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Abstract

This paper examines a number of theoretical and practical
issues concerning the use of decision-theoretic planning to
implement agents in market-based systems. The markets
considered here result from the decomposition of complex,
intra-organizationai resource allocation problems such as
manufacturing scheduling. Although these problems can be
formulated as monolithic optimization problems, they tend to
be much too large to solve in practice. Markets provide a
means of decomposing large resource allocation problems
and distributing the computation of a solution over many
processors.

An important precondition of efficient markets is agent-level
rationality. Decision theoretic planning can be used to imple-
ment economic rationality and thus decision theoretic plan-
ning agents fit well into market-based approaches. The
primary challenge in building decision theoretic planning
agents is the size of the agent’s state space. Although market-
based decomposition results in agent-level problems that are
much smaller than the original resource allocation problem,
the price mechanism used to achieve independence of the
agent-level problems requires that the agents plan over a
large number of different resource contingencies. This
requirement exacerbates the state space explosion that char-
acterizes decision-theoretic planning. The application of
state space reduction techniques such as structured dynamic
programming and reachability analysis are shown to yield
significant reductions in the effective size of the agent-level
problems and thereby increase the applicability of decision
theoretic planning techniques in market-based systems.

1 Introduction

Real-world resource allocation problems such as sched-
uling production machinery in large manufacturing facili-
ties could benefit greatly from the application of decision-
theoretic planning techniques. Such allocation problems are
characterized by uncertainty and complex trade-offs
between objectives such as time, flexibility, and cost. How-
ever, the standard techniques used to allocate resources rely
on numerous simplifying assumptions, such as determinis-
tic outcomes and single-attribute objective functions such
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as minimizing the tardiness or makespan of a set of jobs
[23].

A decision-theoretic planning system for manufacturing
scheduling would explicitly manage the uncertainty in the
production environment and would permit managers to
express their objectives in terms of complex, discontinuous,
multiattribute utility functions. Unfortunately, the richness
of the decision-theoretic planning approach leads to a well-
documented explosion in the number of states required to
represent the problem [5, 11]. Several techniques, such as
state aggregation [5, 6, 12], and reachability analysis [1, 4]
have been used successfully to delay the onset of impracti-
cally large state spaces. However, it is unlikely that such
techniques by themselves are sufficient to permit the formu-
lation and solution of large, industrial-scale decision-theo-
retic planning problems. Instead, some form of problem
decomposition is required [10, 19].

A very general approach to problem decomposition that
is attracting a great deal of research interest is based on the
notion of agents interacting within markets [8, 9, 21, 33,
34]. The purpose of this paper is to examine the suitability
of decision-theoretic planning agents for certain types of
market-based systems. Section 2 begins by defining the
environmental context of the resource allocation problems
considered in this paper. Section 3 works backwards from
economic theory and the characteristics of the original
resource allocation problem to identify the core require-
ments for the market-based agents. The suitability of deci-
sion-theoretic planning for implementing market-based
agents is examined in Section 4. The fundamental question
addressed in the section is not whether decision-theoretic
planning is an appropriate framework for fulfilling the
requirements imposed by economic theory. Instead, the
important question is one of computational practicality.
Although the agent-level planning problems are exponen-
tially smaller than the undecomposed problem, they typi-
cally remain far too large to represent and solve using
conventional dynamic programming techniques (see [24]).
In order to be solvable in practice, the agent-level planning
problems must possess intemal structure that can be
exploited by state space reduction techniques. The empiri-
cal evidence presented in this section suggests that certain
important classes of resource allocation problems do pos-
sess internal structure that can yield significant reductions
in the effective size of the agent-level planning problem.
Section 5 concludes with some general observations regard-
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ing the use of decision-theoretic planning agents in market-
based systems.

