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Abstract

This paper presents WhiteBear, one of the top-scoring agents
in the 2"’i International Trading Agent Competition (TAC).
TAC was designed as a realistic complex test-bed for de-
signing agents trading in e-marketplaces. Our architecture is
an adaptive, robust agent architecture combining principled
methods and empirical knowledge. The agent faced several
technical challenges. Deciding the optimal quantities to buy
and sell, the desired prices and the time of bid placement was
only part of its design. Other important issues that we re-
solved were balancing the aggressiveness of the agent’s bids
against the cost of obtaining increased flexibility and the in-
tegration of domain specific knowledge with general agent
design techniques. We present our observations and back our
conclusions with empirical results.

Introduction

The Trading Agent Competition (TAC) was designed and
organized by a group of researchers at the University of
Michigan, led by Michael Wellman (Wellman et al. 2001).
In earlier work, e.g. (Anthony et al. 2001), (Grecnwald,
Kephart, & Tesauro 1999), (Preist, Bartolini, & Phillips
2001), researchers tested their ideas about agent design in
smaller market games that they designed themselves. Time
was spent on the design and implementation of the market,
but there was no common market scenario that researchers
could focus on and use to compare strategies. TAC pro-
vides such a common framework. It is a challenging bench-
mark domain which incorporates several elements found in
real marketplaces in the realistic setup of travel agents that
organize trips for their clients. It includes several com-
plementary and substitutable goodsI traded in a variety of
auctions by autonomous agents that seek to maximize their
profit while minimizing expenses. These agents must de-
cide the bids to be placed. The problem is isomorphic to
variants of the winner determination problem in combinato-
rial auctions (Greenwald & Boyan 2001). However, instead
of bidding for bundles and letting the auctioneer determine
the final allocation that maximizes income (for this problem
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tThe various entertainment tickets are substitutable, while ho-
tels, plane and entertainment tickets are complementary goods.

see (Fujishima, Leyton-Brown, & Shoham 1999), (Sand-
holm & Suri 2000)), in this setting the computational cost 
moved to the agents who have to deal with complementari-
ties and substitutabilities of goods.

Participating in TAC gave us the opportunity to experi-
ment with general agent design methodologies. We study
design tradeoffs applicable to most market domains. We
examine the tradeoff of the agent paying a premium either
for acquiring information or for having a wider range of ac-
tions available against the increased flexibility that this infor-
mation provides. In addition, using the information known
about the individual auctions and modelling the prices helps
the agent to judge its flexibility more accurately and allows
it to strike a balance between the cost of having an increased
flexibility and the benefit obtained from it, which in turn
improves overall performance even more. We also exam-
ine how agents of varying degrees of bidding aggressiveness
perform in a range of environments against other agents of
different aggressiveness. We find that there is a certain op-
timal level of"aggressiveness": an agent that is just aggres-
sive enough to implement its plan outperforms agents who
are either not aggressive enough or too aggressive. As we
will see, the resulting agent strategy is quite robust and per-
forms well in a range of agent environments.

We also show that even though generating a good plan is
crucial for the agent to maximize its utility, it is not nec-
essary to compute the optimal plan. We will see that a ran-
domized greedy search methods produces plans that are very
close to optimal and more than good enough for effective
bidding. In fact, most of the time the agent has only rather
incomplete knowledge of the various price levels (auctions
are still open), therefore solving the optimization task op-
timally does not necessarily lead to better overall perfor-
mance. Our results show that it is actually more important
to be able to quickly update the current plan whenever new
information comes in. Our fast planning strategy allows us
to do so (plan generation generally in less than 1 second).

One substantial benefit of our modular agent architecture
is that it is also able to combine seamlessly both principled
methods and methods based on empirical knowledge. Over-
all our agent is adaptive, versatile, fast and robust and its
elements are general enough to work well under any situa-
tion that requires bidding in multiple simultaneous auctions.
We have demonstrated this not only in the controlled experi-
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ments but also in practice by performing consistently among
the top scoring agents in the TAC.

The paper is organized as follows. In the next section,
we describe the TAC market game formally. After that we
present our agent design architecture. In the sections after-
wards we present the results of the competition and we ex-
plain the experiments performed to validate our conclusions.
Finally we discuss possible directions for future work and
conclude.

TAC: A description of the Market Game

In the Trading Agent Competition, an autonomous trading
agent competes against 7 other agents in each game. Each
agent is a travel agent with the goal of arranging a trip to
Tampa for CUST customers. To do so it must purchase
plane tickets, hotel rooms and entertainment tickets. This is
done in simultaneous online auctions. The agents send bids
to the central server running at the University of Michigan
and are informed about price quotes and transaction infor-
marion. Each type of commodity (tickets, rooms) is sold 
separate auctions (for a survey of auction theory see (Klem-
perer 1999)). Each game lasts for 12 minutes (720 seconds).

