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Abstract

Sequential von Neumarm-Morgernstern (VM) games are 
very general formalism for representing multi-agent interac-
tions and planning problems in a variety of types of environ-
ments. We show that sequential VM games with countably
many actions and continuous utility functions have a sound
and complete axiomatization in the situation calculus. We
discuss the application of various concepts from VM game
theory to the theory of planning and multi-agent interactions,
such as representing concurrent actions and using the Baire
topology to define continuous payoff functions. Keywords:
decision and game theory, multiagent systems, knowledge
representation, reasoning about actions and change

Introduction

Much recent research has shown that systems of interact-
ing software agents are a useful basis for computational in-
telligence. Our best general theory of interactions between
agents is the mathematical theory of games, developed to a
high level since the seminal work ofvon Neumann and Mor-
genstern (yon Neumann & Morgenstern 1944). Von Neu-
mann and Morgenstem (VM for short) designed game the-
ory as a very general tool for modelling agent interactions;
experience has confirmed the generality of the formalism:
Computer scientists, economists, political scientists and oth-
ers have used game theory to model hundreds of scenarios
that arise in economic, social and political spheres.

Our aim is to represent the concepts of VM game theory
in a logical formalism so as to enable computational agents
to employ game-theoretical models for the interactions that
they are engaged in. It turns out that the epistemic extension
/;e of the situation calculus (Levesque, Pirri, & Reiter 1998,
Sec.7) is adequate for this task. We consider VM games in
which the agents can take at most countably many actions
and in which the agents’ payoff functions are continuous.
We show that every such VM game G has an axiomatiza-
tion Axioms(G) in the situation calculus that represents the
game, in the following strong sense: The game G itself is
a model of Axioms(G), and all models of Azioms(G) are
isomorphic (that is, Axioms(G) is a categorical axiomati-
zation of (7). It follows that the axiomatization is correct, in
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the sense that Axioms(G) entails only true assertions about
the game (7, and complete in the sense that Aa:iotas(G) en-
tails all true assertions about the game (7.

This result makes a number of contributions to Artificial
Intelligence. First, it shows how to construct a sound and
complete set of situation calculus axioms for a given appli-
cation domain. Bart et al. give an extended construction of
such a set of axioms for a version of the board game "Clue"
(Bart, Delgrande, & Schulte 2001), which we outline in the
penultimate section. Second, the result establishes that the
situation calculus is a very general language for representing
multi-agent interactions. Third, it provides an agent designer
with a general recipe for utilizing a game-theoretic model of
a given type of interaction (e.g., Prisoner’s Dilemma~ Bat-
tie of the Sexes, Cournot Duopoly (Osborne & Rubinstein
1994)) and describing the model in a logical formalism.
Fourth, it opens up the potential for applying solution and
search algorithms from games research to multi-agent inter-
actions (Koller & Pfeffer 1997; van den Herik & Iida 2001;
Bart, Delgrande, & Schulte 2001). Finally, game theory is
a major mathematical development of the 20th century, and
we expect that many of the general concepts of game the-
ory will prove fruitful for research into intelligent agents.
For example, we introduce a standard topological structure
associated with games known as the Baire topology. The
Baire topology determines the large class of continuous pay-
off function, which can be defined in the situation calculus
in a natural way.

An attractive feature of VM game theory is that it pro-
vides a single formalism for representing both multi-agent
interactions and single-agent planning problems. This is be-
cause a single-agent interaction with an environment can be
modelled as a 2oplayer game in which one of the players--
the environment is indifferent about the outcome of the in-
teraction. Thus our representation result includes planning
problems as a special case.

The paper is organized as follows. We begin with the defi-
nition of a sequential VM game. The next section introduces
the situation calculus. Then we specify the set of axioms
Azioms(G) for a given game (7, in two stages. First, we
axiomatize the structure of the agents’ interaction--roughly,
what agents can do and what they know when. Second, we
show how to define continuous utility functions in the situa-
tion calculus. Finally, for illustration we outline an extended
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application from previous work in which we used the situa-
tion calculus to represent a variant of the board game "Clue".
(Some readers may want to look over this discussion in the
next-to-last section, before the more abstract results in the
main sections.)

Sequential Games
Definitions Sequential games are also known as extensive
form games or game trees. The following definition is due to
von Neumann, Morgenstem, and Kuhn; we adopt the formu-
lation of (Osborne & Rubinstein 1994, Ch.ll.1). We begin
with some notation for sequences. An infinite sequence is a
function from the positive natural numbers to some set; we
denote infinite sequences by the letter h and variants such as
hI or hi. A finite sequence of length n is a function with do-
main 1, ..., n, denoted by the letter s and variants. Almost all
the sequences we consider in this paper are sequences of ac-
tions. We denote actions throughout by the letter a and vari-
ants. We write s = at, ..., an to indicate the finite sequences
whose i-th member is ai, and write h = at, ..,an, ... for
infinite sequences. Ifs = at, ...,an is a finite sequence of
n actions, the concatenation s * a = at, ..., an, a yields a
finite sequence of length n + 1. We follow the practice of
set theory and write d C s to indicate that sequence d is a
prefix of s (d C s for proper prefixes); likewise, we write
s C h to indicate that s is a finite initial segment of the infi-
nite sequence h. The term "sequence" without qualification
applies both to finite and infinite sequences, in which case
we use the letter tr and variants.

Now we are ready to define a sequential game.

Definition 0.1 (yon Neumann, Morgenstern, Kuhn) 
sequential game G is a tuple ( N, H, player, f c, {Ii}, {ui})
whose components are as follows.

1. A finite set N (the set ofplayers).
2. A set of H of sequences satisfying the following three

properties.
(a) The empty sequence 0 is a member of 
(b) If a is in H, then every initial segment of or is in 
(c) lf h is an infinite sequence such that every finite initial

segment of h is in H, then h is in H.

