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General game theory seems to be in part a sociological
theory which does not include any sociological assump-
tions ... it may be too much to ask that any scciology
be derived from the single assumption of individual ra-
tionality.
— R. D. Luce and H. Raiffa
Games and Decisions (1957)

Abstract

Von Neumann-Morgenstern game theory is the multi-agent
instantiation of individual rationality, and is the standard for
decision-making in group settings. Individual rationality,
however, requires each player to optimize its own perfor-
mance, regardless of the effect so doing has on the other play-
ers. This feature limits the ability of game theory as a design
paradigm for group behavior where coordination is required,
since it cannot simultaneously accommodate both group and
individual preferences. By replacing the demand for doing
the best thing possible for the individual with a mathemati-
cally precise notion of being “good enough,” satisficing game
theory allows both group and individual interests to be simul-
taneously accommeodated.

Introduction

It is a platitude that a decision-maker should make the best
choice possible. Typically, this injunction is taken to mean
that a decision-maker should optimize, that is, maximize ex-
pected utility. Although the exigencies of decision-making
under time and computational constraints may require the
decision-maker to compromise, resulting in various notions
of bounded optimization, the fundamental commitment to
optimality usually remains intact. It is almost mandatory
that a decision methodology incorporate some instance of
optimization, even if only approximately. Otherwise the
decision-making procedure is likely to be dismissed as ad
hoc.

Optimization is founded on the principle that individ-
ual interests are fundamental and that social welfare is a
function of individual welfare (Bergson, 1938; Samuelson,
1948). This hypothesis leads to the doctrine of rational
choice, which is that “each of the individual decision-makers
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behaves as if he or she were solving a constrained maximiza-
tion problem” (Hogarth and Reder, 1986). This paradigm is
the basis of much of the conventional decision theory that is
used in economics, the social and behavioral sciences, en-
gineering, and computer science. It relies upon two funda-
mental premises:

P-1 Total ordering: the decision-maker is in possession of
a total preference ordering (that is, an ordering that is
reflexive, antisymmetric, transitive, and linear) for all of
its possible choices under all conditions (in multi-agent
settings, this includes knowledge of the total orderings
of all other participants).

The principle of individual rationality: a decision-
maker should make the best possible decision for itself,
that is, it should optimize with respect to its own total
preference ordering (in multi-agent settings, this order-
ing may be influenced by the choices available to the
other participants).

Self-interested human behavior is often considered to be
an appropriate metaphor in the design of protocols for ar-
tificial decision-making systems. With such protocols, it is
often taken for granted that each member of a community of
decision-makers should try

. to maximize its own good without concern for the
global good. Such self-interest naturally prevails in negotia-
tions among independent businesses or individuals . . . There-
fore, the protocols must be designed using a noncooperative,
strategic perspective: the main question is what social out-
comes follow given a protocol which guarantees that each
agent’s desired local strategy is best for that agent—and thus
the agent will use it. (Sandholm, 1999, p. 201, 202; emphasis
in original).

When artificial decision-makers are designed to function
in a non-adversative environment it is not obvious that it is
either natural or necessary to restrict attention to noncoop-
erative protocols. decision-makers who are focused on their
own self-interest will be driven to compete with decision-
makers whose interests might possibly compromise their
own. Certainly, conflict cannot be avoided in general, but
conflict can just as easily lead to collaboration as to compe-
tition.

One of the justifications for adopting self-interest as a
paradigm for artificial decision-making systems is that it is a
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simple and convenient principle upon which to build a math-
ematically based theory. Self-interest is the Occam’s razor
of interpersonal interaction and relies only upon the mini-
mal assumption that an individual will put its own interests
above everything and everyone else. This simple principle
allows the decision-maker to abstract the problem from its
context and express it in unambiguous mathematical lan-
guage. With this language, utilities can be defined and cal-
culus can be employed to facilitate the search for the optimal
choice. The quintessential manifestation of this approach to
decision-making is von Neumann-Morgenstern game theory
(von Neumann and Morgenstern, 1944).

Game theory is built on one basic principle: self-
interest—each player must maximize its own expected util-
ity under the constraint that other players will do likewise.
Such players will seek an equilibrium; that is, a state such
that no individual player can improve its level of satisfac-
tion by making a unilateral change in its strategy. For two-
person constant-sum games, this is perhaps the only rea-
sonable, non-vacuous principle—what one player wins, the
other loses. Game theory insists, however, that this same
principle applies to the general case. Thus, even in situa-
tions where there is the opportunity for group, as well as
individual interest, only individually rational actions are vi-
able. If a joint (that is, for the group) solution is not individ-
ually rational for some decision-maker, that self-interested
decision-maker would not be a party to such a joint action.