There is only one flight per day each way with an infi-
nite amount of tickets, which are sold in separate, contin-
uously clearing auctions in which prices follow a random
walk. For each flight a hidden parameter z is chosen uni-
formly in [10, 90]. The initial price is chosen uniformly in
[250, 400] and is perturbed by a value drawn uniformly in
[-10, 10 + r--~o " (z - 10)], where t (sec) is the time elapsed
since the game started. The agents may not resell tickets.

There are two hotels in Tampa: the Tampa Towers
(cleaner and more convenient) and the Shoreline Shanties
(the not so good and expected to be cheaper hotel). There
are 16 rooms available each night at each hotel. Rooms for
each of the days are sold by each hotel in separate, ascend-
ing, open-cry, multi-unit, 16th-price auctions. A customer
must be given a hotel room for every night between his ar-
rival and the night before his departing date and they are not
allowed to change hotel during their stay. These auctions
close at randomly determined times and more specifically
at minute 4 (4:00) a randomly selected auction closes, then
another at 5:00, until at 11:00 the last one closes. No prior
knowledge of the closing order exists and agents may not
resell rooms or bids.

Entertainment tickets are traded (bought and sold) among
the agents in continuous double auctions (stock market type
auctions) that close when the game ends. Bids match as soon
as possible. Each agent starts with an endowment of 12 ran-
dom tickets and these are the only tickets available in the
game.

Each customer i has a preferred arrival date PR~r~ and a
preferred departure date PRdep. She also has a preference
for staying at the good hotel represented by a utility bonus
UHi as well as individual preferences for each entertain-
ment event j represented by utility bonuses UENTi,j. Let
DAYS be the total number of days and ET the number of
different entertainment types.

The parameters of customer i’s itinerary that an agent has

to decide upon are the assigned arrival and departure dates,
AAi and ADi respectively, whether the customer is placed
in the good hotel GHi (which takes value 1 if she is placed
in the Towers and 0 otherwise) and ENTi,j which is the day
that a ticket of the event j is assigned to customer / (this is
e.g. 0 if no such ticket is assigned).

The utility that the travel plan has for each customer i is:

utili = 1000 + UH~ ̄  GHi (1)
ADi

+ ~ n~ax { UENT, d. I(ENT,,j = d)}
d=AAi

-- 100. ([PR.~"~ - Amil + IPRai*" - AD,[)

if 1 < AA~ < AD~ < DAYS,
else utili = 0, because the plan is not feasible.

It should be noted that only one entertainment ticket can
be assigned each day and this is modeled by taking the
maximum utility from each entertainment type on each day.
We assume that an unfeasible plan means no plan (e.g.
AAi = ADi = 0). The function I(bool_expr) is 1 if the
bool_expr =TRUE and 0 otherwise.

The total income for an agent is equal to the sum of
its clients’ utilities. Each agents searches for a set of
itineraries (represented by the parameters AAi, ADi, GHi
and ENTi,j) that maximize this profit while minimizing its
expenses.

The WhiteBear Architecture
The optimization problem in the 2nd TAC is the same as the
one in the first one, so we knew strategies that worked well
in that setting and had some idea of where to start in our
implementation (Greenwald & Stone 2001). However, the
new auction rules were different enough to introduce sev-
eral issues that markedly changed the game and made it im-
possible to import agents without making extensive modifi-
cations. For an agent architecture to be useful in a general
setting, it must be adaptive, flexible and easily modifiable,
so that it is possible to make modifications on the fly and
adapt the agent to the system in which it is operating. These
were lessons that we incorporated in to the design of our
architecture.2

In addition, as information is gained by participation in
the system, the agent architecture must allow and facilitate
the incorporation of the knowledge obtained. During the
competition we changed many parts of our agent to reflect
the knowledge that we obtained. For example, we initially
experimented with bidding based mainly on heuristics, but
it did not take us too long to realize that this approach was
not able to adapt fast enough to the swift pace required by
bidding in simultaneous auctions. Bidding without an over-
all plan is quite inefficient, because of the complementarities
and substitutabilities between goods. We therefore decided
to formulate and solve the optimization problem of maxi-
mizing the utility of our agent (see Planner section). Such

2The original architecture proposed by the TAC team seemed
an appropriate starting point (with a number of necessary modifi-
cations).
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a fundamental change would be difficult and quite time-
consuming, if our architecture did not support interchange-
able parts.