Each member of H is a history; each element of a history
is an action taken by a player. A history tr is terminal if
there is no history s E H such that tr C s. (Thus all in-
finite histories are terminaL) The set of terminal histories
is denoted by Z. The set of actions available at a finite
history s is denoted by A(s) = {a : s*a E H}.

3. A function player that assigns to each nonterminal his-
tory a member of N O {e}. The function player deter-
mines which player takes an action after the history s. If
player(s) = c, then it is "nature’s" turn to make a chance
move.

4. A function fe that assigns to every history s for which
player(s) = c a probability measure fc(-ls) on A(s).
Each probability measure is independent of every other
such measure. (Thus fc(als) is the probability that "na-
ture" chooses action a after the history s.)

Send~litics

a ~S1) b (Sl) Send

osery ~e~~ I . i~1

~]:Server 1 receives Server 2 receivespayoffx, payoffy

c d
© ..............©

nodes c and d are in the same information set

Figure 1: A game-theoretic model of the interaction between
two intemet servers, S~ and $2, with two users.

5. For each player i E N an information partition Zi de-
fined on {s E H : player(s) = i}. An element Ii ofli
is called an information set of player i. We require that
if s, d are members of the same information set Ii, then
A(s) = A(s’).

6. For each player i E N a payoff functlan ui : Z ---r R
that assigns a real number to each terminal history.

An Example To illustrate how interactions between
agents may be represented as game trees, we adopt an
abridged version of a scenario from (Bicchieri, Ephrati, 
Antonelli 1996). We return to this example throughout the
paper. Consider servers on the intemet. Each server is con-
nected to several sources of information and several users,
as well as other servers. There is a cost to receiving and
transmitting messages for the servers, which they recover
by charging their users. We have two servers 81 and $2, and
two users--journalists--U1 and [/2. Both servers are con-
nected to each other and to user Ut; server $2 also serves
user Us. There are two types of news items that interest the
users: politics and showbiz. The various costs and charges
for transmissions add up to payoffs for the servers, depend-
ing on what message gets sent where. For example, it costs
81 4 cents to send a message to 82, and it costs 82 2 cents
to send a message to 0"2. If Us receives a showbiz message
from ,.q2 via St, he pays St and ,5’2 each 6 cents. So in that
case the overall payoff to St is -4 + 6 = 2, and the overall
payoff to $2 is -2 + 6 = 4. Bicchieri et al. describe the
charges in detail; we summarize them in Figure 1.

Figure 1 represents the structure of the interaction possi-
bilities between the servers and the users. We begin with the
environment delivering a type of item to the first server. If
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the chance p of each type of item arising is known among
the players, the root node r corresponding to the empty his-
tory 0 would be a chance node (i.e., player(O) = c) with
associated probability p. If the probability p is unknown, we
would assign the root node to an "environment" player (i.e.,
player(O) = env) who is indifferent among all outcomes
(and whose payoff function hence need not be listed). Thus
game theory offers two ways of representing uncertainty
about the environment, depending on whether the proba-
bilities governing the environment are common knowledge
among the players or not.

Every node in the tree represents a history in the game.
The nodes belonging to $1 are {a, b}, and its information
partition is 27i = {{a}, {b}}. Bicchieri et al. assume that
the messages sent from $1 to $2 are encoded so that $2
does not know which type of message it receives. There-
fore the information partition of $2 is Z2 = {{c,d}}. If
$2 knew what type of news item it receives, its informa-
tion partition would be 222 = {{e}, {d}}. The payoff func-
tions are as illustrated, with server Sl’s payoffs shown on
top. Thus ul(0.Showbiz,send S2*send U2) = 2, and
u2(0*Showbiz*send Sg_,send [/2) = 

The game tree of Figure 1 admits different interpretations
from the one discussed so far. For example, it also represents
a situation in which the messages are not encoded, but in
which server $2 has to make a decision independent of what
news item $1 sends it. In the latter case it would be more
natural to reorder the game tree so that Sz chooses first, then
the environment, finally $1. But the insight from game the-
ory here is that for rational choice we do not need to repre-
sent the "absolute" time at which the players move, but what
each player knows when she makes a move. From this point
of view, there is no important difference between a setting
in which player 1 chooses first, and then player 2 chooses
without knowing l’s choice, as in Figure i, and the setting
in which both players choose simultaneously (of. (Osborne
& Rubinstein 1994, p.202, p.102)). Thus we can model si-
multaneous action as equivalent to a situation in which one
player moves first, and the other player does not know that
choice.

The Situation Calculus With Infinite Histories
Our presentation of the situation calculus follows (Levesque,
Pirri, & Reiter 1998). To the foundational situation calculus
axioms we add elements for referring to infinite sequences
of actions. Our axiomatization result in the next section ap-
plies to the epistemic extension of the situation calculus. We
use mnemonic symbols for parts of the situation calculus ac-
cording to their intended meanings. It is important to keep in
mind that these are merely symbols in a formal language; it
is the task of our axiomatization to ensure that the symbols
carry the intended meaning. To emphasize the distinction
between syntactic elements and their interpretations, we use
boldface type, which will always indicate a symbol in a for-
mal language (although conversely, we do not use boldface
for all elements of the situation calculus.)

The situation calculus with infinite histories is a multi-
sortal language that contains, in addition to the usual con-

nectives and quantifiers, at least the following elements.

1. A sort action for actions, with variables a, a’ and con-
stants a/.

2. A sort situation for situations, with variables s, s~.

3. A sort inhist for infinite sequences of actions, with vari-
ables h, h’ etc.

A sort objects for everything else.

A function do : action x situation --~ situation.