Coordinated behavior is perhaps the most important (and
most difficult) social attribute to synthesize in an artifi-
cial decision-making group. Achieve such a design objec-
tive, however, will be greatly facilitated if decision-making
is based on rationality principles that permit the decision-
makers to expand their spheres of interest beyond them-
selves and give deference to others. As Arrow observed,
when the assumption of perfect competition does not apply,
“the very concept of [individual] rationality becomes threat-
ened, because perceptions of others and, in particular, of
their rationality become part of one’s own rationality” (Ar-
row, 1986). Arrow has put his finger on a critical limitation
of individual rationality. As is well known, however, a no-
tion of “group rationality” that requires the group to do the
best for itself is not compatible with individual rationality
(Luce and Raiffa, 1957). Nevertheless, game theory is often
used to characterize situations where coordinated behavior,
where the members of a group coordinate their actions to
accomplish tasks that pursue the goals of both the group and
its members, is of fundamental importance.

In this paper we first review the various notions of group
preference that have arisen in the context of game theory,
we then present an alternative concept of utility theory and
show develop a new class of games, called satisficing games.
We then show how to formulate these games through the
use of conditional preferences and describe how to reconcile
individual and group preferences.

Group Preferences
Several attempts have been made to express group prefer-
ences in a game-theoretic context. Shubik offers two in-
terpretations of this notion, neither of which game theorists

view as entirely satisfactory: “Group preferences may be
regarded either as derived from individual preferences by
some process of aggregation or as a direct attribute of the
group itself” (Shubik, 1982, p. 109). One way to aggre-
gate a group preference from individual preferences is to
define a “social-welfare” function that provides a total or-
dering of the group’s strategy profiles. The fundamental is-
sue is whether or not, given arbitrary preference orderings
for each individual in a group, there always exists a way of
combining these individual preference orderings to generate
a consistent preference ordering for the group. In an land-
mark result, Arrow (Arrow, 1951; Sen, 1979) showed that
no social-welfare function exists that satisfies a set of rea-
sonable and desirable properties, each of which is consistent
with the notion of self-interested rationality and the retention
of individual autonomy.

The Pareto principle provides a concept of social welfare
as a direct attribute of the group. A strategy profile is Pareto
optimal if no single decision-maker, by changing its deci-
sion, can increase its level of satisfaction without lowering
the satisfaction level of at least one other decision-maker.
However, if a Pareto-optimal solution does not provide each
each player at least its security level (i.e., the minimum pay-
off it can be guaranteed, even if all other players conspire
against it), it could not be a party to that decision and still be
faithful to individual rationality.

To impose a strategy profile, such as a Pareto-optimal so-
lution, on a group would require the existence of a super-
player, or, as Raiffa puts it, the “organization incarnate”
(Raiffa, 1968), who functions as a higher-level decision-
maker. Shubik refers to the practice of ascribing preferences
to a group as a subtle “anthropomorphic trap” of making
a shaky analogy between individual and group psychology.
He argues that, “It may be meaningful . . . to say that a group
‘chooses’ or ‘decides’ something. It is rather less likely to be
meaningful to say that the group ‘wants’ or ‘prefers’ some-
thing” (Shubik, 1982, p. 124). Raiffa, also, rejects the notion
of a superplayer, but confesses that he still feels “a bit un-
comfortable . .. somehow the group entity is more than the
totality of its members” (Raiffa, 1968, p. 237). Arrow ex-
presses a similar discomfort: “All the writers from Bergson
on agree on avoiding the notion of a social good not defined
in terms of the values of individuals. But where Bergson
seeks to locate social values in welfare judgments by indi-
viduals, I prefer to locate them in the actions taken by so-
ciety through its rules for making social decisions” (Arrow,
1951, p. 106). Evidently, although a satisfactory account of
group preferences may be difficult or, perhaps, impossible,
to obtain under individual rationality, the desire to accom-
modate the notion remains.

Perhaps the source of discomfort is that individual ratio-
nality by itself does not provide the ecological balance that a
group must achieve if it is to accommodate the variety of re-
lationships that can exist between decision-makers and their
environment. But achieving such a balance should not re-
quire the aggregation of individual interests or the fabrica-
tion of a superplayer. While such approaches may be rec-
ommended as ways to account for group interests, they may
also manifest the limitations of individual rationality.
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Of course, one may substitute the interests of others for
one’s own self-interest, as Sen (1990, p. 19) observed: “It
is possible to define a person’s interests in such a way that
no matter what he does he can be seen to be furthering his
own interests in every isolated act of choice ... no matter
whether you are a single-minded egoist or a raving altruist
or a class-conscious militant, you will appear to be maximiz-
ing your own utility in this enchanted world of definitions.”
Although it is certainly possible to suppress one’s prefer-
ences in deference to others by redefining one’s own utility,
doing so is little more than a device for co-opting individual
rationality into a form that can be interpreted as unselfish.
Such a device only simulates attributes of cooperation, un-
selfishness, and altruism while maintaining a regime that is
competitive, exploitive, and avaricious.