The agent architecture is summarized as follows:
while (not end of game) 

1. Get price quotes and transaction information
2. Calculate price estimates
3. Planner: Form and solve optimization problem
4. Bidder: Bid according to plan and price estimates

}
Our architecture is highly modular and each component

of the agent can be replaced by another or modified. In fact
several parts of the components themselves are also substi-
tutable. This highly modular and substitutable architecture
allowed us to test several different strategies and to run con-
trolled experiments as well. Also note our agent repeatedly
reevaluates its plan and bids accordingly, since in most do-
mains it is crucial to react fast to information on the domain
and to other agents actions and the TAC game is no excep-
tion to this rule. We furthermore designed our components
to be as fast and adaptive as possible without sacrificing ef-
ficiency.

In the next subsection we describe how the agent gener-
ates the price estimate vectors. In the subsection afterwards
we explain how the agent forms and then solves the opti-
mization problem of maximizing its utility. In the last sub-
section we present the bidding strategies used by the bidder
to implement the generated plan.

Price Estimate Vectors
In order to formulate the optimization problem that the plan-
ner solves, it is necessary to estimate the prices at which
commodities are expected to be bought or sold. We started
from the "priceline" idea presented in (Greenwald & Boyan
2001) and we simplified and extended it where appropriate.
We implemented a module which calculates price estimate
vectors (PEV). These contain the value (price) of Zth

unit for each commodity. For some goods this price is the
same for all units, but for others it is not; e.g. buying more
hotel rooms usually increases the price one has to pay.

Let O~~r, ()dep g-}goodh obadh, oent and PEV2"~(x),
Vd ’ Vd ’ d,t

PEVd~P(x), PEV~°°dh(x), PEVbdaah(x), PEV~,~’(x) 
respectively the quantities owned and the the price estimates
of the xth unit for the plane tickets, the hotel rooms and the
entertainment tickets for event t for each day d. Let us also
define the operator z) = EL1/(0.

The price estimate vectors are
< current bid price

PEV~,’~t(x) > current ask price

PEV~YP,(x) ~ = > current ask price
where typeE { arr, dep, goodh, badh }.

ifx < 0~"t
-- dJ

if x > O e,t (2)
d,t

ifx < O~yp~
O)ifx > O~~pe

Since once bought an agent cannot sell plane tickets nor ho-
tel rooms to anyone else, this means that their value is 0
for the agent; it has to treat the money that it has already
paid for them as a "sunk cost". The agent must buy all
rooms that it is currently winning if the auction closes, so

these are also considered owned by the planner. For the
plane tickets the PEV’s are equal to the current ask price,
for tickets not yet bought, but for hotel rooms it is higher
than that. In fact, we estimate the price of the next room
bought as a function of the current price and for each ad-
ditional room the price estimate increases by an amount
proportional to the current price and the day and type the
room (rooms on days 2 and 3 or on the good hotel are es-
timated to cost more than rooms on days 1 and 4 or on the

0ent andbad hotel). We also set PEVd~t (x) = O, if x < d,t
O elrl~PEV~t(x) 200, if x > d,t + 1,because all we are

certain from observing the current ask and bid prices is that
there is at least one ticket up for buy and sale, but we’re not
sure if there are any more. Also note that entertainment tick-
ets owned by the agent do not have a value of 0, since they
can be sold. By using them, the agent loses a value equal
to the price at which it could have sold them. Therefore the
PEV of owned tickets is equal to the price at which they are
expected to be sold.

Planner

The planner is another module in our architecture. It uses
the PEV’s to generate the customers itineraries that maxi-
mize the agent’s utility. Therefore, it also provides the type
and total quantity of commodities that should be purchased
or sold to achieve this. In order to do this the planner formu-
lates the following optimization problem:

GUST

AA~,AD~,mGH%,ENT¢,, { E "utile-COST}
(4)

where the cost of buying the resources is
DAYS GUST

COST= E [a( PEVff’~(x)’ ~--~I(AA~=d))
d=l c=l

GUST

+a(PEV:’P(x), ~-~ I(AD~ = d))
c=l

COST

+a(PEV:°°dn(x), EIGHt. I(AA. _< d < AD.)])
e.=l

GUST

+a(PEV~adh(x),E[(1-CH~) . I(AA~ <_ AD~)])
c.=1

ET GUST

+ Ea(PEV2,~t(x), ~_I(ENT,,t:d))]
t=l c=l

(5)
Once the problem has been formulated, the next step is

solving it. This problem is NP-complete, but for the size
of the TAC problem an optimal solution usually can be pro-
duced fast. In order to create a more general algorithm we
realized that it should scale well with the size of the problem
and should not include elaborate heuristics applicable only
to the TAC problem. Thus we chose to implement a greedy
algorithm: the order of customers is randomiTed and then
each customer’s utility is optimized separately. This is done
a few hundred times in order to maximiTe the chances that
the solution will be optimal most of the time. In practice we