2 Market-Based Decomposition

A distinction is often made in the distributed artificial
intelligence (DAI) literature between cooperative distrib-
uted problem solving (CDPS) environments and multiagent
systems (MAS) environments [3, 15]. The critical difference
between CDPS and MAS environments is the existence of a
global utility function. In CDPS environments, a global util-
ity function exists; the challenge is to decompose the prob-
lem such that the maximization behavior of the agents
results in maximization of the global utility function. The
final utilities of the agents themselves are irrelevant since
the agents exist solely to facilitate the distribution of com-
putation.

In contrast, agents in MAS environments are typically
used to model the distributed, multiagent structure of a nat-
urally decentralized problem [28]. For example, agents can
be used to represent different firms in a complex supply
chain coordination problem. Since the fundamental princi-
ples of decision theory prohibit the aggregation or compari-
son of utilities across individual agents [25], no meaningful
measure of global utility exists in such environments. Iden-
tifying a "good" of"fair" solution therefore requires a com-
mitment to a particular game-theoretic bargaining solution
[26, 28].

The task of allocating scarce production resources in a
manufacturing facility is an instance of the CDPS class.
Although the term "cooperative" is misleading in this case
(since economic agents are strictly self-interested), intra-
organizational resource allocation problems have well-
defined utility functions. The task facing the designer of the
agents is to decompose the global utility function into
agent-level utility functions. In the following section, a
decomposition is proposed that achieves an additive rela-
tionship between global utility and independence between
the agent-level problems.

2.1 Decomposing the Scheduling Problem

A natural way to decompose a resource allocation prob-
lem in a manufacturing environment is to create computer-
based agents for each part and machine in the production
system (part agents and machine agents respectively). All
the costs and revenues in the problem domain can then be
allocated to individual agents as shown in Figure 1.

The only source of revenue in the system is the payment
that occurs when a completed part is shipped to the next
stage in the system’s supply chain, such as a final customer,
a distributor, or finished goods inventory. Incoming revenue
is modeled using a terminal reward that is received by a
part agent when the part it represents leaves the production
system. The size and functional form of the reward are
determined exogenously but are known to the part agent.

On the cost side, both part agents and machine agents
incur costs. In the case of part agents, each part is allocated
the costs of its constituent raw materials as well as the cost
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Figure ]: An allocation of global revenues and costs to
a part and machine agent.

of holding the part in work-in-process inventory. The costs
of wear and tear, consumables, and setups are allocated to
individual machines.

The arrows marked "inter-agent transfers" are discussed
in more detail in Section 3. At this point, it is sufficient to
recognize that all inter-agent transfers are zero-sum and
therefore have no net impact on global utility. As a result,
the global utility of the production system (revenues - costs)
can be expressed as the sum of the individual agent utilities:

= (1)
i

To simplify exposition in this paper, we make the assump-
tion that variable, setup, and maintenance costs are zero,
This permits us to eliminate machine agents from the
decomposed problem and focus on the more complex
requirements of part agents.

2.2 Microeconomic Theory and CDPS Environ-
ments

The purpose of microeconomic theory is to describe the
interaction of individual rational agents pursuing their own
selfish objectives [2, 17]. The term rationality, as it is used
in the microeconomic context, corresponds to Elster’s
notion of thin rationality [13]. Thin rationality requires only
that an agent maximize its utility according to a consistent
set of preferences over outcomes and that its reasoning
about the expected values of outcomes be consistent with
the fundamental axioms of probability theory.

Although the microeconomic formulation of agents is too
simplistic to provide an accurate description of human
agents, the objective in a CDPS environment is not to simu-
late reality. Instead, the objective is to distribute computa-
tion and aggregate the results so that global utility is
maximized. The designer of problem solving systems in a
CDPS environment has the luxury of complete control over
the implementation and behavior of the agents in the sys-
tem. This is clearly not the case for the designers of real
markets (e.g., the New York Stock Exchange [32]) or prob-
lem solving systems in MAS environments. It is therefore
possible for a CDPS system to be constructed in strict
accordance with microeconomic theory.
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The advantage of using microeconomics as a blueprint
for a market-based system is that the theory provides some
a priori insights and guarantees about the overall outcome
of the market. Specifically, the First Fundamental Theorem
of Welfare Economics states that a competitive equilibrium
induces an allocation that is Pareto optimal [17, 16]. That is,
if rational, self interested agents are permitted to compete in
a market, the outcome at equilibrium is that no agent can be
made better offwithout making some other agent worse off.
Although Pareto optimality in the general case is insuffi-
cient for global optimality, it is possible to achieve equiva-
lence between the two in cases in which global utility is the
sum of agent utilities.