Nevertheless, game theory has been a great success story
for economics, political science, and psychology. With these
disciplines, however, game theory is used primarily as an
analysis tool to explain and predict behavior, and there is
no causal relationship between the performance of the enti-
ties being studied and the model used to characterize them.
In the engineering context of synthesis, however, the goal
is to design and build artificial decision-making entities and
the models used to characterize behavior are indeed causal.
Although von Neumann-Morgenstern game theory has been
successfully applied in many disciplines, this success does
not imply that self-interest is the only principle that will lead
to credible models of behavior, it does not imply the impos-
sibility of accommodating both group and individual inter-
ests in some meaningful way, and it does not imply that in-
dividual rationality is an appropriate principle upon which
to base a theory for the design and synthesis of artificial
decision-making entities.

There is an old saying: “If all I have is a hammer, every-
thing looks like a nail.” We may paraphrase that sentiment
as follows: “If all I know how to do is optimize, every group
decision problem looks like a von Neumann-Morgenstern
game.” If, however, as Luce and Raiffa conjecture, it is
indeed too much to ask that a sociology be derived from
the single assumption of individual rationality, we may gain
some advantage in social situations by considering the use
of decision-making tools that are not founded on that single
assumption and hence may be better suited for the expres-
sion of a sociology. Consider, for example, the following
group decision scenario.

Example 1 The Pot-Luck Dinner Larry, Curly, and Moe

are going to have a pot-luck dinner. Larry will bring either

soup or salad, Curly will provide the main course, either
beef, chicken, or pork, and Moe will furnish the dessert, ei-
ther lemon custard pie or banana cream pie. The choices

are to be made simultaneously and individually following a

discussion of their preferences, which discussion yields the

Sollowing results:

1. In terms of meal enjoyment, if Larry were to prefer soup,
then Curly would prefer beef to chicken by a factor of two,
and would also prefer chicken to pork by the same ratio.
However, if Larry were to prefer salad, then Curly would
be indifferent regarding the main course.
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. If Curly were to reject pork as being too expensive, then
Moe would strongly prefer (in terms of meal enjoyment)
lemon custard pie and Larry would be indifferent regard-
ing soup or salad. If, however, Curly were to to reject beef
as too expensive, then Larry would strongly prefer soup
and Moe would be indifferent regarding dessert. Finally,
if Curly were to reject chicken as too expensive, then both
Larry and Moe would be indifferent with respect to their
enjoyment preferences.

Larry, Curly, and Moe all wish to conserve cost but consider
both cost and enjoyment to be equally important. Table 1
indicates the total cost (in stooge dollars) of each of the 12
possible meal combinations (using obvious abbreviations).

Icst | berm
beef (soup/sald) | 23/25 | 27/29
chkn (soup/sald) | 22/24 | 26/28
pork (soup/sald) | 20/22 | 24/26

Table 1: Meal cost structure for the Pot-Luck Dinner.

The decision problem facing the three participants is for
each to decide independently what to bring to the meal. Ob-
viously, each participant wants his own preferences honored,
but no explicit notion of group preference is provided in
the scenario. A distinctive feature of the preference spec-
ification for this example is that individual preferences are
not even specified by the participants. Rather, the partici-
pants express their preferences as functions of other partici-
pants’ preferences. Thus, they are not confining their inter-
ests solely to their own desires, but are taking into consid-
eration the consequences that their possible actions have on
others. Such preferences are conditional. These intercon-
nections between participants may imply some sort of group
preference, but it is not clear what that might be. In fact,
if the preferences, either conditional or unconditional (i.e.,
individual) turn out to be inconsistent, then there may be no
harmonious group preference, and the group may be dys-
functional in the sense that meaningful cooperation is not
possible. But if they are consistent, then some form of har-
monious group preference may emerge from the conditional
preferences (and any unconditional preferences, should they
be provided). If this is the case, then an important question
is how we might elicit a group decision that accommmodates
an emergent group preference.

To formulate a von Neumann-Morgenstern game-
theoretic solution to this decision problem, each participant
must identify and quantify payoffs for every conceivable
meal configuration that conform to their own preferences as
well as give due deference to others. Notice that the un-
conditional preferences of each of the participants are not
specified nor are all of the possible conditional preferences
specified. Unfortunately, individual rationality makes it dif-
ficult to obviate such requirements, and the lack of a total
ordering in the problem statement therefore presents a se-
rious problem for conventional game theory. Without this
constraint it is impossible to apply standard solution con-
cepts such as defining equilibria. The desire to apply game



theory may motivate decision-makers to manufacture order-
ings that that are not warranted. Traditional game theory is
not an appropriate framework for this problem.

