
Decision Theoretic Planning and
the Bounded Rationality of BDI Agents

Guido Boella
Dipartimento di Informatica - Università di Torino
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Abstract

We reconsider the BDI agents model by exploiting a deci-
sion theoretic planning framework together with a proposal
for bounded rationality. In particular, we show how the in-
terplay between a planner based on an anytime algorithm
and a meta-deliberation module for dealing with bounded re-
sources sheds light on the notion of intention as proposed by
Michael Bratman.

Introduction to the agent architecture
Studies about bounded rationality have flourished in the last
years and have shed light on the meaning itself of Artificial
Intelligence: an intelligent program should not (or even can-
not) provide the optimal solution, but the best solution net of
the computational costs ((Russell & Wefald 1991), (Zilber-
stein & Russell 1993), (Boddy & Dean 1994), (Wooldridge
& Schut 2001)). As (Doyle 1987) expresses this aim: “the
agent reflects on its circumstances, abilities, and limitations
to rationally guide its own reasoning and internal organiza-
tion [. . . ]. Rational self-government includes direct control
of the path and amount of reasoning performed”.

It is now possible to design “systems that are capable
of taking their own computational resources into considera-
tion during planning and problem solving” ((Boddy & Dean
1994), p.245).

In particular, the role of meta-reasoning has been formal-
ized: it “consists of running a decision procedure whose pur-
pose is to determine what other decision procedures [e.g.,
planners] should run and when” (ibid., p.248). The time
used by the decision procedure is important since, in real
time problem situations “the utility of a given action varies
significantly over the time necessary for a complete solution
of the decision problem” (Russell & Wefald 1991).

In parallel, the agent paradigm has provided a unifying
point of view over many branches of AI. Some of the agent
models have received particular attention from the formal
point of view: in particular, the BDI agent model, a ‘cog-
nitive’ model of agenthood which assumes that agents, as
well as humans, are driven by their mental representations;
the leading mental attitudes are beliefs, desires and inten-
tions. To face the resource boundedness problem, (Bratman
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1987) proposes to use the currently intended plans to limit
the set of actions to be considered.

Surprisingly enough, there is almost no connection be-
tween the formal models of bounded rationality and the BDI
agents models. Since the notion of intention has been intro-
duced by Bratman to deal with the resource boundedness of
agents, a reason must be found for the missing of this link.

As an exception to the distance existing between formal
studies of bounded rationality and the BDI paradigm, con-
sider the position of (Wooldridge & Schut 2001). They see
the BDI agents model “not as another time-dependent plan-
ning model [i.e., a bounded rationality model], but rather
as a model in which time-dependent planning is useful to
incorporate.” However, for (Wooldridge & Schut 2001), the
role of time-dependent planning is to provide “an implemen-
tation for intention reconsideration” (ibid., p.20) and not a
general conceptual instrument for analyzing the BDI model.

As (Horvitz & Zilberstein 2001) note “elusive principles
of intelligence might actually be founded in developing a
deeper understanding of how systems might grapple with
scarce, varying or uncertain time and memory resources”.
For this reason, we proceed in (Wooldridge & Schut 2001)’s
direction, reconciling both fields, so to consider the bounded
rationality model not only a component of the BDI model,
rather, as an explanatory concept for understanding it.

Our approach is grounded by the use of a decision the-
oretic planning paradigm (DTP). However, introducing de-
cision theoretic planning is not per se sufficient, nor it is a
feasible choice: decision theory has been proven too com-
plex for dealing with real time agents.

Here comes into play the bounded rationality model.
However, most works on rationally bounded agents focus on
particular tasks like game playing, mail sorting, path discov-
ery, and even on general programming. On the other hand,
the BDI model refers only to planning and in particular hi-
erarchically structured planning, since it corresponds to how
humans reason.

The new conceptual instruments resulting from the mar-
riage between DTP and bounded rationality will be used to
reconsider Bratman’s analysis of the concept of intention
and of the related BDI agents model. In fact, Bratman’s view
of intentions is strictly related to that of planning: “Our com-
monsense conception of intention is inextricably tied to the
phenomena of plans and planning” ((Bratman 1987), p.30).
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Commitment has been proposed by Bratman as the main
property which distinguishes intentions from other attitudes
such as goals. At the time of Bratman’s work, the end of the
’80s, the state of the art planning technique, which he nec-
essarily refers to, was hierarchical decomposition planning.

In contrast, decision theoretic planning allows finding a
plan which is optimal with respect to the degree of achieve-
ment of the goal and to resource consumption. In particular,
some DTP planners (Ha & Haddawy 1996) use a hierarchi-
cal organization of plans, a requirement posed by Bratman:
further, abstract actions in the DTP plan hierarchy are based
on a sound theory of abstraction, and provide approximate
estimates of the costs and benefits of the primitive plans they
subsume. Finally, hierarchical DTP is implemented by any-
time algorithms (Zilberstein & Russell 1993): the quality of
the solutions provided depends on the time allocated to the
processing, and the algorithms exhibit a time/quality trade-
off defined by a performance profile (Boddy & Dean 1994).