83



have found the following additions to be quite useful:
(i) Compute the utility of the plan 791 from the previous loop
before considering other plans. Thus the algorithm always
finds a plan 792 that is at least as good as 791 and there are
relatively few radical changes in plans between loops. We
observed empirically that this prevented some radical bid
changes and improved efficiency.
(ii) We added a constraint that dispersed the bids of the agent
for resources in limited quantities (hotel rooms in TAC).
Plans, which demanded for a single day more than 4 rooms
in the same hotel, or more than 6 rooms in total, were not
considered. This leads to some utility loss in rare cases.
However, bidding heavily for one room type means that
overall demand will very likely be high and therefore prices
will skyrocket, which in turn will lower the agent’s score sig-
niticantly. We observed empirically that the utility loss from
not obtaining the best plan tends to be quite small compared
to the expected utility loss from rising prices.

We have also verified that this randomized greedy algo-
rithm gives solutions which are often optimal and never far
from optimal. We checked the plans (at the game’s end) that
were produced by 100 randomly select runs and observed
that over half of the plans were optimal and on average the
utility loss was about 15 points (out of 9800 to 10000 usu-
ally3), namely close to 0.15%. Compared to the usual utility
of 2000 to 3000 that our agents score in most games, they
achieved about 99.3% to 99.5% of optimal. These obser-
vations are consistent with the ones about a related greedy
strategy in (Stone et al. 2001). Considering that at the begin-
ning of the game the optimization problem is based on inac-
curate values, since the closing hotel prices are not known,
an 100%-optimal solution is not necessary and can be re-
placed by our almost optimal approximation. As commodi-
ties are bought and the prices approach their closing values,
most of the commodities needed are already bought and we
have observed empirically that bidding is rarely affected by
the generation of approximately optimal solutions instead of
optimal ones.

This algorithm takes approximately 1 second to run
through 500 different randomized orders and compute an al-
location for each. Our test bed was a cluster of 8 Pentium
HI 550 MHz CPU’s, with each agent using no more than
one cpu. This system was used for all our experiments and
our participation in the TAC.4 Hence it is verified that our
goal to provide a planner that is fast and not domain specific
is accomplished and not at the expense of the overall agent
performance.

Bidding Strategies

Once the plan has been generated the bidder places separate
bids for all the commodities needed to implement the plan.
During the competition every team, including ours, used em-
pirical observations from the games it participated in (over

rl’hese were the scores of the allocation at the end of the game
(no expenses were considered).

4During the competition only one processor was used, but dur-
ing the experimentations we used all 8, since 8 different instantia-
tions of the agent were running at the same time.

1000) in order to improve its strategy. We experimented with
several different approaches. In the next sections we de-
scribe the possible bidding strategies for the different goods
and the tradeoffs that we faced.
Paying for adaptability The purchase of flight tickets
presents a very interesting dilemma. We have verified that
ticket prices are expected to increase approximately in pro-
portion to the square of the time elapsed since the start of
the game. This means that the more one waits the higher the
prices will get and the increase is more dramatic towards the
end of the game. From that point of view, if an agent knows
accurately the plan that it wishes to implement, it should buy
the plane tickets immediately. On the other hand, if the plan
is not known accurately (which is usually the case), the agent
should wait until the prices for hotel rooms have been deter-
mined. This is because buying plane tickets early restricts
the flexibility (adaptability) that the agent has in forming
plans: e.g. if some hotel room that the agent needs becomes
too expensive, then if it has already bought the correspond-
ing plane tickets, it must either waste these, or pay a high
price to get the room. An obvious tradeoff exists in this case,
since delaying the purchase of plane tickets increases the
flexibility of the agent and hence provides the potential for a
higher income at the expense of some monetary penalty.

Our initial attempt was similar to some of our competi-
tors (as we found out later, during the finals): we decided
to bid for the tickets between 4:00 and 5:00. This is be-
cause most agents bid for the hotel rooms that they need
right before 4:00, therefore after this time the room prices
approximate sufficiently their closing prices and a plan cre-
ated at that time is usually similar to the optimal plan for
known closing prices. We tried waiting for a later minute,
but we empirically observed that the price increase was more
than the benefit from waiting. A further improvement is to
buy some tickets at the start of the game. These tickets are
bought based on the prices and the preferences of the cus-
tomers (preference is given to tickets on days 1 and 5, to
cheaper tickets and to customers with shorter itineraries).
About 50% of the tickets are bought in this way and we
have observed that these tickets are rarely wasted. Another
improvement is to bid for 2 less tickets per flight than re-
qttired by the plan until 4:00 and for 1 less until 5:00; this
provides greater flexibility and it is highly unlikely that the
final optimal plan will not make use of these tickets.