To solve this problem in a way that fully respects the prob-
lem statement, we need a solution concept that does not de-
pend upon total orderings. It must, however, accommodate
the fact that, even though agents may be primarily concerned
with conditional local issues, these concerns can have wide-
spread effects.

Utilities

The chain of logic that supports game theory is as follows:
individual rationality leads to optimization, which requires
a total ordering of preferences, which in turn motivates the
defining of utility functions to characterize these preference
orderings. However, as Raiffa observed: “One can argue
very persuasively that the weakest link in any chain of ar-
gument should not come at the beginning” (Raiffa, 1968,
p- 130). Thus, if we are to overcome the limitations im-
posed by individual rationality, we must forge a new chain.
To do so, we must: (1) define a new notion of rationality
that accommodates a wider sphere of interest; (2) replace
optimization with a criterion that is compatible with non-
localized rationality; (3) define preference orderings that ac-
commodate both individual and group interests, and (4) de-
fine utility functions that are compatible with these prefer-
ence orderings.

This paper presents such a chain. To forge it, however,
it is more convenient to start at the end and work back to
the beginning. Thus, we start by examining the structure of
utility functions, which leads to an alternative preference or-
dering that, in turn, leads to a criterion for decision-making
which, finally, defines a new concept of rationality.

Extrinsic Utilities

We concentrate exclusively on finite strategic games of com-
plete information. Such games are defined by a payoff ar-
ray, the entries of which are the N-tuples of payoffs to the
players. Each player defines its payoff as a function of the
strategies of all players; that is, the payoff to player ¢ is
mi(s1,...,sn) with s; € Uj, 5 = 1,...,N, where U;
is player j’s strategy space. In more compact notation, we
write 7;(s) wheres = {51,... ,sn} € U=U; x---x Uy
is a strategy profile. Individually rational players use such
utilities to make comparisons between strategy profiles and
thereby form solution concepts such as Nash equilibria to
define acceptable strategies. Such comparisons are inter-
strategy in that they require the comparisons of the attributes
of each strategy to the attributes of all other strategies. Util-
ities that are used for this type of comparisons are extrinsic.

The important thing to note about the way these utilities
are used is that it is not until the payoffs are juxtaposed into
an array so that the payoffs for all players can be compared
that the actual “game” aspects of the situation emerges. It
is the juxtaposition that reveals possibilities for conflict or
coordination. These possibilities are not explicitly reflected
in the individual payoffs by themselves. In other words, al-
though the individual’s payoff is a function of other players’
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strategies, it is not a function of other players’ preferences.
This structure is completely consistent with exclusive self-
interest, where all a player cares about is its personal benefit
as a function of its own and other players’ strategies, without
any regard for the benefit to the others. Under this paradigm,
the primary way the preferences of others factor into an in-
dividual’s decision-making is to constrain behavior so as to
limit the amount of damage they can do to oneself.

If the game is not one of pure competition, there may be
some benefit to coordinated behavior, whereby players take
into consideration the effect of their actions on the welfare of
others. One way to account for the interests of others within
the von Neumann-Morgenstern framework is to transform
the game by introducing new payoffs of the following form
(Taylor, 1987): 7} = ﬁ;l a;;m;. By choosing the weights
@i, an altruistic player 2 may give deference to the prefer-
ences of others. This approach, however, requires the impo-
sition of two very strong assumptions: (a) each player must
precisely know the other players’ numerical payoffs (ordi-
nal rankings are not sufficient), and (b) interpersonal com-
parisons of utility are implied (the addends must be com-
mensurable). Even if these assumptions apply, choosing the
weights a;; requires each player to categorically ascribe a
portion of is utility to other players and therefore to de-
fer to some extent to those players in all circumstances. It
does not permit a player to choose selectively which of the
other player’s preferences it will favor or disfavor. To do so
would require a;; to be functions of other players’ strate-
gies, and the formulation of the game may quickly become
intractable.

Perhaps the critical question is not whether it is theoreti-
cally possible somehow to account for the interests of others
via extrinsic utilities. Rather, the more important question
might be: do they offer an adequate platform by which to
make rationality of others part of one’s own rationality? The
lack of a definitive notion of group preference that is consis-
tent with individual rationality would seem to cast doubt on
an affirmative answer to the latter question.