2.3 Maximization Behavior of Agents

According to the decomposition in Figure 1, an agent in a
manufacturing system maximizes its utility by attaining its
terminal reward while simultaneously minimizing its costs.
The cost and rewards that the agent accumulates during its
progress through the production system are a function of
two things: chance and the agent’s control of production
resources. It is therefore possible to express agent i’s
expected utility as a function of its allocation of resources
x, : U~ = f,(x~).

Production resources are defined as discrete units of pro-
cessing time on a particular machine at a particular time. A
family of propositional variables Owns(Mj, Tk) can be used
to denote whether the agent has exclusive rights to process-
ing on machine Mj at time Tk. The total number of produc-
tion resources in the system, m, is the number of machines
in the production system multiplied by the number of time
units in the planning horizon.

The only way that agents can increase their utility is to
exchange resources with other agents. Such exchanges can
occur between rational agents if and only if neither agent is
worse off as a result of the exchange and at least one agent
is strictly better off. One means of facilitating such individ-
ually rational (IR) exchanges between agents is to augment
the m-good economy with a numeraire good. A numeraire
good is a good that possesses the properties of fungibility
and divisibility but which has no intrinsic utility to the
agents other than its acceptance within the economy as a
unit of exchange [17]. Acceptance of the good as a unit of
exchange is achieved by adopting and enforcing the con-
vention that all agents express their preferences for resource
goods in terms of the numeraire good M rather than their
own idiosyncratic and incomparable units of utility. The
result is a quasi-linear utility function for agent i:

U~ = Mr + dpi(x,) (2)

To construct (2), the agent scales its utility function to make
it linear in good M. The term ¢i(xi) corresponds to the
agent’s intrinsic utility for resource goods. In a manufactur-
ing scheduling environment, the form of Cj(x~) is deter-
mined by the complex interaction of costs and rewards
faced by the part. Intuitively, high-value parts with high
holding costs and binding deadlines are bound to value cer-

rain production resources more than low-value parts that are
built to stock.

2.4 Determining Reservation Prices

Determining the rationality of a particular exchange
requires agents to know their own private reservation prices
for goods. Agent i’s reservation price for resource good x/

is the change in the quantity Mi that makes the agent indif-

ferent between an allocation that contains xJ one that is
identical in every respect except that it does not contain x).

Thus given x/ = xi u x/, AMj(x2) = ~i(x/)- qb,.(xj).
Note that the reservation price is symmetrical. It contains no
spread between the price at which the agent is willing to
buy the resource (bid price) and the price at which the agent
is willing to sell the resource if it already owns it (ask
price). In addition, the quantity AM is independent of the
agent’s endowment of M. An implication of the quasi-linear
utility function is that agents are risk neutral with respect to
good M and thus all exchange decisions are made on the
basis of marginal changes in M.

An important issue that arises in resource allocation
problems is that valuations for resource goods are seldom
independent. Two common forms of resource interdepen-
dence are substitutability and complementarity. Two goods
x1, x2 are substitutes if the utility of owning them in the
same allocation is subadditive:
Ui(xl, x2)< Ui(xl)+ U~.(x2). Conversely, the goods are
complements if the utility of owning them in the same allo-
cation is superadditive: U~(xl, x2) > U~(xI) + Ui(x2). Sub-
stitutability occurs in manufacturing environments
whenever a contract on a particular machine at a particular
time can be used in place of a contract on a different
machine or at a different time. Complementarity occurs
whenever an operation requires more than one unit of pro-
cessing time or involves precedence constraints.