In particular, we analyze the concept of intention in terms
of desires and beliefs, without introducing a primitive notion
of commitment. This form of reduction is rejected by Brat-
man after a tentative analysis of the definition of intentions
as predominant desires: “intentions are distinctive states of
mind on a par with desires and beliefs, [...] I propose to con-
sider this network of dispositions and functional relations on
its own terms, without trying somehow to reduce it to ordi-
nary desires and beliefs” ((Bratman 1987), p.20). Bratman
argues that desires, even predominant ones, do not imply
that the agent settled on a decision. In our model, this ar-
gument is countered by the fact that devising a different so-
lution with respect to the currently intended plan is blocked
by the meta-reasoning component of the agent since it has
to deal with the bounded resources of the agent.

Bratman did not have the instruments to consider the trade
off between the cost of planning and the benefit produced by
refining a solution.
Costs are necessary for producing information: which desire
is the predominant one and the possibilityof satisfying it can
be discovered only after a planning phase: the knowledge
produced by this planning phase can be exploited later by
the agent to improve his performance.

Our view of planning as a source of information is sup-
ported also by (Zilberstein 1996): “the goal of planning is to
provide the execution architecture with information that can
improve the selection of actions” (p.33).

Some distinctions must be drawn also for what concerns
desires and goals. Desires are modeled as preferences: they
are expressed by a (multi-attribute) utility function1 which
guides the search process of the planner (see (Ha & Had-
dawy 1996)). Apart from the obedience to utility theory
axioms, desires can be still irrational as prescribed by BDI
models: an agent can prefer states which cannot be achieved
by any action.

Goals in (Cohen & Levesque 1990) are defined as worlds

1Multi-attribute utility functions require a number of assump-
tions on the structure of preferences of agents, as shown in (Had-
dawy & Hanks 1998) or in classical works as (Keeney & Raiffa
1976).

chosen among the desired ones. Goals are usually proposed
as the ‘consistent’ counterpart of desires: however, no clue
is provided on how agents choose worlds from their desires.
As in the classical planning tradition, for us, goals are just
inputs to the planner.

Before the goals undergo the (even if partial) planning
process, there is no guarantee at all that they will be chosen.
Nor that they are consistent among each other. The consis-
tency requirement for goals, posed by (Cohen & Levesque
1990), is costly and is satisfied by the fact that during the
planning process, a goal is associated with a plan, which, if
the planner is sound, will be consistent and will achieve its
goal.

In contrast with Bratman’s conception, even before the
goals become intentions, an agent has to examine the means
for achieving them.

Second, goals are not only linked to preferences. Obvi-
ously, some goals stem from the preferences of an agent,
while other ones have different sources. As (Castelfranchi
1998) has noticed, goals can be adopted from other agents’
ones when those agents want us to achieve some goals. In
particular, we have considered two other sources of goals:
cooperative settings (Boella, Damiano, & Lesmo 2000) and
norms (Boella & Lesmo 2001).

In our framework, the choice of the decision theoretic
planner proposed by (Haddawy & Hanks 1998) is not only
important for its ability to find optimal plans. The hierar-
chical organization of plans in DTP presents another funda-
mental advantage: abstract actions can be associated with
approximate evaluations of the costs and benefits of execut-
ing them by means of the primitive plans they subsume.
More formally, (Ha & Haddawy 1996) define the semantic
of an abstract action of the specification hierarchy in this
way:2 “an abstract action A is a function A: S � 2S [where
S is the set of states expressed as probability distributions on
the values of the attributes describing the world] that maps
a probability distribution P � S to a set of probability distri-
butions fA(P) jA � Ag [since an action may have uncertain
outcomes, its effects are expressed by a set of states without
a probability distribution on them]”.

Hence, given an initial world (i.e., a probability distribu-
tion) and an abstract action A, the set of outcomes resulting
from its projection subsumes all the outcomes of all the pos-
sible primitive plans Pr(A) deriving from the refinement of
that action.

The expected utility of a set of states whose probability
distribution is not known is uncertain (in the technical sense
of the term, see (Keeney & Raiffa 1976)): the relative prob-
ability of the outcomes is still not known, since none of the
subsumed primitive plans has been already examined and
chosen. For this reason, the expected utility is expressed as

2Following (Ha & Haddawy 1996), we distinguish two kinds
of abstract actions: sequentially abstract actions, which associate
a complex operator with a decomposition formed by a sequence
of steps. And abstract actions in the proper sense, which subsume
more specific (possibly still abstract) actions. When there is no risk
of misunderstanding, we will speak generically of abstract actions
meaning both kinds of hierarchical relations.