Intrinsic Utilities
In societies that value cooperation, it is unlikely that the
preferences of a given individual will be formed indepen-
dently of the preferences of others. Knowledge about one
agent’s preferences may alter another agent’s preferences.
Such preferences are conditioned on the preferences of oth-
ers. In contrast to conditioning only on the actions of other
participants, conditioning on the preferences of others per-
mits a decision-maker to adjust its preferences to accommo-
date the preferences of others. It can bestow either deference
or disfavor to others according to their preferences as they
relate to its own preferences. Since traditional utility theory
is a function of participant strategies, rather than participant
preferences, it cannot be used to express such relationships.
To address this problem, let us closely examine the way
preferences are formed. When defining preferences one of-
ten encounters valuations that are in opposition. Any given
strategy profile will possess attributes that are beneficial and
attributes that are detrimental to each player; such differ-



ences in valuation create dichotomies. By separating the fa-
vorable and unfavorable attributes of each strategy profile,
we may expose the fundamental preference structure. Com-
parison of the attributes of each profile provides a determi-
nation of the benefit that obtains by adopting it relative to
the cost. Such dichotomies are ubiquitous. People routinely
compare the upside against the downside, the pros versus
the cons, the pluses versus the minuses, and they can do this
profile by profile without directly comparing of one profile
to another. In other words, they perform intra-profile com-
parisons. Such comparisons are fundamental, and must be
made, even if implicitly, in order to define the utility func-
tion which can then be used for inter-profile comparisons
(i.e., total preference orderings).

Perhaps, if we start at the headwaters of preference for-
mulation, rather than somewhere downstream, we may be
able to characterize these dichotomous relationships more
comprehensively and systematically. We thus consider the
formation of two utility functions that accommodate di-
chotomies. A first consideration is that, since the two util-
ity functions are to be compared, they must be expressed in
the same units. To avoid arbitrary scalings as well as for
reasons that will soon become apparent, it is convenient to
define these utilities as mass functions. A function p is a
mass function if p(s) > 0 and ) _;(s) = 1. Adopting this
convention means that the player has a unit of mass to appor-
tion among the profiles to weight their desirable attributes as
well as a unit of mass to apportion to weight their undesir-
able attributes. These weighting functions thus possess the
mathematical properties of probability mass functions, but
they do not possess the same semantics and do not admit in-
terpretations of belief, propensity, frequency, or any other of
the usual probabilistic interpretations. To emphasize the dis-
tinction between the mathematical structure and the interpre-
tation of these functions, we will refer to the mass function
that characterizes the desirable attributes of the strategy pro-
files as selectability, and we will denote the mass function
that characterizes the undesirable attributes as rejectability.

When defining the dichotomous utility functions, opera-
tional definitions of what is selectable and rejectable about
the strategy profiles must be provided. Typically, the at-
tributes of a profile that contribute to a fundamental goal
would be associated with selectability and those attributes
that inhibit or limit activity would be associated with re-
jectability. There generally will not be a unique way to
frame a given decision problem, but regardless of the way
the framing is done, it is essential that the selectability and
rejectability attributes not be restatements of the same thing.
In general, at least for single-agent decision problems, the
selectability of a strategy should be specifiable without tak-
ing into consideration its rejectability and vice versa. For
multiple-player problems, however, this independence need
not apply between players; that is, one player’s selectability
or rejectability may influence another player’s selectability
or rejectability.

We are now in a position to complete our chain that links
utilities to preference orderings to decision rules to ratio-
nal behavior. Our procedure involves making intra-profile,
rather than inter-profile, comparisons. Utilities used for this
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purpose are intrinsic, meaning that they are used to evaluate
a profiles with respect to attributes that it possesses within it-
self, independently how that profile relates to other profiles.
With extrinsic comparisons, the logical notion of rational be-
havior is to rank-order the strategy profiles and choose one
that is optimal (i.e., to equilibrate). With intrinsic compar-
isons, the logical notion of rational behavior is to choose a
profile that is good enough, in the sense that the gains ob-
tained by choosing it outweigh the losses. This defines a
new notion of rationality, which we term satisficing ratio-
nality. This notion is considerably weaker than individual
rationality, which asserts that a decision-maker must make
the best choice possible. Put in the vernacular, the essence
of individual rationality is “only the best will do,” while the
essence of satisficing rationality is “at least get your money’s
worth.”

Why would a decision-maker choose to do anything other
than optimize? For a decision-maker functioning in isola-
tion, there is no incentive, ceteris paribus, to eschew an opti-
mal solution. Furthermore, with games of pure competition,
there is no incentive to adopt any solution concept that does
not maximize the advantage to the player. But with games of
mixed motive, the notion of being individually optimal loses
much of its force (as Arrow observed). Yet, under the strict
paradigm of individual rationality, a player must not modify
its choice to is own disadvantage, no matter how slight (un-
less it also redefines its utility), even if doing so would offer
a great advantage to others. However, once such a player
starts down the slippery slope of compromise by abandoning
individual rationality, there is seemingly no way to control
the slide.

Satisficing provides a way to add some friction to the slip-
pery slope. While it does indeed abandon individual ra-
tionality, it is not heuristic. Intrinsic utilities are based on
exactly the same principles of value that are used to define
extrinsic utilities, the valuations are merely applied in a dif-
ferent way. Thus, the satisficing approach is applicable in
situations where relationships other than pure competition
are relevant.