The deeply embedded interdependencies of goods in
resource allocation problems means that the agents invari-
ably participate in a combinatorial auction [18, 27, 29]. In a
combinatorial auction, an agent cannot determine its reser-
vation price for a good by considering the good in isolation.
Instead, the agent must consider as many as 2" unique allo-
cations of resources and calculate its reservation price for
all transition between all allocations.

For example, in the m = 2 economy shown in Figure 2,

the agent’s reservation price for good x2 depends on its

ownership of xI . If the agent’s initial allocation is

(xI = 0, x2 = 0, M = 100), its reservation price for 2 i s
$30- $100 =-$70. In other words, the agent is willing to
pay up to $70 to acquire the resource. However, if the
agent’s initial state is (x1 = 1, x2 = 0, M = 50), its reserva-
tion price is only $0 - $50 = -$50. The agent therefore con-
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Figure 2: An indifference graph for an economy

consisting of two indivisible resource goods (X1 and

x2 ) and a numeraire good M.

siders the goods to be partial substitutes since it values x2

less when it already owns xI .

3 Interagent Exchange

The decomposition of a resource allocation problem
results in apure exchange economy [17]. No production or
consumption of the m resource goods or the single numer-
aire good occurs during the operation of the market.
Instead, the agents exchange goods until no further IR trans-
actions are possible. The equilibrium outcome is said to be
efficient if each good is owned by the agent with the reser-
vation price for the good.

A contract graph [30] provides a convenient means of
visualizing the exchanges that can occur in an n-agent m-
good economy. Each vertex of the graph describes an allo-
cation of goods to agents. The edges represent exchanges of
goods (or contracts) between agents. Figure 3 shows a very
simple contract graph for an economy with two agents and
two resource goods. The intrinsic utilities of the agents are
shown for each vertex as well as the sum of the utilities.
Although transfers of M are essential for the execution of
the exchanges, interagent transfers of M in a pure exchange
economy with quasi-linear utility functions are zero-sum.

The total utility of money, ~ U~(M~), is constant in all allo-

cations and thus the flows of M can be let~ implicit on the
contract graph.

One advantage of the contract graph representation is that
it permits the operation of the market to be visualized as
local search over allocations. The different auction forms
used to implement the market result in different search
operators. However, in this case, the agents are risk-neutral

initial allocation

fo15° I
o1:oI
gx,, :}, { }l

Agent/

1 3

2 10

Total ~10 ol

l{ }, x2)l
~timal allocation

~gent/ ~,(x~)
! 0

;2 100

Total 100

Agent/

15

2 0

total 15

Figure 3: A contract graph showing for a two-agent
two-good economy.

with respect to the auction and possess independent private
valuations of the goods. Consequently, the major auction
forms are equivalent in terms of economic efficiency [20].

Because of the equivalence of auction forms, the market
can be implemented as a continuous auction rather than a
call auction. In a call auction, a central auctioneer collects
reservation prices from potential buyers of a good and
awards the good to the highest bidding according to some
price function such as first- or second-price [14, 20]. In a
continuous auction, agents are always in a position to buy or
sell resource goods and transactions are executed without
the intervention of an auctioneer.

The primary difference between a call auction and a con-
tinuous auction is the number and sequence of contracts
required to attain the equilibrium allocation. Since the reser-
vation prices of the bidders are sorted in a call auction, a
single contract is all that is required to ensure an efficient
outcome. In a continuous auction, the path through the con-
tract graph depends on the order in which the agents inter-
act. Although the distribution of the economic surplus to
agents may be different in a continuous auction, the only
outcome of interest in a CDPS environment is global utility.
A continuous auction therefore provides a convenient
means of avoiding the synchronization requirement of a call
auction.