A distinguished constant S0 E situation.

A relation E: situation x (situation U inhist). We use
s I-- s~ as a shorthand for s E s~ A ~(s = st), and similarly
for s r- h. The intended interpretation is that U denotes
the relation "extends" between sequences, that is, C de-
notes C as applied to sequences viewed as sets of ordered
pairs.

A predicate poss(a, s), intended to indicate that action 
is possible in situation s.

A predicate possible(s) and possible(h).

We adopt the standard axioms for situations (see
(Levesque, Pirri, & Reiter 1998)). Here and elsewhere 
the paper, all free variables are understood to be universally
quantified.

4.

5.

6.

7.

8.

9.

~s E So (1)

s I-- do(a, s’) - s E (2)

do(a, s) = do(a’, s’) -+ (a = a’) A (s = 

Axiom 3 ensures that every situation has a unique name. We
adopt the second-order induction axiom on situations.

VP.[P(So) A Va, s.P(s) -~ P(do(a, s))] -~ Vs.P(s) 

A consequence of Axiom 4 is that every situation corre-
sponds to a finite sequence of actions (cf. (Ternovskaia
1997, Sec. 3)).

Next we specify axioms that characterize infinite histo-
ries.

Sot- h (5)

st- h ~ :lsl.s [:: s~ A st r- h (6)

(s’[:: s A s r-- h) -~ s’l:: (7)

h = h’ -- (Vs.s r-- h = s r- h’) (8)
possible(h) =_ Vs E h.possible(s) (9)

The final set of axioms says that the possible predicate de-
fines which action sequences are possible: an action se-
quence is possible if no impossible action is ever taken along
it.

possible(So) (10)

possible(do(a,s)) - possible(s) A poss(a,s) (11)
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Representing Game Forms in the Situation
Calculus

The situation calculus is a natural language for describing
games because its central notion is the same as that of VM
sequential games: a sequence of actions. We establish a pre-
cise sense in which the situation calculus is apt for formaliz-
ing VM games: Every VM game G with countably many
actions and continuous payoff functions has a categorical
axiomatization Axioms(G) in the situation calculus, thus
an axiomatization that describes all and only features of the
game in question.

Let (N, H, player, fc, {h}, {ul}) be a sequential game
G. The tuple (N,H, player, re, {Ii}) is the game form
of G (Osborne & Rubinstein 1994, p.201), which we de-
note as F(G). The game form specifies what actions are
possible at various stages of a game, but it does not tell us
how the players evaluate the outcomes. In this section, we
construct a categorical axiomatization of a game form with
countably many actions A(F). We consider axiomatizations
of payoff functions in a later section. Our construction pro-
ceeds as follows. We introduce constants for players, actions
and situations, and assign each action constant ai a denota-
tion Jail, which defines a denotation for situation constants.
Then we specify a set of axioms for the other aspects of the
game in terms of the denotations of the action and situation
constants.

Completeness. Clause 2c of Definition 0.1 requires that
in a game tree, if every finite initial segment s of an infi-
nite history h is one of the finite histories in the game tree,
then h is an infinite history in the game tree. This clause
rules out, for example, a situation in which for some ac-
tion a and every n, the sequence an is part of the game
tree, but the infinite sequence a~ is not. In such a situa-
tion we might think of the infinite sequence a~ as "miss-
ing" from the game tree, and view clause 2c as ruling out
this kind of incompleteness. (In topological terms, Clause
2c requires that the Baire topology renders a game tree a
complete metric space; see the section on Defining Contin-
uous Payoff Functions and references there). This notion of
completeness is topological and different from the concept
of completeness of a logical system. From a logical point
of view, topological completeness is complex because it re-
quires quantification over sequences of situations, which we
represent as certain kinds of properties of situations as fol-
lows. Let basis(P) stand for the formula P(S0), let inf(P)
stand for Vs.P(s) --~ ~.s r- - s~A P(s~), leclosed(P) stand
for (s’r- sAP(s)) ~ P(s’), and finally Seq(P) stand for
basis(P) A in f(P) A closed(P). completeness axiom
corresponding to Clause 2c is then the following:

VP.Seq(P) .-r (qhVs.[P(s) - f- hi) (12)

Axiom 12 is independent of any particular game structure.
Nonetheless we list it as an axiom for game trees rather than
as a general axiom characterizing infinite sequences because
the completeness requirement is part of the notion of a game
tree, rather than part of the notion of an infinite sequence.
As we saw in the section on the introduction to the situation
calculus, the properties of infinite sequences can be defined

in first-order logic, whereas the completeness requirement
in the definition of a game tree requires second-order quan-
tification.

Players. We introduce a set of constants to denote players,
such as {e, 1, 2,...n}, and one variable p ranging over a new
sort players. In the server game with chance moves, we add
constants c, S1 , 82. We introduce unique names axioms of
the general form i ~ j, i ~ c for i ~ j. For the server game,
we add e ~ SI,e ~ 82,81~ S2. We also add a domain
closure axiom Vp.p = cVp = 1 V...Vp=n. Inthe
server game, the domain closure axiom is Vp.p = e V p =
$1 V p --- S2.

Actions. We add a set of constants for actions. If there are
finitely many actions al, .., an, we proceed as with the play-
ers, adding finitely many constants, unique names axioms
and a domain closure axiom. For example, in the server
game, we may introduce names UI, U2,2S2, Show, Poll
for each action and then include axioms such as Vl
U2, Show ~ Poll, etc. However, with infinitely many ac-
tions we cannot formulate a finite domain closure axiom.
We propose a different solution for this case. Just as the
induction axiom 4 for situations serves as a domain closure
axiom for situations, we use a second-order induction axiom
for actions to ensure that there are at most countably many
actions in any model of our axioms. The formal axioms are
as follows.