The justification for using the term “satisficing” is that it is
consistent with Simon’s original usage of the term—to iden-
tify strategies that are good enough by comparing attributes
of the strategies to a standard. This usage differs only in the
standard used for comparison. Simon’s standard is extrin-
sic; strategies are compared to the “aspiration level” of how
good a solution might reasonably be achieved (Simon, 1955;
Simon, 1956; Simon, 1990). Satisficing as defined herein,
on the other hand, is intrinsic; the comparison is done with
respect to the merits of the strategy.

Satisficing Decision-Making
To generate a useful theory of decision-making we must
be able to define, in precise mathematical terms, what it
means to be good enough, and we must develop a theory of
decision-making that is compatible with this notion. An al-
ternative to von Neumann-Morgenstern /V-player game the-
ory is a new approach to multiple-agent decision-making
called satisficing games (Stirling and Goodrich, 1999b; Stir-
ling and Goodrich, 1999a; Goodrich et al., 2000; Stirling,



2002). Two key features of our development are (a) the sep-
aration of positive and negative attributes of strategy profiles
into selectability and rejectability utility functions and (b)
the structure of these utility functions as mass functions. To
construct these mass functions, however, we must first de-
fine an even more fundamental quantity, which we term the
interdependence mass function, which accounts for linkages
that exist between selectability and rejectability.

An act by any individual player has possible ramifications
for the entire group. Some players may be benefited by the
act, some may be damaged, and some may be indifferent.
Furthermore, although an individual may perform the act in
its own benefit or for the benefit of others, the act is usu-
ally not implemented free of cost. Resources are expended,
or risk is taken, or some other penalty or unpleasant con-
sequence is incurred, perhaps by the individual whose act
it is, perhaps by other players, and perhaps by the entire
group. Although these undesirable consequences may be
defined independently from the benefits (recall the example
of choosing an automobile), the measures associated with
benefits and costs cannot be specified independently of each
other, due to the possibility of interaction (e.g., cost prefer-
ences for one player may depend upon style preferences of
another player). A critical aspect of modeling the behavior
of a group, therefore, is the means of representing the inter-
dependence of both positive and negative consequences of
all possible strategy profiles.

Let X;,..., XN be a group of decision-makers, and let
U; be the set of strategies available to X;,7 = 1,... , N. The
strategy profile set is the productset U = Uy, x --- x Up.
Let us denote elements of this set as s = {sy,...,sn},
where s; € U;.

Definition 1 An interdependence function for a group
{X1,-..,Xn}, denoted ps,...syRy--ry - UX U — [0,1],
is a mass function, that is, it is non-negative and normal-
ized to unity, which encodes all of the positive and nega-
tive interrelationships between the members of the group.
We will denote this as ps,...syR;---Ry(S;T), Where s =
(s1,...,sn) € U represents strategy profiles viewed in
terms of selectability and r = (ry,...7n5) € U represents
strategy profiles viewed in terms of rejectability. ]

The interdependence function provides a complete de-
scription of all individual and group relationships in terms of
their positive and negative consequences. Let s and r be two
strategy profiles. ps,...syR,---Ry (S;T) characterizes the si-
multaneous disposition of the players with respect to select-
ing s and rejecting r. Particularly when s = r, it may appear
contradictory to consider simultaneously rejecting and se-
lecting strategies. It is important to remember, however, that
considerations of selection and rejection involve two differ-
ent criteria. It is no contradiction to consider selecting, in
the interest of achieving a goal, a strategy that one would
wish to reject for unrelated reasons, nor is it a contradic-
tion to consider rejecting, because of some undesirable con-
sequences, a strategy one would otherwise wish to select.
Evaluating such trade-offs is an essential part of decision-
making, and the interdependence mass function provides a
means of quantifying all issues relevant to this trade-off.
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Since it is a mass function, the interdependence function
is mathematically similar to a probability mass function, but
does not characterize uncertainty or randomness. Never-
theless, it possesses the mathematical structure necessary to
characterize notions such as independence and conditioning:

Conditioning

The interdependence function can be rather complex but,
fortunately, its structure as a mass function permits its de-
composition into constituent parts according to the law of
compound probability, or chain rule (Eisen, 1969).! Apply-
ing the formalism (but not the usual probabilistic semantics)
of the chain rule, we may express the interdependence func-
tion as a product of conditional selectability and rejectabil-
ity functions. To illustrate, consider a two-agent satisficing
game involving decision-makers X'; and X», with strategy
sets Uy and Uy, respectively. The interdependence function
may be factored in several ways, for example, we may write

PS$15:R1 R,y (51, 82371, T2) = Ps, |8, R, Ry (5118271, 72)
‘PSa|Ry R (8271, 72) - PRy Ry (T1]72) - DR, (r2). (1)

We interpret this expression as follows.
Ps,|S2R1 Rz (81182, 71,72) is X1’s conditional selectability
of s, given that X» selects ss, X; rejects 71, and X,
reject 2. Similarly, pg,|r, g, (82|71, 72) is X2’s conditional
selectability of sq, given that X; and X, reject r; and 7o,
respectively. Continuing, pr,|r, (1|72) is X1’s conditional
rejectability of 71, given that X, rejects ro. Finally, pg, (12)
is X1’s unconditional rejectability of r5.