4 Decision-Theoretic Agents

Regardless of the auction form used to implement the
market, the agents that participate in the market must be
able to determine their reservation prices for arbitrary bun-
dles of resource goods. The agents use their reservation
prices in two ways. First, an agent acting in the buyer role
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needs to identify desirable allocations and determine its
willingness to pay for the resources it does not own. Con-
versely, an agent in the seller role must be able to respond to
ask price inquiries from other agents. To complicate mat-
ters, agents in a combinatorial auction may be selling and
buying within the scope of a single transaction. For exam-
ple, the contract represented by the horizontal line in
Figure 3 has Agent 1 selling xI and buying x2 at the same
time.

To this point, nothing has been said about the precise
manner in which an agent i determines ~i(xi) where

x,. e Xi and IXi[ = 2m. However, it is important to recog-
nize that an agent’s expected return on its investment in a
production resource depends on the way in which the agent
uses the resource. Thus, the valuation problem is tightly
coupled with an agent-level planning problem.

4.1 Physical and Resource State Spaces
An agent is a computer-based process that represents the

interests of an object (in this case, a part) in the real world
(in this case, a manufacturing facility). A decision-theoretic
planning agent generates a policy x that specifies the
agent’s best action in every state of the state space of the
part it represents [5, 6, 12]. The variables used to represent
the "physical" state of a part agent are shown in Figure 4.
The actions available to the agent are shown in Figure 5.

Figure 4: State variables for part agents

State variable /
family of state
variables Description Domain
Time current system time in {1 .....T}

discrete units
Status(Op/) the completion status of {complete,

each operation Opi in the incomplete}
part’s project plan

Shipped whether the part has {true, false}
received its terminal
reward

ElapsedTime(Opi) the number of units 1, ...,

processing time already max(d/)}
invested in operation Opi

Figure 5: Actions for part agents

Action/family of
actions Description
Wait do nothing (the value of Time is

incremented)
Process(Opi, Mj, ~rocess operation Opi on machine Mj
Tk) for one unit of time starting at time Tk
Ship exit the system and receive a terminal

reward

If the part requires three operations and is in a state that
satisfies Status(Opl) = complete ^ Status(Op2) = complete

^ Status(Op3)=complete ̂  Shipped=false, then the
agent’s policy states that it should execute the Ship action
(and thereby trigger the payment of its terminal reward).
Action preconditions ensure that the Ship action is not exe-
cuted until the paws operations are complete and operations
can only be completed by executing Process0 actions.

The uncertainties that exist in manufacturing environ-
ments regarding the durations of operations, quality prob-
lems, and machine breakdowns mean that decision-
theoretic planning at the agent-level is seldom trivial. The
planning problem is further complicated for market-based
agents by contention for scarce resources. An agent cannot
simply choose to execute an action such as
Process(Op3, M2, T3) since other agents may also want
exclusive use of machine M2 at time T3. Meuleau et al.
[19] address the problem of resource dependency by using
heuristic search techniques to merge the policies of the
agents into a consistent global allocation of resources.

An alternative approach to centralized dispute resolution
is IR exchange based on market prices, as discussed in
Section 3. However, in order to determine their reservation
prices for goods, the agents must plan over all possible

resource contingencies. For every state st in the agent’s

physical state space si e Si , the agent must consider its best

action given every possible allocation of resources x; ~ X~.

The decision-theoretic planning algorithm generates the
agent’s optimal policy over the joint physical and resource
state space and thereby generates reservation prices as a by-
product of its operation.

To illustrate, consider a physical state in which the agent
evaluates the expected value of executing the
Process(Op3, M2, T3) action. The action has many precon-
ditions including precedence constraints (such as
Status(Op2) = complete) and temporal constraints (such 
Time = T3). In addition, execution of the action requires
that Owns(M2, T3) be true for the agent. However the own-
ership status of resources is not controllable by the agent
through its action set and must be treated as a random vari-
able. During policy generation, the decision-theoretic plan-
ning algorithm selects an action for the state si n x~ where

Owns(M2, T3) ~ x~. and determines the expected value 

that state given the optimal policy n: Vn(si n xi). The

algorithm also selects an action for sinx/ where

Owns(M2, T3) ~ x/ and determine Vn(sj n xi" ). The dif-

ference in expected values, Vn(si n xi)- Vn(si n xi’),
takes into account any complex interdependencies between
Owns(M2, T3) and other resources and provides the agent’s
true reservation price for the good while in state st .