We introduce a successor operation + : action --r action
that takes an action a to the "next" action a+. We write a(n)
as a shorthand for a~"’’+ where the successor operation is
applied n times to a distinguished constant at (thus (°) =
at). The constants (n) may serve as names for actions.
As in the case of finitely many actions, we introduce unique
names axioms of the form a(0 ~ a(J) where i ~ j. 
adopt the induction axiom

VP.[P(ao) A Va.P(a)--~P(a+)] --+ Va.P(a). 

We assume familiarity with the notion of an interpretation
or model (see for example (Boolos & Jeffrey 1974, Ch. 9)).

Lemma 1 Let .A4 = (actions,+, ~) be a model of Ax-
iom 13 and the unique names axioms. Then for every
a E actions, there is one and only one constant a(n) such
that [a(n) ] = a.

Proof (Outline). The unique names axioms ensure that
for every action a, there are no two constants a(n), a(n’)

such that ra(n)] = ra(n’)] = a. To establish that there is
one such constant, use an inductive proof on the property of
being named by a constant; more precisely, use the induction
axiom to show that for every action a E actions, there is
some constant a(n) such that [a(n)] = a.l"l

Now choose a function ~ that is a 1-1 and total assign-
ment of actions in the game form A(F) to action constants.
For example, we may choose [Show] = Showbiz, [2S2] =
send Sz, I’U1] = send U1, etc.

Situations. Let do(al, ..., an) denote the result of repeat-
edly applying the do constructor to the actions al, ...,an

from the initial situation. Thus do(al, ..., an) is short-
hand for dO(al, do(a2, ..., do(a~))))...). We stipulate 
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Axiom Set Constraints
i~j i~j
Vp.p = 1V...Vp = n
Actions: Unique Names
Domain Closure

poss(a, sj)
~poss(ai, s~)
player(sj) = 
player(s1) _L
K(s~, sj)
-K(si, sj)

see text

[ai| ¯ A(fs~l)
fad ¢ A(fs~])
player( f~j l) = fil
[sj1 tt H;
1(r~]) = s(f~jl)
s(rs,1) # s(rs~l)

Table 1: The set Axioms(F) associated with a game form
F = (N,H, player,{Ii}) and a denotation function 17.
Terms such as ai and sj stand for action and situation con-
stants, respectively.

~o(0) = So so that ~(al, ..., ~) = Soif n =0.The
constant expressions of the form do(a1, ..., an) serve as our
names for situations. We extend the denotation [.ai] for ac-
tions to situations in the obvious way: [.~(al, ..., an)] =

Fall ¯ --- ¯ [’an]. For example, [.do(Show, 2S2)] =
Showbiz. send $2. Note that [.S01 = 0.

Knowledge. To represent knowledge, we follow
(Levesque, Pirri, & Reiter 1998, See.7) and employ a bi-
nary relation K, where K(s, ~) i s read as "situation sis
an epistemic alternative to situation s~’’. The relation K
is intended to hold between two situation constants s,s’
just in case s and s~ denote situations in the same infor-
mation set. For example, in the server game we have that
X(~(Show, 2S2), ~(Poli, 2S2)) holds.

Triviality Axioms. We add axioms to cnsurc that
all functions of situations take on a "don’t care"
value .I_ for impossible situations. For example,
player(do(Show, U1, U2)) = _1_ holds.

Table 1 specifies the set of axioms Axioms(F) for a
VM game form F. For simplicity, we assume that there
are no chance moves in F (see below). We write /(s)
to denote the information set to which a finite game his-
tory s belongs (in F). To reduce notational clutter, the ta-
ble denotes situation constants by symbols such as si, with
the understanding that si stands for some constant term of
the form do(a1, ..., an). Let F (N,H, pl ayer, {/ i}) be
a game form whose set of actions is A. In set-theoretic
notation, the set of all infinite sequences of actions is
A’~, and we write A<~ for the set of all finite action se-
quences. We say that the tree-like structure for F is
the tuple I(F) = (N, A, A<~, °~, _L,poss, possible, C
, *,player~, K), where each object interprets the obvious
symbol (e.g., ~ is t he sort f or h, and īnterprets do), an

1. possible(s) ¢=~ s ¯ 

2. K(s,s’) ¢=~ I(s)= S(s’),

3. player~(s) = / if -~possible(s) and player~(s) 
player(s) otherwise.

The intended interpretation for the set of axioms

Axioms(F), defined via the denotation function 17 as de-
scribed above, is the pair 27 = (I(F), 17). We note 
if two interpretations are isomorphic, then the same sen-
tences are true in both interpretations (Boolos & Jeffrey
1974, p.191).

Theorem0.1 Let F = (N,H, player, {Ii}) be a game
form. Suppose that ~ gives a 1-1 and onto mapping be-
tween action constants and Actions(F).

1. The intended interpretation of Axioms(F), defined via
the denotation function ~, is a model of Axioms(F) and
Axioms 1-13.

2. All models of Axioms(F) and Axioms 1-13 are isomor-
phic.

Proof. (Outline) Part 1: It is fairly straightforward 
verify that the intended interpretation for F--basically, the
game tree--satisfies the general axioms and Axioms(F).