Π1 Π2 Π3 Π4 Π5 Π6

Π’2
Π’3

Π’4 Π’5 Π’6

LOSS OF QUALITY DUE TO TIME

DECREASE DUE TO REFINEMENT
DECREASE OF QUALITY DUE TO TIME PROGRESSION

IDEAL
PLAN

INCREASE OF LOWER BOUND
DUE TO REFINEMENT

DECREASE OF
UNCERTAINTY

a time

u
ti

li
ty

Figure 1: Refinement under time boundedness and without
it.

an interval, whose upper bound is the expected utility of the
best outcome of the best subsumed action, and analogously
for the lower bound: all the other (uncertain) outcomes are
included within this interval; the subsumed actions will have
a narrower utility interval.

The planning process is a form of search in the plan space:
it starts from a set of candidate alternative abstract plans
(plans containing at least one abstract action, partial plans,
in Bratman’s terms) and proceeds refining all the plans.

At each step of refinement, a plan where an abstract ac-
tion occurs is substituted with the plans where the abstract
action is replaced with all the subsumed less abstract ac-
tions or, in case of sequential abstraction, with a sequence
of steps which constitutes the action decomposition. The
new actions may be still abstract ones, which must be in
turn refined. Even if the search space is large, the hierar-
chical organization of the plans allows pruning a large part
of it: in fact, if the best outcome of an abstract action A is
worse than the lower bound of another action B of the cur-
rent set of alternatives, it is worthless to examine the actions
A subsumes; so A is discarded without further refinement.

The emergence of intentions
First of all, we apply the resource bounded paradigm to our
BDI agent setting. Due to the resource boundedness of the
agent, it is not always possible to complete the planning pro-
cess and to choose the best plan available to him. The meta-
reasoning component has to stop the anytime planner when
refining further the current plans seems a losing strategy: a
partial, possibly non optimal, plan becomes the intention of
the agent.

At each refinement step, the set of candidate partial plans
�i increases as an effect of substitutions with less abstract
plans and decreases as a result of the pruning of suboptimal
plans.3 Moreover, at each step the length of the candidate
plans increases, since the decompositions of (sequentially)
abstract actions are inserted into the plans. In turn, the du-
ration of the projection process increases with the length of

3Note that even if the number of candidate plans increases, the
number of primitive plans subsumed by them remains the same or
decreases as an effect of pruning.

the plans, so, at each step, the time for processing the plans
becomes longer.

In Figure 1, we sketch the problem in a graphical way.
Six refinement steps are depicted in light grey: at each step
a rectangle represents the set of current candidate plans �i

(their utility intervals all overlap, so that the upper side of the
rectangle is the utility of the plan with the best upper bound
and the lower side represents the worse lower utility among
all plans). The horizontal dimension of the rectangle rep-
resents the time needed for the refinement, which increases
proportionally to the number and length of the plans.

At each step of refinement,4 the upper side of the rect-
angle may decrease (subsumed plans give a more precise -
i.e., narrow - estimate), and the lower one may proceed in
the opposite direction (some suboptimal plans may be dis-
carded): at each step, the quality of the results increases in
the sense that a more precise (i.e., less uncertain) estimate is
provided (see the category certainty of (Zilberstein & Rus-
sell 1996)’s classification) and some suboptimal plans are
discarded. The subtree-independence assumption of (Rus-
sell & Wefald 1991) is satisfied since the change in the util-
ity regards the nodes of the search tree in an independent
manner.

At each step, as time goes by, the utility of the single plans
decreases as an effect of two factors. First, if a plan is ex-
ecuted in a state with less resources than another state (and
planning is a resource consuming task), the plan can con-
sume more resources than if executed from the previous one
(e.g., you have to drive quicker to be at destination). Sec-
ond, (after the first moment the goal provides the agent with
some utility) the utility which a plan has for the agent is dis-
counted according to the time it takes to reach the goal. The
same plan, before and after a refinement step, has a lower
utility, since it is executed from a worse (and later) initial
state.

If there were no discount related with time, the utility in-
terval of the set of candidate plans would proceed as shown
by the light grey rectangles. However, in reality, the refine-
ment proceeds as shown by the dark rectangles: the intervals
still become more narrow, while the utility decreases. At a
certain time (see ��

�), some plans become worse than at the
previous step (e.g., some good plan is not executable any-
more in the time remaining).

The effect is that, after a certain amount of time, it is better
to stop refining and let the execution component to choose
a plan without any other planning effort, even if there is no
guarantee of choosing an optimal plan; the meta-reasoning
module, knowing or estimating the parameters involved in
this process, can predict in advance when to stop planning
and to accept the risk of choosing a suboptimal plan from
the set of primitive plans subsumed by the partial plans built
so far.

4For the sake of brevity, here, we identify a step of refinement
with the expansion of a level of depth in the search space. The
actual algorithm is interruptible after the substitution of a single
abstract action of a single candidate plan. So the real reduction of
the uncertainty of the plans proceeds as in the dotted line of the
Figure 1.



The parameters considered by the meta-reasoning process
are:

1. The average narrowing factor n�i� of the utility interval as
a function of the number of refinement steps (we assume
it is the same for upper and lower bound for simplicity).
It is a positive factor which decreases with time since the
number of candidate plans increases. Therefore, the un-
certainty of the plans decreases monotonically, and also
(Boddy & Dean 1994)’s requirement of diminishing re-
turns is satisfied.