A further improvement was obtained by estimating the
hidden parameter x of each flight. Let {yi,ti},Vi E
{1 ..... N} be the pairs of the price changes yi observed
at times ti and let N be the number of such pairs. Let A =
x - 10. Then A E {0,..., 80} and P[A = z] = ~l,VZ
{0,..., 80} and P[A = z] = O, Vz q~ {0,..., 80} since x is
uniformly chosen among the integers in [10, 90]. Since A is
independent of the times {ti = Ti} when the changes occur,

therefore P[A z] P[A z N= = = I{A,=l(ti = 7"/)}]. Also
yi is uniformly chosen in {-10,..., 10+ IAr~0J }, therefore
P[Yi = Yd(A = z) ^ (ti = T~)] 

~, if Yi is an
integer in [-10,10 + zr~0] and P[yi = YiI(A = z) ^ (ti 
Ti)] = 0, otherwise. In addition the price change yi only de-
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pends on time ti and is independent of all tj, Vj¢ i, there-
fore P[yi = YiI(A = z) A (ti = T/)] = P[y, = Yd(A 

Nz) A {Ai=l (ti = 7"/)}]. Given the observations made so far,
the probability that A = z for any z E {0,..., 80} is
P[A z N N= I{A =l(t, = Ti)} A = =
PI(A=z)A{A~=, (Yi=Y~)}I A~t=l (ti=T~)] __

N N --P[A~=t(y~=YDI Ai=, (t~=T~)]
P[A=zl AN, (ti=Ti)l.p. -~ .p=

~°o {P[A:~IA~ffi,(t,=T,)I.pc} = ~°=o ~’pc = 
p Nwherep, = = YOI(A = = T,)}].

Given the value of A, {yi = Y/} are independent of each
Nother, thus p~ = I-[~=x P[yi = Y/I(A = z) {Ai=a(t, =

T,)}] = 1-I~=, PlY, = Y/I(A = z) A (ti = T,)]. Since p: is
a product, that means that if any of conditional probabilities
who make up the product is zero then Pz = 0 as well. There-
fore forpz # 0 it must be that Vi,-10 < Y/<10+ A.T,720 ~

Vi, A__> 720.(Yi-10)Ti ~ A _> maxi 720.(Y/Ti -10) . Therefore

~ ¯ 720.(YI-I0) andp~ = 0,Pz = YI~=I , ffA > maxi Ti
otherwise. So we conclude that
P[x = z NI{A,=,(t, = = =

~¢=io PC
wherepz ---- I-INI I if __

720.(Yi-I0) 
[~J+21’ Z > max i T~

10 and z < 90. Otherwise Pz = O.
In practice we have observed that just the knowledge of the
smallest value of z for which p~ > 0 is enough to estimate
the price increase and that we obtain this knowledge quite
fast (around 2:00 to 3:00 usually). This information is then
used to bid earlier for tickets whose price is very likely to in-
crease and to wait more for tickets whose price is expected
to increase little or none (they are bought when their useful-
ness for the agent is almost certain).5

Bid Aggressiveness Bidding for hotel rooms poses some
interesting questions as well. The main issue in this case
seems to be how aggressively each agent should bid (the
level of the prices it submits in its bids). Originally we de-
cided to have the agent bid an increment higher than the cur-
rent price. The agent also bids progressively higher for each
consecutive unit of a commodity for which it wants more
than one unit. E.g. if the agent wants to buy 3 units of a
hotel room, it might bid 210 for the first, 250 for the sec-
ond and 290 for the third. This is the lowest (r.) possible
aggressiveness we have tried. Another bidding strategy that
we have used is that the agent bids progressively closer to
the marginal utility 5U as time passes6. This is the highest
(H) aggressiveness level that we have tried. As a compro-
mise between the two extreme levels we also implemented
a version of the agent that bids like the aggressive (H) agent

5If this procedure is not used, then the agent pays an average
extra cost of 240 to 300 because it waits until minutes 4 and 5 to
buy the last tickets. If it is used, then this cost is almost halved.

