the cleaning robot uses
the following update axioms, whereby the execution of
a Go action is assumed to inform the program about
whether light is sensed at the new location:

state_ulxlate(Zl,clean,Z2, [])
holds (at (X,Y) ,Zl),
update (Zl, [cleaned (X, Y)] , [] , Z2).

state_update (ZI, turn, Z2, []) ¯
holds (f acing (D), ZI),
(D#<4 #/\ DI#=D+I) #V (D#=4 #/\ DI#=I),
update(Zl, [facing(Dl)] , [facing(D)] ,Z2)

state_update (Zl,go,Z2, [Light])
holds(at(X,Y) ,Zl), holds(facing(D)
adj acent_point (X, Y, D, Xl, YI),
update (Zl, [at (X1,Y1)], [at (X,Y)]
light_perception (Xl, Y1, Light, Z2).

adj acent_point (X, Y,D,Xl, Y1)

5The latter includes arithmetic constraints over ratio-
hal numbers (using the equality and ordering predicates
#=,#<,#> along with the standard functions +,-,*), range
constraints (written X: : [a.. b]), and logical combinations
using #/\ and #\/ for conjunction and disjunction, resp.

115

[X,Y,Xl,YI] :: 1..5, D :: I..4,
(D#=I) #/\ (Xl#=X) #/\ (YI#=Y+I)
(D#=2) #/\ (Xl#=X+l) #/\ (YI#=Y) #\/
(D#=3) #I\ (XI#=X) #I\ (YI#=Y-1)
(D#=4) #/\ (XI#=X-1) #/\ (YI#=Y).

See (Thielscher 2002) for the formal relation between
knowledge update axioms and their encoding in FLUX.

To control the behavior of agents, the FLUX ker-
nel provides definitions for the expression Knows(f, z)
and Knows(--,f,z), denoting that in the (incomplete)
knowledge state z fluent f is known to hold or not to
hold, resp. On this basis, it is straightforward to write
a program by which our robot cleans the floor system-
atically: For each newly visited location, choice points
for all four directions are created. If the robot cannot
safely continue on any of the remaining choice points,
then it backtracks along the path it came. The program
terminates with the robot ending up in its home square
if the backtrack path is empty.

main :- init(Z0), execute(clean,Z0,Zl),
Choicepoints= [I, 1, [i, 2]], Backtrack= [],
main_loop (Choicepoints ,Backtrack, Z1).

main_loop([X,Y,Choices[Chpts] ,Btr,Z) :-
Choices= [Dir [Dirs] ->
(cont inue_cleaning (X, Y, Dir, Z, Zl) ->

execute(clean,Z1,Z2), holds(at(XI,Yl) ,ZI),
Chptsl= [XI,YI, [1,2,3,4] ,X,Y,Dirs [Chpts],
Btrl= [X, Y [Btr], main_loop (Chpts i, Btrl, Z2)

; main_loop([X,Y,DirslChpts] ,Btr,Z)
; backtrack (Chpts, Btr, Z).

backtrack(_, ~ ,Z).
backtrack(Chpts, [X,YIBtr] ,Z) :-

go_back (X, Y, Z, Z I), main_loop (Chpt s, Btr, ZI).
continue_cleaning(X,Y,D,Z1 ,Z2)

adj acent_point (X, Y, D, X 1, Y 1),
\+ knows(cleaned(Xi,Yl) ,ZI),
knows_not (occupied(Xl ,Y1), Zl),
turn_to(D,Zl,Z), execute(go,Z,Z2).

go_back(X,Y,Zl,Z2)
holds (at (X1, Y1), Zl),
adjacent_point (Xl, Y1, D, X, Y),
turn_to(D,Zl,Z), execute(go,Z,Z2).

turn_to (D,ZI,Z2)
knovs (facing(D) ,Zl) -> Z2=Z1
; execute(turn,Zl,Z), turn_to(D,Z,Z2).

Notice that sub-procedure continue_cleaning suc-
ceeds only if the new location is not known to be already
cleaned and if it is known to be unoccupied, which is
in accordance with the requirement for cautious behav-
ior. The reader may appreciate that there is no need to
program any inference capabilities--these are fully pro-
vided by the underlying FLUX kernel. If the program is
applied to the sample scenario depicted in Fig. 7, then
in the end the robot has automatically derived which
locations are (un-)occupied, with the exception of the
uncertain status of office (1,5).