4.2 State Space Reduction

The obvious problem with planning over resource contin-
gencies is that the effective size of the agent’s state space
can increase by a factor of 2m. Even a small problem with
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five machines and a planning horizon of ten time units can
increase the size of the agent’s state space by a factor of
1015. This growth in the state space effectively nullifies the
decrease in problem size achieved through decomposition
in the first place.

One means of attenuating the explosion in problem size
caused by the need to plan over resource contingencies is to
use a state space reduction technique such as structured
dynamic programming [5, 6, 12]. Structured dynamic pro-
gramming is based on the observation that not all state
information is relevant for all decisions. To illustrate, recall
the example used previously in which the Ship action was
associated with any state satisfying the clause:
Status(Opl) = complete ̂  Status(Op2) = complete 
Status(Op3) = complete ^ Shipped = false. These four state
variables are all that is required to choose the optimal
action. All other state variables are irrelevant to the decision
and can be ignored. Furthermore, if precedence constraints
exist between the operations, then only two pieces of infor-
mation are required to select an action:
Status(Op3) = complete ^ Shipped = false.

The irrelevance of certain state variables in certain deci-
sion contexts means that there is no need to enumerate the
entire state space to generate the optimal policy. Instead, the
relevant state variables can be identified in each decision
context and states that are identical with respect to the rele-
vant state variables can be aggregated into abstract states.
The abstract states are typically represented using a tree
structure, as shown by the small fragment in Figure 6. A
dynamic programming algorithm can then be applied to the
leaf nodes of the tree rather than the individual states. As
the policy improves, other state variables typically become
relevant and must be included in the tree. For example, the
value of the state variable Time is often relevant when the
Ship action is executed since the completion time of the part
determines whether lateness penalties must be subtracted
from the terminal reward. Thus, the number of abstract
states grows until the optimal policy is found.

In the best case, the algorithm uncovers numerous
sources of irrelevance in the problem structure and gener-
ates the optimal policy using an abstract state space that is a
small fraction of the size of the fully-enumerated state
space. In the worst case, the structured dynamic program-
ming algorithm can yield no reduction in the effective size
of the problem but incurs the computational overhead of
continually assessing the relevance of state variables.
Unfortunately, it is difficult to estimate the impact of the
structured approach a priori. Thus, the only way to know
whether an otherwise unsolvable decision-theoretic plan-
ning problem is solvable using structured dynamic pro-
gramming is to solve it.

Fortunately, problems with the same underlying structure
share the same sources of independence and irrelevance.
For example, the family of state variables Elapsed-
Time(Opk) is important for determining the probability that
an operation will be complete in the next unit of processing
time given the number of units of processing time already
invested in the operation. However, these variables always

Figure 6: A small fragment of a tree representation of
an agent-level planning and valuation problem. The
optimal policy and expected value of each abstract

state (leaf node) is shown.

cease to be relevant once operation Opk is complete regard-
less of the nature of the operation, the distribution of com-
pletion times, or any other problem-specific factor. In such
cases, the magnitude of the reductions achieved using struc-
tured dynamic programming for one problem instance are
typically generalizable to all instances with the same under-
lying structure.

4.3 Empirical Results

The primary research question addressed in this paper is
whether structured dynamic programming yields favorable
results when applied to decision-theoretic planning prob-
lems formulated over a joint physical and resource state
space. To answer this question, a number of small but typi-
cal agent-level planning and valuation problems were for-
mulated and solved using a variation of Dearden and
Boutilier’s algorithm [12] that incorporates non-proposi-
tional state variables and a limited form of teachability
analysis (see [7]).