6"rhe marginal utility 5U for a particular hotel room is the
change in utility that occurs if the agent fails to acquire it. In fact
for each customer i that needs a particular room we bid -~ instead
of 5U, where z is the number of rooms which are still needed to
complete her itinerary. We do this in order not to drive the prices
up prematurely.
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Figure 1: Average scores for some agents that do and some
that do not model the flight ticket prices in two experiments

for rooms that have a high value of 5U and bids like the
non-aggressiveness (L) agent otherwise. This is the agent of
medium (M) aggressiveness. For more details into the be-
havior of these variants we run several experiments and the
results are presented later in the paper.

As far as the timing of the bids is concerned, there is lit-
fie ambiguity about what a very good strategy is. The agent
waits until 3:00 (and before 4:00) and then places its first
bids based on the plan generated by the planner. The reason
for this is that it does not wish to increase the prices ear-
lier than necessary nor to give away information to the other
agents. We also observed empirically that an added fea-
ture which increases performance is to place bids for a small
number of rooms at the beginning of the game at a very low
price (whether they are needed or not). In case these rooms
are eventually bought, the agent pays only a very small price
and gains increased flexibility in implementing its plan.

Entertainment The agent buys (sells) the entertainment
tickets that it needs (does not need) for implementing its plan
at a price equal to the current price plus (minus) a small in-
crement. The only exceptions to this rule are:
(i) At the game’s start and depending on how many tick-
ets the agent begins with, it will offer to buy tickets at low
prices, in order to increase its flexibility at a small cost. Even
if these tickets are not used the agent often manages to sell
them for a profit.
(ii) The agent will not buy (sell) at a high (low) price, 
if this is beneficial to its utility, because otherwise it helps
other agents. This restriction is somewhat relaxed at 11:00,
in order for the agent to improve its score further, but it will
still avoid some beneficial deals if these would be very prof-
itable for another agent.

Experimental Results

To verify our observations and show the generality of our
conclusions, we decided to perform several controlled ex-
periments. Thus we gain more precise knowledge of the
behavior of different types of agents in various situations.
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Agent Scores Average Scores Statistically Significant Difference?
#WB-M2H 1 2 3 4 5 6 7 8 WB-M2L WB-M2M WB-M2H M2,L/M2M M2M/M2H M2I_/M2E

0 (178) 2614 2638 24902463 2421 2442 2526 2455 2466 2626 N/A 7
2 (242) 2339 2350 2269 2265 2229 224112347 2371 2251 2344 2359 7 x ,/"
4 (199) i2130 2073 2072 2029j2046 2098 2048 2033 2051 2101 2056 x X X

6 (100) 1112 1165 796 843 920 884 848 898 N/A 1138 865 ,f

Table 2: Scores for agents WB-M2L, WB-M2M and WB-M2H as the number of aggressive agents (WB-M2H) participating
increases. In each experiment agents 1 and 2 are instances of WB-M2M. The agents above the stair-step line are WB-M2L,
while the ones below are WB-M2H. The averages scores for each agent type are presented in the next rows. In the last
rows, ¢" indicates statistically significant difference in the scores of the corresponding agents, while × indicates similar scores
(statistically significant).
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# Aggressive Agents 0NB-M2H)

Figure 2: Changes in agent’s average scores as the number
of very aggressive agents participating in the game increases

Experiments WB-N2L WB-M2L WB-M2M WB-M2E
agent l 2087 2238 2387 2429

Exp 1 agent 2 2087 2274 2418 2399
(1 44) average 2087 2256 2402 2414
Exp 2 (200) 3519 3581 3661 3656

Table 1: Average scores of agents WB-N2L, WB-M2L, WB-
M2M and WB-M2H. For experiment 1 the scores of the 2
instances of each agent type are also averaged. The number
inside the parentheses is the total number of games for each
experiment and this will be the case for every table¯

To distinguish between the different versions of the agent,
we use the notation WB-zyz, where (i) :r is M if the agent
models the plane ticket prices and N if this feature is not
used, (ii) V takes values 0, 1 or 2 and is equal to the maxi-
mum number of plane tickets per flight which are not bought
before 4:00, in order not to restrict the planner’s options7

and (iii) z characterizes the aggressiveness with which the
agent bids for hotel rooms and takes values L,M and H for
low, medium and high degree of aggressiveness respectively.
To formally evaluate whether an agent type outperforms an-

7In the bidding section, we mentioned that until 4:00 the agent
buys PL~’~ - y and PL~ep - y plane tickets, where PLy", PL~~

are the total number of plane tickets needed to implement the plan.
In that case we used y = 2. Other options are y = 0 (the agent
buys everything at the beginning) and y = 1 (one ticket per flight
is not bought until after 4:00).