2. The average increase d in the duration of a refinement
step.

3. The decrease of utility as a function of time (after some
point after which the goal becomes useful for the agent):
the function c (assume time costs separability (Russell &
Wefald 1991)).

4. �i, the set of plans (after the pruning of suboptimal ones)
at step i.

5. a is the number of refinement steps necessary to reach
primitive plans (depending on the height of the trees of
actions in the plan library rooted by elements of ��). This
is the upper bound on the duration of the refinement.

6. The functions u and l, the upper and lower bounds of the
utility of a set of plans �i.

7. The increase, due to external events, of the uncertainty in
the world, as a function of time (this factor is reflected
in the state Si, where the plans �i are executed after i
refinement steps).

Obviously, the values of these parameters can be different
according to the problem at issue and can be adapted accord-
ing to the agent’s experience (see (Boddy & Dean 1994)): a
performance profile can be created by gathering statistics.
As suggested by (Zilberstein & Russell 1993), it is possible
to parameterize also with respect to the actual utility of the
ith set of candidate plans, instead of relying on an approxi-
mation with respect to the initial utility.

Set b to:5

(1) b = min(j � i � a) such that �*u(�i�Si�) + (1 -
�)*l(�i�Si�) � �*u(�i���Si���) + (1 - �)*l(�i��(Si��))

(j is 1 if the agent has not started refining the original plans,
otherwise it is equal to the number of steps performed).
u(�i�Si�) (and respectively l(�i�Si�)), if c and d are con-
stants, can be approximated as a function of u(���S��):

u(�i�Si�) = (u(���S��)-(n�i� � i))-c�d � �i � �i� ������

If b � a, then the agent will have to choose one abstract
candidate plan among the alternative ones in �b using the
formula:

pbest=argmaxp��b
(�*u(p(Sb)) + (1 - �)*l(p(Sb)))

and, on the basis of the information offered by pbest, the
execution module of the agent architecture will choose ran-

5As in (Horvitz 2001) we assume that if an uncertain solution
is preferred to a refined one, further refinements would not change
this decision.

domly a primitive plan among the ones pbest subsumes6 (it
is guaranteed that those plans have a utility interval which is
included in the interval of the subsuming plan pbest). This
process does not ensure that an optimal plan is chosen, but
providing the decision process with more time would have
led to a possibly suboptimal choice, anyway.

The solution proposed, however, must be still refined a
bit.

First, the quality of a plan depends not only on the ex-
pected utility interval but also on a parameter � which ex-
presses the attitude towards uncertainty.

Why does the agent prefer a (more) certain outcome with
respect to adopting an uncertain better option? As recent
developments in decision theory have found, an agent pro-
ceeds refining his current plans because humans prefer less
ambiguous alternatives with respect to more ambiguous and
uncertain ones (see the Ellsberg’s paradox). In order to
compare the utility intervals with different degrees of un-
certainty, it is necessary to scale the upper and lower bounds
with respect to the number of possible primitive plans Pr(�i)
whose respective probabilities are not known. In fact, the
uncertainty decreases at each step (note that the primitive
plans subsumed decreases:

Pr(�i����Pr(�i)).
If � is a constant, the formula for deciding between uncer-

tain alternatives is reduced to Hurwitcz pessimism/optimism
criterion.

Decision theory scholars have not yet agreed on a single
technique for dealing with uncertainty. We adopt here (Ghi-
rardato & Marinacci 2001)’s proposal to weight the possible
outcomes according to a non increasing function � express-
ing the averse attitude of the decision maker towards the un-
certainty of a set of alternatives �i:
�(�i)*u(�i�Si�) + (1-�(�i))*l(�i�Si�).
Uncertainty aversion can sometime lead an agent to sub-

optimal solutions, but humans adopt this attitude since, in
the spirit of the so called rule utilitarianism, it is rational for
them from the point of view of general policies for acting,
even if, in some single cases, it is not the optimal policy.

Second, depending only on the parameters n, d and �, it
seems possible that an agent could prefer to choose a plan
from a more uncertain set of plans �i: in fact, the upper
bound of the utility intervals decreases at each step so the
refined solution seems to lose some good opportunities. Ab-
stracting away from the problem of resource boundedness
for a moment, we would like that the agent prefers always
to choose an action from a more certain set of options. A
tentative modification could be to impose a constraint on the
relative values of n, d and �.

Instead, there is no need to do so. We are simply misinter-
preting the role of the refinement process. We have said that
at each refinement step, the set of candidate plans results in a
narrower utility interval: the upper bound decreases and the
lower bound increases. The decrement and the increment
correspond to two partially different phenomena.

6Other decision strategies are possible, see for example (Helwig
& Haddawy 1996).