The test problems belong to the flow shop class of sched-
uling problems in which each part requires n operations on
n machines. Each operation Opi can only be performed on
machine Mi and precedence constraints require that each
Opi be complete before Opi+l can be started. The duration
of each operation is represented by either a single value
(deterministic problems) or a probability histogram (sto-
chastic problems). The global objective is to maximize the
total profit of the production system. Interestingly, even
very small scheduling problems of this form are difficult to
solve exactly. For example, the three-machine, three-part
flow shop scheduling problem is know to be strongly NP-
hard [23].

The results for a number of deterministic and stochastic
problems are shown in Figure 7. In each class, the problem
size is varied by changing the length of the planning hod-
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zons. As the results indicate, the structured dynamic pro-
gramming approach does indeed delay the onset of
impractically large state spaces. A problem instance with
three operations and a planning horizon of 11 time units
induces an explicit state space of 1014 states. However, the
structured algorithm requires fewer than 16,000 abstract
states to determine the agent’s optimal policy and generate
sufficient reservation price information to permit the agent
to participate in a combinatorial auction.

The results also indicate that there are limits to the struc-
tured dynamic programming approach. The number of
abstract state spaces grows at a slower rater than the explicit
state space; however, the growth is exponential in both
cases. Moreover, the growth in the abstract state space is
much faster when the underlying problem is stochastic.

4.4 Structure of the Resource State Space

An analysis of the algorithm’s performance on the test
problems suggests that the decision-theoretic planning
problems faced by market-based agents contains three
"structural patterns" that can be exploited by state space
reduction algorithms.

The first structural pattern is temporal irrelevance. The
representation of goods used for the resource state space
defines each good in terms of a machine and a unit of time.
Naturally, as time progresses, units of processing time that
occur in the past can have no impact on the future streams
of costs and rewards that accrue to the agent. The structured
dynamic programming algorithm recognizes the irrelevance

of "expired" resources and thus the size of the agent’s
resource state space decrease as the value of Time in its
physical state space increases.

The second structural pattern, feasibility, emerges from
the interaction of three common properties of scheduling
problems: resource complementarities (multiple resources
on one or more machines are required to complete the part),
holding costs that are a function of the value added to the
part, and a binding deadline. Ifa part agent does absolutely
nothing but wait, it receives no terminal reward and,
depending on the problem environment, may not incur any
costs. Under these circumstances, the lower bound on the
agent’s expected utility in any state is zero since it can
always do nothing. Accordingly, agents typically price all
resource goods at zero whenever they are in a physical state
in which there is little chance of attaining the terminal
reward before their deadline.

The third structural pattern that occurs in the resource
state space is dominance. An allocation xi dominates allo-

cation x/ if Vx(si nxi) = V=(si nxi’) and xj cx/. Intu-

itively, the algorithm recognizes non-increasing returns
from additional resources. Returning to the example in
Figure 6, the left-most branch of the tree corresponding to
the allocation x,. = {Owns(M2, T3)} has an expected

value of 95. If Owns(M2, T3) is false, the agent can use two
units of processing on machine M3 as an imperfect substi-
tute and realize an expected value of 89. However, the algo-
rithm never considers the allocation
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Figure 7: The structured dynamic programming algorithm delays the onset of computational impracticality.

25



xi’ = {Owns(M2, T3), Owns(M3, T3), Owns(M3, 
because all resource goods have a non-zero acquisition cost
and the additional goods provide no increase in expected
utility for the agent. In short, the agent has nothing to gain
by owning xi’ over x~.

The reduction in the size of the resource state space
enabled by these three structural patterns is significant. For
example, a problem with three machines and a decision
horizon of eight time units generates a resource state space

of 23 x s = 16.8 million unique resource allocations. How-
ever, the number of allocations actually evaluated in each
physical state varies between 508 and 2 according to the
frequency distribution in Figure 8. Thus, in the majority of
physical states, the agent plans over fewer than 50 distinct
resource bundles.

20

15

number of resource allocations evaluated

Figure 8: The number of resource allocations
considered by the structured dynamic programming

algorithm in each physical state depends on the
attributes on the state.