For Part 2, the argument follows our construction as fol-
lows. Let .h4 = (M, l-].M) be a model of Axioms(F)
and Axioms 1 -13. We can show that .A//is isomorphic to
27 = (I(F), [7). (1) The domain closure and unique 
axioms for the sorts player and action guarantee that there
is a 1-1 mapping between A and N and the respective sorts
player and action in 34. More precisely, let narneA~ 09)
be the constant i of sort player such that [.i]~ = p, and
define similarly name~ (a) for action a. Then the function
f defined by f(p) [. name~(p)] takes anobject of sort
player in 34 to an object of sort player in27, and f is a 1-I
onto mapping. Similarly for action objects. (2) Given that
every action in 34 has a unique action constant naming it,
it follows from Axioms 1--4 that every situation in 34 has a
unique situation constant naming it (as before, we may write
narne~(s)), which implies that there is a 1-1onto mapping
between the situations in 34 and A<~. (3) Axioms 5-8 en-
sure that every object in the sort inhist in 34 corresponds
to an infinite sequence of (nested) situations; Axiom 12 en-
sures that for every such nested infinite sequence of situa-
tions, there is some object h in inhist such that h extends
each situation in the sequence. Given the result of step (2),
it follows that there is a 1-1 onto mapping between the sort
inhist in 34 and A~. (4) Since poss~ (a, s) holds in 34 iff
poss(name~ (a), namem (s)) is in Axioms(F), which is
true just in case possz ( [name~ (a)1, [name~ (s)]) holds
in 27, this map constitutes a 1-1 onto mapping between
the extensions of poss,~ and possz. Together with Ax-
ioms 9-11, this ensures a 1-1 mapping between the ex-
tensions of the possible predicate in each model. (5) 
also have that player]~ (s) = if f player(name~ (s)) =
name]~(i) is in Axioms(F), which holds just in case
playerz(namez(s)) = namez(i), so the graphs of the
player function are isomorphic in each model. (6) By the
same argument, the extensions of the K predicate are iso-
morphic in each model. So any model 34 of the axioms
Axioms(F) and Axioms 1 -13 is isomorphic to the in-
tended model 27, which shows that all models of these ax-
ioms are isomorphic. []

It follows from Theorem 0.1 that for each player i, the re-
lation K from our axiomatization is an equivalence relation
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on the situations at which i moves, because K represents the
information partition of player i.

In order to represent chance moves, we need axioms char-
acterizing real numbers; we do not want to go into axiomatic
real number theory here since that topic is well-known and
the issues are similar to those that we take up in the sec-
tion Defining Continuous Payoff Functions. A brief out-
line: Start with (second-order) axioms characterizing the
real numbers. There are at most countably many pairs (a, s)
such that "nature" chooses action a in situation s with some
probability fc(a[s). Introduce a constant for each of these
probabilities, and axioms to ensure that the constant de-
notes the correct real numbers. Add axioms of the form
fc(a,s) = p whenever fe([a][[s]) = [p], as well as 
propriate triviality axioms for fe.

Discussion and Related Work

We may evaluate a representation formalism such as the sit-
uation calculus with respect to two dimensions: Expressive
power--how many domains can the formalism model?--
and tractability~how difficult is it to carry out reasoning
in the formal language? Typically, there is a trade-off be-
tween these two desiderata. Our results so far indicate how
great the expressive power of the situation calculus is. Be-
came situation calculus axioms can represent so many and
such varied models of agent interactions, we cannot guaran-
tee in general that the axiomatization for a given game tree
is tractable. An important research topic is what classes of
games have tractable representations in the situation calcu-
lus (see the conclusions section).

To illustrate this point, we note that in extant applications
of the situation calculus, the poss predicate typically has an
inductive definition in terms of what actions are possible in
a situation given what fluents hold in the situation, and then
what fluents obtain as a consequence of the actions taken.
(We will give examples in the next section.) By contrast,
game theory deals with a set of histories, without any as-
sumptions about how that set may be defined. The absence
of state successor axioms for fluents in our axiomatization
reflects the generality of VM games for representing many
different types of environment. For example, we may distin-
guish between static and dynamic environments (Russell 
Norvig 1994, Ch 2.4). An environment is dynamic for an
agent "if the environment can change while an agent is de-
liberating". In a dynamic environment, a frame axiom that
says that a fluent will remain the same unless an agent acts
to change it may well be inappropriate. For example, if an
agent senses that a traffic light is green at time t, it should
not assume that the light will be green at time t + 1, even if
it takes no actions affecting the light. Hence a VM model of
this and other dynamic environments cannot employ a sim-
ple frame axiom (cf. (Poole 1998)).

We have followed (Levesque, Pirri, & Reiter 1998) in in-
troducing a binary relation I((s, ~) between situations. One
difference between our treatment and that of Levesque et al.
is that they allow uncertainty about the initial situation; they
introduce a predicate Ko(s) whose intended interpretation
is that the situation s may be the initial one for all the agent

knows. It is possible to extend game-theoretic models to
contain a set of game trees--often called a "game forest"---
rather than a single tree. A game forest contains several dif-
ferent possible initial situations, one for each game tree, just
as the approach of (Levesque, Pirri, & Reiter 1998) allows
different possible initial situations. Game theorists use game
forests to model games of incomplete information in which
there is some uncertainty among the players as to the struc-
ture of their interaction (Osborne & Rubinstein 1994).

Another difference is that Levesque et al. use the binary
relation 14: to represent the knowledge of a single agent.
Mathematically the single relation K suffices for our ax-
iomatization, even in the multi-agent setting, because the
situations are partitioned according to which player moves
at them. In effect, the relation K summarizes a number
of relations Ki defined on the situations at which player i
moves. To see this, define Ki(s, s’) ¢=* (player(s) 
player(d) = i) A K(s, s~). Then Ki represents a partition
of player i’s nodes. From the point of view of the epistemic
situation calculus, the difficulty with this is that player i’s
knowledge is defined by the I(i relation (and hence by the
K relation) only at situations at which it is player i’s turn to
move. Thus if player(s) = i, what another player j knows
at s is undefined and so we cannot directly represent, for
example, what i knows about j’s knowledge at s. To rep-
resent at each situation what each player knows at that sit-
uation we would require a relation Ki for all players that is
a partition of all situations. In terms of the game tree, we
would require that the information partition Ii of player i
constitutes a partition of all nodes in the game tree, rather
than just those at which player i moves. The general point
is that VM game trees leave implicit the representation of
what a player j knows when it is not her turn to move. This
may not pose a difficulty for humans using the apparatus of
VM game theory, but if we want to explicitly represent the
players’ knowledge at any situation, we will require addi-
tional structure, such as information partitions comprising
all nodes in the game tree.