The upper bound decreases as an effect of the better esti-
mate of the resulting outcomes, which is offered by the less
abstract plans produced in the refinement step. So the up-
per bound of �i�� expresses the real (upper) utility of the
same primitive plans included in Pr(�i): no optimal plan is
discarded, while their utility estimate has been revised. The
same happens for the lower bound: the estimates are revised
since an abstract plan has been replaced by a set of more
primitive plans.

However, the refinement process involves also a pruning
step which effectively discards some of the plans: the sub-
optimal ones. In this case, we have that the lower bound
increases as a result of the fact that some of the plans are
thrown away (without any loss for the agent).

This means that the formula above must be changed: the
comparison between the utility interval of a set of plans �i

and the utility of the following one �i�� must be made with
respect to the same upper bound: the one of the subsequent
set of plans �i��, minus time costs. It is an estimate, but the
upper bound of �i is not certain anyway. Thus, formula (1)
becomes:

(2) b = min(� � i � a) such that �(�i)*u(�i�Si�-n(i))
+ (1 - �(�i))*l(�i�Si�) � �(�i��)*u(�i���Si���) + (1 -
�(�i��))*l(�i��(Si��))

In fact, u(�i(Si)) is only a wrong estimate of u(�i��(S�)):
the best plan of both sets is the same one. On the other
hand, the lower bound is not (only) a wrong estimate, rather,
it is the result of a greater set of alternatives. If the agent
stopped and chose one primitive plan randomly from �i, he
could select the worst plan in Pr(�i). But this plan may be
a different (and also worse) one with respect to the worse
case of Pr(�i��), where, in fact, some plan may have been
thrown away.

Stability vs opportunities
The main issue of Bratman’s definition of intention is the
commitment of the agent, i.e., its stability over time: “we
simply are not capable of constantly redetermining without
inordinate costs, what would be the best thing to do in the
present, given an updated assessment of the likelihoods [...]
Rather, we settle in advance on prior, partial plans and tend
to reconsider them only when faced with a problem” ((Brat-
man 1987), p.29).
In (Boella 2002) we addressed the question of why agents
commit to partial plans and they use these plans for guiding
further planning. Here we focus on the stability of inten-
tions.

Our framework suggests a solution to the question why
an agent maintains an intention, and, in particular, why he
maintains it even if he does not know whether it is still the
most useful alternative for him.

The meta-reasoning process, when the agent has to decide
whether to reconsider the intention, has to take into account
the fact that he is partway the execution of his plans, while a
new plan would need to be executed from scratch (possibly
facing more risks) from a possibly worse initial state with
respect to the current one.

These factors surely increase the persistence of the cho-
sen plan with respect to the other alternative candidate plans
which the agent has produced during the previous planning
phase, before choosing and executing the currently intended
plan.

What happens when the world changes? When the world
changes, the agent does not know whether the change pro-
vides him with some new (better) opportunity. Some plan-
ning is needed. When it is rational that the meta-reasoning
module starts reconsidering the intention anyway?

According to Bratman, intentions resist reconsideration
since reconsidering them would take too much time with
respect to the limited resources at disposal of the agent.
Reconsideration is costly, if we interpret it in the sense of
making some object level planning. In a classical planning
framework, the meta-deliberation process cannot be but a
full deliberation phase, where the agent replans from his
prior goals. In contrast, in a hierarchical decision theoretic
framework, the planner can be used to make some low cost,
even if uncertain, predictions: in fact, even the abstract ac-
tions at the top of the plan hierarchy provide an estimate of
the utility they have for the agent.

The problem of the stability of intentions is reduced to the
problem of whether to refine the uncertain estimates of ab-
stract plans or to continue the execution of the current plan.

If we exploit the bounded rationality principle, we can
limit dynamically the reconsideration if it is too costly, with-
out barring it by assuming commitment as a primitive prin-
ciple. Also (Bratman, Israel, & Pollack 1988) consider the
possibility of an opportunity analyzer which overrule the
intention maintenance principle. In an experimental set-
ting (Kinny & Georgeff 1991) notice that the boldness and
cautiousness of agents in reconsidering intentions should
be tailored to the dynamicity of the environment. Finally,
(Wooldridge & Schut 2001) propose a framework inspired
to (Russell & Wefald 1991) for dealing with intention recon-
sideration policies. Differently from our proposal, they base
the decision of reconsidering the current intention or not on
an estimate of the utility of (re-)deliberating “based on dis-
tributions which determine how the environment changes”.

In contrast, in our model, we propose that agent always
starts redeliberating, but we apply the resource boundedness
model in order to limit this redeliberation so that the agent
does not spend too much time reconsidering his intentions.
Moreover, we try to show why the redeliberation results in a
more limited reasoning with respect to a complete delibera-
tion which starts from prior goals.

In Figure 2 we represent the situation where an agent has
a plan p� and, at t� he decides, given a new assessment of
the situation at hand, to meta-deliberate about whether to
change his intention or not to (the grey boxes in the back-
ground represent three possible subsequent phases of recon-
sideration). At t� the agent has some new elements to con-
sider: the abstract plans �� and ��

� with their uncertain out-
comes.