Many such factorizations are possible, but the appropri-
ate factorization must be determined by the context of the
problem. These conditional mass functions are mathemat-
ical instantiations of production rules. For example, we
may interpret pg, (g, (r1|r2) as the rule: If X, rejects o,
then X, feels pp,|r,(r1]r2) strong about rejecting r1. In
this sense, they express local behavior, and such behav-
ior is often much easier to express than global behavior.
Furthermore, this structure permits irrelevant interrelation-
ships to be eliminated. Typically, there will be some close
relationships between some subgroups agents, while other
subgroups agents will function essentially independently of
each other. For example, suppose that X ;’s selectability has
nothing to do with X2’s rejectability. Then we may simplify
P5,1S2 Ry Ry (51152; 71, 72) to become pg, s, R, (s1]52; 72).

Such conditioning permits the expression of the interde-
pendence function as a natural consequence of the relevant
interdependencies that exist between the participants. Con-
ditioning is the key to the accommodation of the interests

'In the probability context, let X and Y be random variables
and let z and y possible values for X and Y, respectively. By the
law of compound probability, pxy (z,¥) = pxv (zly)py (¥) ex-
presses the joint probability of the occurrence of the event (X =
z,Y = y) as the conditional probability of the event X = z oc-
curring conditioned on the event Y = y occurring, times the prob-
ability of Y’ = y occurring. This relationship may be extended to
the general multivariate case by repeated applications, resulting in
what is called the chain rule.



of others. For example, if X, were very desirous of im-
plementing s if X; were not to implement , X; could ac-
commodate X’s preference by setting p g, |5, (r|s) to a high
value (close to unity). Then, » would be highly rejectable
to X if s were highly selectable to X5. Note, however,
that if X, should turn out not to highly prefer s and so sets
s, (s) = 0, then the joint selectability/rejectability of (s; 7),
namely, ps, R, (5;7) = pr,|s,(7|s)ps,(s) = 0, so the joint
event of X; rejecting 7 and X, selecting s has negligible
interdependence mass. Thus, X; is not penalized for being
willing to accommodate X when X5 does not need or ex-
pect that accommodation. By controlling the conditioning
values, X is able to achieve a balance between its egoistic
interests and its concern for others.

Satisficing Games

From the interdependence function we may derive two func-
tions, called joint selectability and joint rejectability func-
tions, denoted pg,...sy and pg,...ry, respectively, accord-
ing to the formulas

Ps;--5n(8) = ) PsySyRu-Ry (S; V) @
veUu
PRy---Rn (S) S Z psl..,sNRl...RN(V; S) 3

veUu

for all s € U. These functions are also multivariate mass
functions. The two functions are compared for each possible
joint outcome, and the set of joint outcomes for which joint
selectability is at least as great as joint rejectability form a
jointly satisficing strategy profile set.

Definition 2 A

{U)psr"snvar"RN}'
ficing game is the set

satisficing game is a ftriple
The joint solution to a satis-

@

where q is the index of caution, and parameterizes the de-
gree to which the decision-maker is willing to accommodate
increased costs to achieve success. Nominally, ¢ = 1, which
attributes equal weight to success and resource conservation
interests. X, is termed the jointly satisficing set, and ele-
ments of 3, are satisficing strategy profiles. O

¥y ={s € U:ps,..sy(s) > qpr,--rx(5)},

The jointly satisficing set provides a formal definition of
what it means to be good enough for the group; namely, a
strategy profile is good enough it the joint selectability is
greater than or equal to the index of caution times the joint
rejectability.

Definition 3 A decision-making group is jointly satis-
ficingly rational if the members of the group choose a strat-
egy profile for which joint selectability is greater than or
equal to the index of caution times joint rejectability. a

The marginal selectability and marginal rejectability
mass functions for each X; may be obtained by summing
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the joint selectability and joint rejectability over the strate-
gies of all other participants, yielding:

Ps;(si) = Z PSSy (51, ,SN) )
SjEUJ'
J#i

PR(S:)= D PRi-Rn(S1,---,8N).
SjEUj
i

©

Definition 4 The individual satisficing solutions to the sat-
isficing game {U, ps,...sy, PR, ---Ry } ar€ the sets

5§ = {s: € Uiz ps,(s:) > qpr.(s:)}- Q)

The product of the individual satisficing sets is the satisficing
strategy profile rectangle:

Re=Z) x - xZF ={(s1,... ,sn):s: € T} ®

O

Definition 5 A decision-maker is individually satisficingly
rational if it chooses a strategy for which the marginal se-
lectability is greater than or equal to the index of caution
times the marginal rejectability. O

It is not generally true that the satisficing rectangle will
have any close relationship with the jointly satisficing set.
What is true, however, is the following theorem:

Theorem 1 (The negotiation theorem.) If s; is individually
satisficing for X;, that is, s; € X, then it must be the ith
element of some jointly satisficing vector s € 3.