5 Conclusions

The use of decision-theoretic planning to generate opti-
mal solutions to large, complex resource allocation prob-
lems is infeasible due to the massive states spaces that are
required to represent the problems. Although emerging state
space reduction techniques such as structured dynamic pro-
gramming and reachability analysis can greatly reduce the
effective size of a decision-theoretic planning problem,
these techniques merely attenuate the exponential explo-
sion; they do not eliminate it.

Market-based decomposition of the same large resource
allocation problems provides a more realistic opportunity to
exploit the power of decision-theoretic planning techniques
since the agent-level planning problems are relatively small.
Moreover, decision-theoretic planners provide a literal and
exact implementation of economic rationality and are there-

fore ideal for market-based systems based on fundamental
microeconomic theory.

The difficulty that arises in practice is due to the price
mechanism. Price is a critical element of market-based
decomposition since it permits the agents to plan indepen-
dently and simultaneously in spite of contention for the
same scarce resources. However, the price mechanism
imposes a significant computational burden on the agents
since they must plan over a large number of resource con-
tingencies in order to determine their reservation prices for
the resources.

The empirical results presented in this paper suggest that
the computational burden imposed by the price mechanism
can be reduced by exploiting structural patterns in the
resource state space. Specifically, structured dynamic pro-
gramming can be used to compute the reservation prices of
only those resource allocations that are relevant to the
agent. This minimal set of reservation prices can be com-
bined to determine the agent’s reservation price for any
allocation.

An important issue that is not addressed in this paper is
the feasibility of determining the equilibrium outcome in
the resulting combinatorial auction. The winner determina-
tion problem for the auction requires search over a contract
graph that is exponential in the number of agents and
resource goods [30]. However, a number of heuristic search
techniques have been proposed that perform very well, even
on very large problem instances [22, 29]. Thus, the main
advantage of the market-based approach described here is
that it transforms hard, stochastic optimization problems
into hard deterministic winner determination problems that
are more amenable to heuristic solution techniques.

Given the ultimate requirements for inexact techniques at
the market level, one might question the value of using a
computationally intensive exact approach such as decision-
theoretic planning at the agent level. Although the issue
remains unresolved, there are a number of practical reasons
why the use of decision-theoretic planning to implement
market-based agents is appropriate:

1. Computation is distributed -- The agents can solve
their planning and valuation problems independently and
simultaneously. Thus, the computational intensity of the
technique is less critical than it would be if the agent-
level problems were serialized.

2. Decision-theoretic planning agents encapsulate uncer-
tainty -- Many real-world resource allocation problems
are characterized by risk and uncertainty. Decision-theo-
retic planning provides an ideal means of incorporating
probabilistic information into decision-making. More-
over, the expected values (in the form of reservation
prices) generated by the planning algorithm encapsulate
the uncertainty in the system. The final winner determi-
nation problem can then be formulated as a deterministic
problem.

3. Accurate preference information simplifies the win-
ner determination process -- Search over the contract
graph is simplified if each agent has a partially ordered
list of resource allocations and intrinsic utilities. This is
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especially true if the search is implemented as a continu-
ous auction in which individual agents must initiate
exchanges.

4. The impact of improvements is additive -- Improve-
ments in both hardware and techniques for solving deci-
sion-theoretic planning problems have an additive effect
in multiagent systems. As such, even incremental
improvements can have a significant impact on the feasi-
bility of applying the market-based approach to industrial
scale problems.
Of course, this is not to suggest that the decision-theo-

retic planning techniques used to date in this research are
sufficient for industrial-scale problems. Instead of agents
with three operations and a time horizon of 11 time units,
problems of a useful size require agents to plan over longer
time horizons and manage a dozen or so operations. These
"useful" agent-level problems are clearly very large. How-
ever, they are not so large that they are beyond consider-
ation. Improved techniques for state space reduction,
teachability analysis, and approximation could make very
large scale market-based systems based on decision-theo-
retic planning agents a reality.
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