Compare the current situation with that of Figure 1: in
that case, for each goal, the agent has only partial plans at his
disposal. In this case, the agent already committed to one de-
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Figure 2: Deciding whether to abandon the current plan p� or not.

tailed plan p� (in fact, he started executing it) and projected
some abstract actions �� and ��

�. In that case, after some re-
finement steps, the agent stops the planning phase and com-
mits to a (possible suboptimal) primitive plan, since he can
predict that going on with the refinement process would lead
him to a situation where a more certain solution would be
dispreferred with respect to a more partial solution.

Here the agent has to decide whether to continue the re-
consideration process with the new information produced at
t�: he has at his disposal the projection of his current inten-
tion v(p�(t�)) (t� is the time at which the first step of the
meta-deliberation process ends) and some uncertain alterna-
tives. Is it necessary a further deliberation step? If there
is a plan such as ��

�, which dominates p�, the agent should
revise his intentions and abandon p�. Otherwise, if there is
no such plan, consider the other alternative provided by the
partial plans ��. Since it is partial, its utility is an interval
[l(��(t�)), u(��(t�))]. The interval must be compared with
the expected utility value of p�(t�). Some more refinement
would be desirable, but the time employed in the decision
leads to choosing among a worse set of alternatives.

The refinement mechanism works well if all the plans
contain uncertainty: in fact, only for those plans there is an
advantage in devoting time to planning. In contrast, for non-
partial plans, as the current plan p� is, refining the remaining
plans results only in a loss of utility due to time costs (com-
pare u(p�(t�)), u(p�(t�)) and u(p�(t�)). Moreover, a primitive
plan without uncertainty is not affected by the risk aversion
of the agent.

As a consequence, formula (2) leads to an early stop of
the refinement process, i.e. to maintaining the commitment
to the current plan, even if the agent has to take a decision
from a more uncertain set of alternatives.

Remind that when in Figure 1 we stop refining the can-
didate plans is not because we do not have a criterium for
deciding among partial (i.e. uncertain) plans. Rather we
proceeds refining the partial plans since we gather more in-
formation about the solutions to have more precise estimates
about the plans outcomes and to discharge suboptimal plans
from the set of possible solutions. The wider the utility inter-
vals involved in the decision, the greater the possibility that
a bad suboptimal plan is chosen due to the resource bound-
edness of the agent.

From the performance profile of the planner it is possi-

ble to predict whether the current estimate v(p�(t�)) is more
promising than a partial plan �n which is the product of the
refinement of ��.

In summary, in a traditional planning framework, at time
t� it is not possible to have an evaluation of the partial plans
devised so far: a plan is comparable only when refined down
to its primitive actions. But this refinement is too costly, so
the definition of a primitive notion of commitment becomes
necessary.

Some problems have still to be solved. (Castelfranchi &
Conte 1997) have noticed a situation where linking decision
theory to intentionality leads to an undesired behavior: if
the agent is repeatedly presented with a new better alterna-
tive while he is performing his plan, he would choose the
new opportunities every time. E.g., while he is executing p�
at t�, he commits to a new plan q�, and while executing q�,
at t�, he revises his intention in favor of the better plan r�,
etc. Such a lucky person would not ever reach any goal!
Our reduction of intentions in decision theoretic terms is
subject to the same criticism. We, however, advance some
considerations about how to face this anomaly.

According to normative theories of economics, given a
better opportunity, the agent should abandon the previous
intention, even if the agent has invested resources on it (the
“sunk costs” problem). So the consideration of how much
the agent spent so far is not a reasonable factor to include in
the decision of non reconsidering intentions.

Escalating commitment in the presence of “sunk costs”,
however, is not always irrational, as (Camerer & Weber
1998) notice: “For example, the film ‘The titanic’ had an ini-
tial budget of $150m and was expected to gross, say $200m.
[...] Now partway through, the studio has actually spent
$200m and thinks it will cost $85m to finish. Assuming that
the half-filmed movie is worthless, should the studio ‘esca-
late’? The answer is ‘Yes’.”

Agents’ plans are usually more similar to this case than to
the examples used in the literature about sunk costs: plans
have a duration and costs, and cannot be reduced to one-
shot decisions as accepting a bet or selling actions: when
resources are consumed the agent gets no immediate bene-
fit, but, at the same time, these resource consumption (e.g.,
fuel consumption) forward the agent towards the end of the
plan, from which the benefit is produced. As an example
consider Figure 2 where, when at t� the intention is reconsid-
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Figure 3: The agent compares a conditional plan preceded by a sensing action M with the alternatives at his disposal in the
current state S�.

ered, the agent has already spent some resources in achiev-
ing p�, while he has not gained almost anything from the
execution of the plan p�.