other type, we usepaired t-tests for all our experiments; val-
ues of less than 10% are considered to indicate a statistically
significant difference (in most of the experiments the values
are actually well below 5%). If more than one instances of 
certain agent type participate in an experiment, we compute
the t-test for all possible combinations of instances,s

The first set of experiments were aimed at verifying our
observation that modeling the plane ticket prices improves
the performance of the agent. This is something that we ex-
pected, since the agent uses this information to bid later for
tickets whose price will not increase much (therefore achiev-
ing a greater flexibility at low cost), while bidding early for
tickets whose price increases faster (therefore saving con-
siderable amount of money). We run 2 experiments with the
following 4 agent types: WB-N2L, WB-M2L, WB-M2M
and WB-M2H. In the first we run 2 instances of each agent,
while in the second we run only one and the other 4 slots
were filled with the standard agent provided by the TAC
support team. The result of this experiment are presented
in table 1. The other agents, which model the plane ticket
prices, perform better than agent WB-N2L, which does not
do so (figure 1). The differences between WB-N2L and the
other agents are statistically significant, except for the one
between WB-N2L and WB-M2L in experiment 2. We also
observe that WB-M2L is outperformed by agents WB-M2M
and WB-M2H, which in turn achieve similar scores; these
results are statistically significant for experiment 1.

Having determined that modeling of plane ticket prices
leads to significant improvement, we concentrated our at-
tention to agents WB-M2L, WB-M2M and WB-M2H in the
next series of experiments. For all experiments, the number
of instances of agent WB-M2M was 2, while the number
of aggressive agents WB-M2H was increased from 0 to 6.
The rest of the slots were filled with instances of agent WB-
M2L. The result of this experiment are presented in table 2.
By increasing the number of agents which bid more aggres-
sively, there is more competition between agents and the
hotel room prices increase, leading to a decrease in scores.
While the number of aggressive agents #WB-M2H_<4, the
decrease in score is relatively small for all agents and is ap-
proximately linear with #WB-M2H; The aggressive agents
(WB-M2H) do relatively better in less competitive environ-

SThis means that 8 t-tests will be computed if we have 2 in-
stances of type A and 4 of type B etc. We consider the difference
between the scores of A and B to be significant, if almost all the
tests produce values below 10%.
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ments and non-aggressive agents (WB-M2L) do relatively
better in more competitive environments, but still not good
enough compared to WB-M2M and WB-M2H agents. Over-
all WB-M2M (medium aggressiveness) performs compara-
bly or better than the other agents in every instance (fig-
ure 2). Agents WB-M2L are at a disadvantage compared to
the other agents because they do not bid aggressively enough
to acquire the hotel rooms that they need. When an agent
falls to get a hotel room it needs, its score suffers a double
penalty: (i) it will have to buy at least one more plane ticket
at a high price in order to complete the itinerary, or else it
will end up wasting at least some of the other commodi-
ties it has already bought for that itinerary and (ii) since the
arrival and/or departure date will probably be further away
from the customer’s preference and the stay will be shorter
(hence less entertainment tickets can be assigned), there 
a significant utility penalty for the new itinerary. On the
other hand, aggressive agents (WB-M2H) will not face this
problem and they will score well in the case that prices do
not go up. In the case that there are a lot of them in the
game though, the price wars will hurt them more than other
agents. The reasons for this are: (i) aggressive agents will
pay more than other agents, since the prices will rise faster
for the rooms that they need the most in comparison to other
rooms, which are needed mostly by less aggressive agents,
and (ii) the utility penalty for losing a hotel room becomes
comparable to the price paid for buying the room, so non-
aggressive agents suffer only a relatively small penalty for
being overbid. Agent WB-M2M performs well in every sit-
uation, since it bids enough to maximize the probability that
it is not outbid for critical rooms, and avoids "price wars" to
a larger degree then WB-M2H.

The last experiments intended to further explore the trade-
off of bidding early for plane tickets against waiting more in
order to gain more flexibility in planning. Initially we run an
experiment with 2 instances of each of the following agents:
WB-M2M and WB-M2H (since they performed best in the
previous experiments) together with WB-M1M (an agent
that bids for most of its tickets at the beginning) and WB-
M0H (this agent bids at the beginning for all the plane tick-
ets it needs and bids aggressively for hotel rooms.9 We ran
78 games and observed that WB-M2M scores slightly higher
than the other agents, while WB-M2H scores slightly lower.
These results are however not statistically significant. For
the next experiment we ran 2 instances of WB-M2M against
6 of WB-MOH to see how the latter (early-bidding agent)
performs in the system when there is a lot of competition.
We observed that instances of WB-M2M lay to stay clear of
rooms whose price increases too much (usually, but not al-
ways, successfully), while the early-bidders do not have this
choice due to the reduced flexibility in changing their plans.
The WB-M2M’s average a score of 1586 against 1224, the
average score of the WB-MOH’s; we ran 69 games and the
differences in the scores were statistically significant. We
then changed the roles and ran 6 WB-M2M’s against 2 WB-

9An early-bidder must be aggressive, because if it fails to get a
room, it will pay a substantial cost for changing its plan, due to the
lack of flexibility in planning.