To analyze the computational behavior of the pro-
gram, we ran a series of experiments with square office
floors of different size and using a simulator in which
several offices are randomly chosen to be occupied. For
simplicity, no initial information about unoccupied cells
besides (1,1) and the two adjacent ones were given

8,

6-

4-

2-

n=64,
o 5

n 36,
0=3

n = 25,
0=2

I
0% 100%

Figure 9: The average computational behavior of the
FLUX program for the office cleaning robot in the
course of its execution. The horizontal axis depicts the
degree to which the run is completed while the vertical
scale is in seconds per 100 actions.

the robot. Fig. 9 depicts the results of three sets of
experiments with 25 rooms (and two being occupied),
36 rooms (three), and 64 rooms (five). Each curve
picts the average of 10 runs with randomly chosen oc-
cupied locations. The results indicate two execution
phases: In the first phase, the agent acquires increas-
ing knowledge of the environment while acting. The
curves show that the program scales up gracefully with
just a linear increase of the average computation cost
for action selection, update computation, and evalua-
tion of sensor information. This result is particularly
remarkable since the agent needs to constantly perform
theorem proving tasks when conditioning its behavior
on what it knows about the environment. Linear perfor-
mance has been achieved due to a careful design of the
state constraints supported in FLUX; the restricted ex-
pressivity makes theorem proving computationally fea-
sible. In the second phase, where the agent acts under
the acquired but still incomplete knowledge, the aver-
age time remains basically constant throughout, which
shows that general FLUX, too, scales up particularly
well to long sequences of actions. Moreover, although
incomplete states pose a much harder problem, the av-
erage computation time for each action still lies well
below the tenth of a second even for the largest of the
three problem sizes.6

Discussion
Challenging a widespread belief, we have shown that
declarative, logic-based agent programs can exhibit ex-
cellent computational behavior beyond problems of toy
size. In particular, we have argued for a state-based

~Assuming complete state knowledge, original GOLOG
is not applicable to the cleaning robot scenario. The ex-
tended GOLOG presented in (Reiter 2000) allows for incom-
plete states. Since this variant, too, is based on regressing a
situation term, its computational behavior cannot be better
than polynomial in the length of the action sequence. A
detailed comparison of general FLUX with this variant of
GOLOG is left for future work.

116

representation as a way to obtain programs which scale
up well to the control of agents and robots over ex-
tended periods of time: By maintaining an explicit
state term throughout the execution of the program,
fluents can be directly evaluated at any stage. In con-
trast, the implicit representation via a situation term
leads to ever increasing computational effort as the pro-
gram proceeds. While this has been illustrated with
a single example, it is clear that the polynomial ef-
fort will dominate, in the long run, any algorithm
for agent control whose inherent complexity is bet-
ter than polynomial. This suggests that using pro-
gression (Lin & Reiter 1997) rather than regression
might lead to an implementation of the Situation Cal-
culns which scales up better. However, the existing
variants of GOLOG, like (Giacomo & Levesque 1999;
Reiter 2000), still rely on regressing situations. In
FLUX, the notion of a situation serves different pur-
poses (Thielscher 2002): It is used to give semantics
to program execution and, most importantly, to add
the cognitive capability of planning to agent programs
in accordance with the major motivation behind both
the Situation Calculus and GOLOG. Inheriting much
of GOLOG’s powerful concept of nondeterministic pro-
grams to guide the search for plans, and interleaving
planning with state-based program execution, FLUX
seems to combine the best of both worlds.

References
Bibel, W. 1986. A deductive solution for plan gener-
ation. New Generation Computing 4:115-132.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2:189-208.
Friihwirth, T. 1998. Theory and practice of constraint
handling rules. Journal of Logic Programming 37(1-
3):95-138.
Giacomo, G. D., and Levesque, H. J. 1999. An incre-
mental interpreter for high-level programs with sens-
ing. In Levesque, H., and Pirri, F., eds., Logical Foun-
dations for Cognitive Agents. Springer. 86-102.

HSlldobler, S., and Schneeberger, J. 1990. A new de-
ductive approach to planning. New Generation Com-
puting 8:225-244.
Levesque, H. J.; Reiter, R.; Lespdrance, Y.; Lin, F.;
and Scherl, R. B. 1997. GOLOG: A logic program-
ming language for dynamic domains. Journal of Logic
Programming 31(1-3):59-83.

Lin, F., and Reiter, R. 1997. How to progress a
database. Artificial Intelligence 92:131-167.
McCarthy, J. 1963. Situations and Actions and Causal
Laws. Stanford University, CA: Stanford Artificial In-
telligence Project, Memo 2.

Reiter, R. 2000. On knowledge-based programming
with sensing in the situation calculus. In Cognitive
Robotics Workshop at ECAL 55-61.
Reiter, R. 2001. Logic in Action. MIT Press.

Shanahan, M., and Witkowski, M. 2000. High-level
robot control through logic. In Castelfranchi, C.,
and Lesp~rance, Y., eds., Proceedings of the Interna-
tional Workshop on Agent Theories Architectures and
Languages (ATAL), volume 1986 of LNCS, 104-121.
Boston, MA: Springer.

Thielscher, M. 1999. From Situation Calculus to Flu-
ent Calculus: State update axioms as a solution to
the inferential frame problem. Artificial Intelligence
111(1-2):277-299.
Thielscher, M. 2000. Representing the knowledge of a
robot. In Cohn, A.; Giunchiglia, F.; and Selman, B.,
eds., Proceedings of the International Conference on
Principles of Knowledge Representation and Reason-
ing (KR), 109-120. Breckenridge, CO: Morgan Kauf-
mann.

Thielscher, M. 2002. Programming of reasoning and
planning agents with FLUX. In Fensel, D.; McGnin-
ness, D.; and Williams, M.-A., eds., Proceedings of
the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR). Toulouse,
France: Morgan Kanfmann.

i17