If he changes his intentions before achieving anything in
return for the resources spent so far, he will re-deliberate al-
ways in a state which is worse that the one where he took the
last redeliberation. Hence at each redeliberation, for decid-
ing to revise his intention he has to find an action which is
much better than the first intention he committed to. Before
deciding to reconsider his current action the agent should
see also at this factor: how much the current state is worse
than the one he could have reached by staying committed to
previous plans.

After a first revision (that is, a new opportunity has been
searched for and chosen despite the sunk costs plus future
costs), an even greater opportunity is needed to make the
agent change his idea. Hence, the commitment after a se-
quence of revisions increases, as a matter of fact and not
because of subjective considerations.

What we have said in this Section concerns situations
where the agent knows how the world has changed, while
he has still to compute whether the new state of the world
offers him some more opportunities. But agents’ life is not
always so simple. In the next Section, we will address the
problem of reconsidering intentions in situations where the
agent is not aware of which is the real situation and he has
also to decide whether to gather new information about how
the world changed.

Monitoring intentions
Some more words must be devoted to the question: when
to abandon intentions? “By making explicit the conditions
under which an agent drops his goals, i.e., by specifying how
the agent is committed to his goals, the formalism captures
a number of important properties of intentions” (Cohen &
Levesque 1990). As (Cohen & Levesque 1990) prescribe in
their definition, the intention must be released when it has
been already achieved or it is impossible or irrelevant.

As it is obvious, in a DTP framework all these conditions
can be reduced to the utility of a plan: in case the goal is
achieved, the plan is impossible to execute or it does not con-
tribute to the goals it was relevant for, going on in the execu-
tion of the plan would be just a waste of resources without
any return in utility.

However, also this more general condition in terms of util-
ity is subjected to the criticism of (Singh 1992): it is tauto-
logical to say that an intention is maintained as long as it is
useful. Moreover, from this generalization we do not gain
anything at all: in a realistic situation we cannot assume
that the agent has at his disposal any information regarding
the fact that the plan succeeded, is still executable or rele-
vant. The real problem is how much resources devoting to
the monitoring of the conditions which allow saying that a
goal has been reached or impossible to achieve.

Fortunately, in a DTP setting, as (Boutilier 2000) showed,
it is possible to compute the utility of monitoring such condi-
tions. The costs and benefits of monitoring those conditions
(and acting accordingly to the resulting outcomes) must be
traded off against the benefits and costs of going on in the
execution with possibly wrong beliefs about the world.

Information guide the agent, but they are costly in the
same way as planning. We have to meta-deliberate about
whether to gather such information or to continue with the
estimate we have about the current state.

Let’s focus only on the case of the satisfaction of the goal:
it is possible that some event or agent have made the goal
already true before the execution or the completion of the
current plan.
There are however, two different situations to take into ac-
count. The simplest one is where the agent believes that the
goal may have been already achieved. In the second one the
agent has no clue at all about how the current situation has
changed. The former case can be represented by an agent
who has at his disposal a probability distribution on events
that change the state as a function of time. In this case the
decision about what to do can be summarized in the follow-



ing way:

1. for each possible state of affairs in S�, project the sensing
action M and from the resulting situations:
- if the goal has not been already achieved, project the
current plan pc.
- else, project the abstract actions pa for alternative goals7

and for doing nothing p�.
- (in principle, you could project also the current plan,
but its goal has been achieved; anyway, it may have an
indirect utility from some goal it is relevant to).

2. compute the resulting utility of the outcomes of pc, p�
and pa and combine it with the probability of the different
initial states and the probability of the different outcomes
of M.

This is similar to what happens in (Boutilier 2000), with the
difference that we do not assume to have at our disposal
without any cost the best alternative plan for dealing with
failures; rather, we exploit the estimate provided by abstract
actions.

However, this is not the only possible case. The agent
does not have always at his disposal the exact probability
distribution on the current state of affairs.

This situation of uncertainty is represented in the DTP
model of (Ha & Haddawy 1996) by states which are com-
posed of a set of probability distributions.
The representation of uncertainty as a set of probability dis-
tributions is directly related to (Shafer 1976)’s Theory of Ev-
idence:8 an uncertain world is not represented as a world
where all values of an attribute have an equal probability;
rather, it is represented by the so-called Basic Probability
Assignment (BPA), where the value 1 (the total mass of
probability) is associated with the universe of possible val-
ues.

For example, in Figure 3, in state S�, the goal g is un-
certain between the two possible values 0 and 1 (i.e., true
and false). However, this is a particular distribution of BPA,
which, in general, could associate a probability value to any
subset of the universe of possible outcomes, thus represent-
ing a situation of partial ignorance about the a priori proba-
bility of the different situations. Since what is of interest is
just the utility of the outcomes, it is possible to focus the at-
tention on the worst and best cases, instead of considering all
the possible outcomes. So, the utility of the different states
is evaluated, and the situation of ignorance is represented as
an interval whose lower bound is the state for which the util-
ity is worst and the upper one is the state for which the utility
is best.

The execution of a sensing action M modifies the agen-
t’s beliefs as a function of the external world state and not
according to what the agent believes.