Other logical formalisms have been developed to repre-
sent classes of games. For example, Parikh’s game logic
uses dynamic logic to represent zero-sum games of perfect
information (Parikh 1983). Poole’s independent choice logic
is a formalism for simultaneous move, or matrix, games
(Poole 1997, Sec.3.3), and the dynamic independent choice
logic has resources to describe the components of a game
tree (Poole 1997, Sec,5.5). The construction in this paper 
different because it aims for more generality with respect to
the class of representable game trees, and because it focuses
on the notion of a sequence of actions central to both game
theory and the situation calculus.

Defining Continuous Payoff Functions in the
Situation Calculus

It remains to define the payoff functions ui : Z-~R that
assign a payoff for player i to each terminal history. To sim-
plify, we assume in this section that all terminal histories are
infinite. This is no loss of generality because we can define
the payoff from a finite history s as the payoff assigned to all
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infinite histories extending s, whenever all histories extend-
ing s share the same payoff. There are in general uncount-
ably many infinite histories, so we cannot introduce a name
for each of them in a countable language. Moreover, payoff
functions in infinite games can be of arbia’ary complexity
(Mosehovakis 1980), so we cannot expect all such functions
to have a definition in the situation calculus. In economic
applications, continuous payoff functions typically suffice to
represent agents’ preferences. Our next step is to show that
all continuous payoff functions have a definition in the situ-
ation calculus provided that we extend the situation calculus
with constants for rational numbers. Before we formally de-
fine continuous functions, let us consider two examples to
motivate the definition.

Example 1. In a common setting, familiar from Markov
decision processes, an agent receives a "reward" at each situ-
ation (Sutton & Barto 1998, Ch.3). Assuming that the value
of the reward can be measured as a real number, an ongo-
ing interaction between an agent and its environment gives
rise to an infinite sequence of rewards rx, ..., rn, .... A pay-
off function u may now measure the value of the sequence
of rewards by a real number. A common measure is the dis-
counted sum: We use a discount factor t~ with 0 < ~ < 1,
and define the payoff to the agent from an infinite sequence
of rewards by u(rl, ..., rn,...) ~-~i~x t~iri" For example,
suppose that the agent’s task is to ensure the truth of a cer-
tain fluent, for example that ison(light, s) holds. We may
then define the reward fluent function reward(s) = 1 
ison(light, s) and reward(O, = i son(light, s) so that
the agent receives a reward of 1 if the light is on, and a re-
ward of 0 otherwise. Then for an infinite history h we have
an infinite sequence of rewards rx,..., rn,.., consisting of 0s
and Is. If the agent manages to keep the light on all the
time, reward(a) = 1 will be true in all situations, and its
total discounted payoff is oo ~i)--~-i=1 x 1 = d;/1 - t~.

Example 2. Suppose that the agent’s job is to ensure" that
a certain condition never occurs. Imagine that there is an
action DropContainer(s) and the agent’s goal is to ensure
that it never takes this action. We may represent this task
specification with the following payoff function: u(h) = 0 
there is a situation s C h such that do(DropContainer, s)
holds, and u(h) = 1 otherwise. It is impossible to define this
payoff function as a discounted sum of bounded rewards.

The special character of the 0-1 payoff function u stems
from the fact that if DropContainer is true at situation s,
the payoff function "jumps" from a possible value of 1 to a
determinate value of 0, no matter how many times before-
hand the agent managed to avoid the action. Intuitively, the
payoff to the agent is not built up incrementally from situ-
ation to situation. Using standard concepts from topology,
we can formalize this intuitive difference with the notion of
a continuous payoff function. To that end, we shall intro-
duce a number of standard topological notions. Our use of
topology will be self-contained but terse; a text that covers
the definitions we use is (Royden 1988).

Let ‘4, B be two topological spaces. A mapping f : .4 --+
B is continuous if for every open set Y C_ B, its preimage
f-l(y) is an open subset of .4. Thus to define the set of
continuous payoff functions, we need to introduce a system

of open sets on Z, the set of infinite histories, and _R, the set
of real numbers. We shall employ the standard topology on
R, denoted by 7"¢..

The Baire topology is a standard topology for a space
that consists of infinite sequences, such as the set of infi-
nite game histories. It is important in analysis, game the-
ory (Moschovakis 1980), other areas of mathematics, and
increasingly in computer science (Finkel 2001), (Duparc,
Finkel, & Ressayre 2001). Let A be a set of actions. Let
Is] = {h : s C h} be the set of infinite action sequences that
extend s. The basic open sets are the sets of the form Is] for
each finite sequence (situation) s. An open set is a union 
basic open sets, including again the empty set 0. We denote
the resulting topological space by B(A).

For each rational q and natural number n > 0, define an
open interval O(q, n) centered at q by O(q, n) = {z : Iz 
ql < 1/n}. Let Eu(q,n) = u-l(O(q,n)). Sinceu is con-
tinuous, each set Eu(q, n) is an open set in the Baire space
and hence a union of situations. So the function u induces a
characteristic relation intervalu(S, q, n) that holds just in
case Is] C_ E~(q,n). In other words, intervalu(s,q,n)
holds iff for all histories h extending s the utility u(h) 
within distance 1/n of the rational q. In the example with
the discontinuous payoff function above, intervalu(s, 1, n)
does not hold for any situation s for n > 1. For given any
situation s at which the disaster has not yet occurred, there
is a history h D s with the disaster occurring, such that
u(h) = 0 < I1 1/nl. Intuitively, wi th a continuous payoff
function u an initial situation s determines the value u(h)
for any history h extending s up to a certain "confidence in-
terval" that bounds the possible values of histories extending
s. As we move further into the history h, with longer initial
segments s of h, the "confidence intervals" associated with
s become centered around the value u(h). The following
theorem exploits the fact that the collection of these inter-
vals associated with situations uniquely determines a payoff
function.