MOH’s, to see how the latter performed in a setting where
they were the minority. We ran 343 games and the score dif-
ferences were statistically not significant. We observed that
the WB-MOH’s scored on average close to the score of the
WB-M2M’s and that in comparison to the previous experi-
ment the scores for the WB-M2M’s had decreased a little bit
(1540) while the scores for the WB-MOH’s had increased
significantly (1517). These results allow us to conclude that
it is usually beneficial not to bid for everything at the begin-
ning of the game.

We are continuing our last set of experiments in order to
increase the statistical confidence in the interpretation of the
results so far. This is quite a time-consuming process, since
each game is run at 20 minute intervalsl°. It took close to
2000 runs (about 4 weeks of continuous running time) to get
the controlled experiment results and some 1000 more for
our observations during the competition.

Results of the Trading Agent Competition

The semifinals and finals of the 2nd International TAC were
held on October 12, 2001 during the 3~a ACM Confer-
ence on e-Commerce held in Tampa. The preliminary and
seeding rounds were held the month before, so that teams
would have the opportunity to improve their strategies over
time. Out of 27 teams (belonging to 19 different institu-
tions), 16 team~ were invited to participate in the semi-finals
and the best 8 advanced to the finals. The 4 top scoring
agents (scores in parentheses) were: livingagonts (3670),
ATTae (3622), WhiteBear (3513) and tJrlaub01 (3421).
The White Bear variant we used in the competition was WB-
M2M.

The scores in the finals were higher than in the previous
rounds, because most teams had learned (as we also did)
that it was generally better to have a more adaptive agent
than to bid too aggressively.H A surprising exception to this
rule was Iivingagonts which followed a strategy similar to
WB-MOH with the addition that it used historical prices to
approximate closing prices. This agent capitalized on the
fact that the other agents were careful not to be very ag-
gressive and that prices remain quite low. Despite bidding
aggressively for rooms, since prices did not go up, it was
not penalized for this behavior. The plans that it had formed
at the beginning of the game were thus easy to implement,
since all it had to do was to make sure that it got all the
rooms it needed, which it accomplished by bidding aggres-
sively. In an environment where at least some of the other
agents would bid more aggressively, this agent would proba-
bly be penalized quite severely for its strategy. We observed
this behavior in the controlled experiments that we ran. AT-
Tae went much further in its learning effort: it learned a
model for the prices of the entertainment tickets and the ho-
tel rooms based on parameters like the participating agents
and the closing order for hotel auctions in previous games.
Of course this makes the agent design more tailored to the

l°This is a restriction of the game and the TAC server
nThis was demonstrated by the second controlled experiment

that we ran as well.
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particular environment of the competition,12 but it does im-
prove the performance of the agent.

Conclusions
In this paper we have proposed an architecture for bidding
strategically in simultaneous auctions. We have demon-
strated how to maximize the flexibility (actions available,
information etc.) of the agent while minimizing the cost that
it has to pay for this benefit, and that by using simple knowl-
edge (like modeling prices) of the domain it can make this
choice more intelligently and improve its performance even
more. We also showed that bidding aggressively is not a
panacea and established that an agent, who is just aggressive
enough to implement its plan efficiently, outperforms overall
agents who are either not aggressive enough or who are too
aggressive. Finally we established that even though generat-
ing a good plan is crucial for the agent to maximize its utility,
the greedy algorithm that we used was more than capable to
help the agent produce comparable results with other agents
that use a slower provably optimal algorithm. One of the pri-
mary benefits of our architecture is that it is able to combine
seamlessly both principled methods and methods based on
empirical knowledge, which is the reason why it performed
so consistently well in the TAC. Overall our agent is adap-
five, versatile, fast and robust and its elements are general
enough to work well under any situation that requires bid-
ding in multiple simultaneous auctions.

In the future we will continue to run experiments in order
to further determine parameters that affect the performance
of agents in multi-agent systems. We also intend to incor-
porate learning into our agent to evaluate how much this im-
proves performance.
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