7Whether to refine further these actions is a problem which can
be again solved by the meta-reasoning proposed above.

8Representing uncertain beliefs is a far from trivial problem.
Here we simply adopt the framework proposed by (Ha & Haddawy
1996) in relation with the foundation of DTP. See (Walley 1991)
for a comprehensive survey on the problem.

The decision about whether to execute the sensing action
will be done by projecting the abstract plans from the states
resulting (in the agent’s mind) from the projection of the
sensing action M. But even if the projection is made start-
ing from an uncertain state S� the resulting states S�, . . . ,
S� will not be uncertain in themselves; rather, the agent is
uncertain about which state he is in.

In Figure 3, we depict the alternative of sensing the world
and then proceeding accordingly to the outcomes of the
sensing action, and we compare it with the alternative of
deciding on the basis of the beliefs represented by state S�,
where the agent does not know whether the goal g has been
satisfied. Note that even after the sensing action M, the rel-
ative probability of S� and S� is not known (it is expressed
by the interval of probabilities [0 1]). While the two states
are not uncertain in themselves.

However, after the sensing action M the agent can devise
a conditional plan: the current plan pc is executed in case the
goal is still not satisfied, else, the other alternatives pa and p�
are taken into account in S�. The utility of the conditional
plan is bounded by the best (and worse) outcomes in all the
branches of the conditional plan:

[min(u(S�), max(u(S�),u(S�),u(S�))), max(u(S�),
max(u(S�),u(S�),u(S�)))].

In contrast, in case the agent does not sense the world, he
has to decide among three different alternatives which main-
tain the uncertainty in the respective outcomes: for example,
in state S’� resulting from the alternative plan pa, the agent
does not know whether the goal has been reached.

By comparing the (uncertain) utilities of this two alter-
native solutions, the agent can decide whether to sense the
world (and possibly to discard the current intention) or to
continue without any new information.

Up to know, we have discussed the problem of reconsid-
ering the whole plan which is the intention of the agent. In
the next Section, we will have a brief look at the problem of
revising only in a partial way the current intentions.

The preference for replanning
“Not only agents care whether their attempts succeed, but
they are disposed to replan to achieve the intended effects if
earlier attempts fail” ((Cohen & Levesque 1990), p.217).
A plan can be not executable anymore if a precondition of
some future action in the plan does not hold anymore. If
the agent re-evaluated the topmost actions for achieving his
(original and new) goals � in the current state Se, he would
get a set of plans �� whose expected utility is:

I����S���=[l����S���,u����S���]

where, usually u����S��� - l����S��� is large. Refining��,
on the other hand, requires time.
Since the current plan pA is included in the refinements of
��, its utility I�pA�S��� is included in I����S���. If it is
still the best alternative, it could be reached by the planner.
But this would require too much time.

Given the limited amount of time at disposal, the strat-
egy described above risks to end in a set of plans �b whose
utility interval is:
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I��b�Sb��=[l��b�Sb��,u��b�Sb��].

The larger uncertainty of �b with respect to pA does not
worth the cost of replanning from zero.

But there is still some room for finding another solution:
the current intention provides information which can be-
come the starting point of the replanning. The idea is that
the current solution is closer to a non suboptimal plan in the
plan space: it takes less time to search for it than searching
for an optimal one from scratch.

Replanning a solution from the current plan is an idea
which has independent support. E.g., Adversarial planner
(Elsaesser & MacMillan 1991) justifies a similar strategy
with the motivation that it is better to save those parts of
the plan which are still feasible and to maintain momen-
tum, instead of planning from scratch. In our framework,
we can justify this choice with considerations regarding re-
source boundedness, as in the cases discussed above.
The replanning process proceeds by producing more abstract
plans from the current one in a sequence of partialization
moves starting from the step of the plan which cannot be ex-
ecuted anymore. At a certain point, from the current partial
plan, the refinement process is restarted and a primitive plan
is searched for. Since the refinement, in general, restarts
from plans composed of actions occurring in the middle of
the abstraction hierarchy and not from the topmost actions,
the search space is greatly reduced (the height of the tree
leading to primitive plans is lower than the height of the trees
rooted in the topmost actions). A lowly uncertain plan can
be found in a quicker way.

An important property of the algorithm is that, if the near-
est partial plan does not satisfy the goal the plan aims to,
the replanner proceeds towards more and more partial plans
until the topmost actions, where this strategy will converge
with the former one.

In Figure 4, the replanning process is compared with plan-
ning a solution from scratch. The difference with Figure 1
is that before the first refinement step the current plan (in
dark grey) is made more partial, until more promising solu-
tions��

� (in medium grey) are predictable (the partialization
process requires less time than the refinement).

The replanning algorithm explains the persistence of the cur-
rent intention without considering it as a reason for insisting
on the current way of action: rather, intentions play again

a role in an indirect way. Since intentions are predominant
achievable desires and the predominance means that more
resources have been allocated for determining if they are the
predominant ones and achievable, the information produced
must be exploited fruitfully in the decision process.
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