Assume that constants for situations, natural numbers
and rationals have been defined along with a relation
intervalu such that interval~(s, q, n) is true just in case
intervalu([s], [q], I’n]) holds.

Theorem 0.2 Let A be a set of actions, and let u : I3(A) 
7"~ be a continuous function. Let payoff be the axiom
Via, n.3s r- h.interval~(s, u(h), n). 
I. u satisfies payoff, and
2. if z~t : 13(A) ~ R satisfies payoff, then u’ = u.

Proof. For part 1, let a history h and a number n be
given. Clearly u(h) O(u(h),n), soh ~Eu(u(h),n) =
u-l(O(q,n)). Since Eu(u(h),n) is an open set, there is
a situation s C h such that [s] ___ Eu(u(h),n). Hence
intervalu(s, u(h), holds ands witnesses the claim.

For part 2, suppose that u~ satisfies the axiom payoff in
a model, such that for all histories h, numbers n, there is
a situation s C h satisfying interval,(s,u’(h),n). We
show that for all histories h, for every n, it is the case that
lu(h) - u’(h)l 1/n, which implies that t~ (h) = u’(h).
Let h, n be given and, by Part 1, choose a situation s C h
satisfying intervalu(s,u~(h),n). By the definition of the
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Fluent I Meaning
H(i, c~, s) I player i holds card x
AskPhase(s)I a query may be posed
Know(i, ¢, s) player i knows that ¢

Table 2: Three fluents used to axiomatize MYST

relation intervalu, it follows that h 6 Bu(u’(h),n) 
u-*(O(u’(h),n)). So u(h) 60(u’(h),n), which by the
definition of O(u’(h), implies that lu( h) - u’( h) l <1In.
Since this holds for any history h and number n, the claim
that u(h) = u’(h) follows. []

We remark that if a VM game G has only a finite set of
histories, any utility function ui is continuous, so Theorem
0.2 guarantees that payoff functions for finite games are de-
finable in the situation calculus.

An Application: Axioms for a Variant of
"Clue"

Our results so far provide a general mathematical foundation
for the claim that the situation calculus is a strong formalism
for representing game-theoretic structures; they show that
for a large class of games, the situation calculus can supply
axioms characterizing the game structure exactly (categor-
ically). This section outlines the representation of a fairly
complex parlour game to illustrate what such axiomatiza-
tions are like, and to give a sense of the usefulness of the
situation calculus in describing game structures. The dis-
cussion indicates how the situation calculus can take advan-
tages of invariances and localities present in an environment
to give a compact representation of the environmental dy-
namics. We show how a state successor axiom can define
memory assumptions like the game-theoretic notion of per-
feet recall in a direct and elegant manner.

In previous work, we have studied a variant of the well-
known board game "Clue", which we call MYST. For our
present purposes, a brief informal outline of MYST suf-
rices; for more details we refer the reader to previous work
(Ban, Delgrande, & Schulte 2001), (Bart 2000). In particu-
lar, we will not go into the details here of defining formally
the terms of our language for describing MYST. MYST be-
gins with a set of cards e,, .., Cn. These card are distributed
among a number of players 1,2 ..... k, and a "mystery pile".
Each player can see her own cards, but not those of the oth-
ers, nor those in the mystery pile. The players’ goal is to
guess the contents of the mystery pile; the first person to
make a correct guess wins. The players gain information by
taking turns querying each other. The queries are of the form
"do you hold one of the cards from C’?", where (7 is a set of
cards. If the queried player holds none of the cards in G,
he answers "no". Otherwise he shows one of the cards from
G to the player posing the query. In what follows, we dis-
cuss some aspects of the axiomatization of MYST; a fuller
discussion is (Bart, Delgrande, & Schulte 2001), and (Ban
2000) offers a full set of axioms.

Table 2 shows the fluents we discuss below together with
their intended meaning.

A central fluent in our axiomatization is the card homing
fluent H(i, c~, s), read as "player i holds card z in situation
s". We write H(0, c~, s) to denote that card x is in the mys-
tery pile in situation s. In MYST, as in Clue, cards do not
move around. This is a static, invariant aspect of the game
environment that the situation calculus can capture concisely
in the following successor state axiom:

H(i, ex, s) -- H(i, c~, do(a, 

Another fact that remains invariant across situations, and
that is crucial to reasoning about MYST, is that every card
is held by exactly one player or the mystery pile. We may
express this with two separate axioms.

Exclusiveness H(i, cz, s) -~ Vj # i.-~H(j, cx, s).
If player i holds card ex, then no other player j (or the
mystery pile) holds c~. If the mystery pile holds card cx,
then e~ is not held by any player.

Exhaustiveness PVi=o H(i, ex, s).
Every card is held by at least one player (or the mystery
pile).

It is straightforward to specify preconditions for actions
in MYST. For example, consider asking queries, one of the
main actions in this game. We write ask,s(i, q) to denote
that player i takes the action of asking query q. The fuent
Ask,Phase(s) expresses that the situation s is in an "asking
phase", i.e., that no query has been posed yet. Then the
precondition for asking a query is given by

Poss(ask,s(i, Q ), s) =- Ask.Phase(s) A player(s) 

where player(s) indicates whose turn it is in situation s.
We use an epistemicfluent Know(i, ¢, s) to denote that

player i knows ¢ in situation s, where ¢ is a sentence. Play-
ers gain information by observing the results of queries. For
example, if player 1 shows card 3 to player 2, then player
1 comes to know that player 2 holds card 3. Using a flu-
ent shows(j, i, c~), we may express this effect by the axiom
Knows(2, H(1, ca, s), do(shows(l, 2, ca), s)). In general,
we have the following knowledge axiom that is invariant
across situations:

Know(i, H (j, c~ , s ), do(shows(j, i, e~ ), 
Indeed, the fact that player 1 holds card 3 becomes com-

mon knowledge among the two players after player 1 shows
card 3 to player 2. We use a common knowledge fluent
indexed by a set of players to express this principle. The
same fluent allows us to capture the fact that in MYST, after
player 1 shows card 3 to player 2 in response to query q, it
becomes common knowledge among all players that player
1 has some card matching the query (for more details, see
(Ban, Delgrande, & Schulte 2001, Sec. 3), (Bart 2000)).
This illustrates that the situation calculus together with epis-
temic logic provides resources to capture some quite subtle
differential effects of actions on the knowledge and common
knowledge of agents.

In our analysis of strategic reasoning in MYST, we as-
sume that agents do not forget facts once they come to know
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them. This is part of the game-theoretic notion of perfect re-
call. I We may render this assumption about the memory of
the players by the following axiom for the knowledge fluent:

Know(i, ¢, s) ~ Know(i, ¢, do(a, 

for a sentence ¢.

Conclusion
Von Neumaun-Morgenstern game theory is a very general
formalism for representing multi-agent interactions that en-
compasses single-agent decision processes as a special case.
Game-theoretic models of many multi-agent interactions
from economics and social settings are available, and the
general mathematical theory of VM games is one of the
major developments of the 20th century. The situation cal-
culus is a natural language for describing VM games; we
established a precise sense in which the situation calculus
is well-suited to representing VM games: A large class of
VM games has a sound and complete (categorical) set 
axioms in the situation calculus. This result underscores
the expressive power of the situation calculus. The con-
nection between the situation calculus and game theory sug-
gests fruitful applications of game-theoretic ideas to plan-
ning and multi-agent interactions. We considered in particu-
lar the use of the Baire topology for defining continuous util-
ity functions, and the representation of concurrent actions.
Conversely, the logical resources situation calculus allow us
to exploit invariants in the dynamics of some environments
to provide a more compact representation of their dynamics
than a game gee would.

We see two main avenues for further research. First, it
is important to know what types of VM games permit com-
pact and tractable axiomatizations in the situation calculus.
Without restrictions on the possible game forms F, there is
no bound on the computational complexity of an axiomati-
zation Axioms(F). There are a number of plausible sub-
classes of games that might have computationally feasible
representations in the situation calculus. An obvious re-
striction would be to consider finite game trees, which have
first-order categorical axiomatizations in the situation cal-
culus. A weaker finitude requirement would be that each
agent should have only finitely many information sets. An
information set corresponds to what in many AI formalisms
is called a "state" because an information set defines an
agent’s complete knowledge at the point of making a de-
cision. Games in which the agent has only finitely many in-
formation sets closely correspond to Markov Decision Pro-
cesses in which the possible states of an agent are typically
assumed to be fnite. Several authors have noted the util-
ity of the situation calculus for defining Markov Decision
Processes ((Poole 1998), (Boutilier et al. 2000)), and the
research into compact representations of Markov Decision

~For a formal definition of perfect recall in game theory, see
(Osborne & Rubinstein 1994). The game-theoretic definition re-
quires that an agent should not only remember facts, but also her
actions. This can be represented in the epistemic extension Le
of the situation calculus by requiring that K~(s, s’) does not hold
whenever situations s, s’ differ with respect to an action by agent i.

Processes (cf. (Boutilier, Dean, & Hanks 1999)) may 
apply to compact representations of game trees as well.

Another approach would be to begin with a decidable or
tractable fragment of the situation calculus, and then exam-
ine which classes of game trees can be axiomatized in a
given fragment. There are results about computable frag-
ments of the situation calculus, even with the second-order
induction axiom, such as that presented in (Temovskaia
1999). The main restrictions in this result are the following:
(1) There are only finitely many fluents F1, .., F,, (2) 
fluent F is unary, i.e. of the form F(s), like our AskPhase
fluent, (3) the troth of fluents in situation s determines the
truth of fluents in a successor situation do(a, s) by state suc-
cessor axioms of a certain restricted form (such as our ax-
iom from the previous section for the card holding fluent;
see (Levesque, Pirri, & Reiter 1998) for more on the proof-
theoretic and computational leverage from state successor
axioms). Our experience with MYST, and more generally
the literature on Markov Decision Processes, suggests that
assumptions (1) and (3) hold in many sequential decision
situations; we plan to explore in future research the extent to
which restriction (2) can be relaxed, and how epistemie com-
ponents such as the relation K(s, ~) affect computational
complexity.

Second, the main purpose of providing an agent with
a model of its planning problem or interaction with other
agents is to help the agent make decisions. Game theo-
fists have introduced various models of rational decision-
makings in VM games, some of which have been applied
by computer scientists (see (Koller & Pfeffer 1997), (Bic-
chieri, Ephrati, & Antonelli 1996)). It should be possible 
axiomatize methods for solving games in the situation cal-
culus, and to formalize the assumptions--such as common
knowledge of rationality--that game theorists use to derive
predictions for how agents will act in a given game.

The combination of logical techniques, such as the situa-
tion calculus, and the advanced decision-theoretic ideas that
we find in game theory provides a promising foundation for
analyzing planning problems and multi-agent interactions.
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