Proof We will establish the contrapositive, namely, that
if s; is not the ith element of any s € X, then s; ¢
¥;. Without loss of generality, let ¢ = 1. By hy-
pothesis, ps,..sy(51,V) < gpRr,..ry(s1,v) forall v €
Uy x --- x Un, s0 ps,(s1) PS8y (81,v) <
4.y PRy--Ry (51, V) = PR, (51), hence s; ¢ T O

Thus, if a strategy is individually satisficing, it is part of a
satisficing strategy profile, although it need not be part of all
satisficing profiles. The converse, however, is not true: if s;
is the 7th element of a jointly satisficing vector, it is not nec-
essarily individually satisficing for X;. The content of the
negotiation theorem is that no one is ever completely frozen
out of a deal—every decision-maker has, from its own per-
spective, a seat at the negotiating table. This is perhaps the
weakest condition under which negotiations are possible.

A decision-maker who possessed a modest degree of al-
truism would be willing to undergo some degree of self-
sacrifice in the interest of others. Such a decision-maker
would be willing to lower its standards, at least somewhat
and in a controlled way, if doing so would be of great bene-
fit to others or to the group in general. The natural way for
X; to express a lowering of its standards is to decrease its
index of caution. Nominally, we may set ¢ = 1 to reflect



equal weighting of the desire for success and the desire to
conserve resources. By decreasing ¢, we lower the standard
for success relative to resource consumption and thereby in-
crease the size of the satisficing set. As ¢ — 0 the standard is
lowered to nothing, and eventually every strategy is satisfic-
ing for X;. Consequently, if all decision-makers are willing
to reduce their standards sufficiently, a compromise can be
achieved.

Reconciling Group and Individual Preferences

The satisficing concept induces a simple preference order-
ing for individuals, namely, we may define the binary rela-
tionships “>;” and “~;” meaning “is better than” and “is
equivalent to,” respectively, for player 7, such that s; >; s/
if s; € Ef, and s} ¢ 3, and s; ~; sj if either s; € )4
and s} € Ef] ors; ¢ T and s} ¢ X3 Ifs; € T}, then s;
is said to be good enough. This interpretation of ¢ differs
from the interpretation of conventional individual rationality
primarily in that, in addition to the best strategies it admits
all other strategies that also qualify as good enough. An im-
portant feature of the satisficing approach, however, is that
the individual preference orderings are not specified a priori,
rather, they emerge a posteriori after all of the linkages be-
tween the players are accounted for in the interdependence
function. In this sense, individual preferences are emergent.

Satisficing also induces a preference ordering for the
group, namely, if s > s’ if s € X, and s’ ¢ X, and
s ~ s’ ifeithers € ¥, ands’ € T, ors ¢ X, and
s’ ¢ X,. Interpreting this preference ordering, however,
is not straightforward; it is not immediately clear what it
means to be good enough for the group. It would seem that
the notion of group preference should convey the idea of
harmonious behavior or at least some weak notion of so-
cial welfare, but satisficing game theory is completely neu-
tral with regard to conflictive and coordinative aspects of the
game. Both aspects can be accommodated by appropriately
structuring the interdependence function. The fact that the
interdependence function is able to account for conditional
preference dependencies between players provides a cou-
pling that permits them to widen their spheres of interest be-
yond their own myopic preferences. This widening of pref-
erences does not guarantee that there is some coherent no-
tion of harmony or disharmony. Although such implications
are certainly not ruled out, selectability and rejectability do
not favor either aspect. They may characterize benevolent
or malevolent behavior and they may represent egoistic or
altruistic interests. They may result in harmonious behavior
or they may result in dysfunctional behavior. With compet-
itive games, conflict can be introduced through conditional
selectability and rejectability functions that account for the
differences in goals and values of the players—the ‘group
preference’ will then be to oppose one another. On the other
hand, constructive coordinated behavior can be introduced
through the same procedure, leading to a group preference
of cooperation. Thus, as is the case with trying to define
group rationality under the optimization regime, the notion
of group rationality also appears to be somewhat elusive un-
der the satisficing regime.
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However, the apparent elusiveness of a simple interpre-
tation of group rationality is not a weakness of the satis-
ficing approach. On the contrary, it is a strength. Rather
than a notion of group preference being defined as an ag-
gregation of individual interests (a bottom-up, or micro-to-
macro, approach) or imposed by a superplayer (a top-down,
or macro-to-micro, approach), group preferences are emer-
gent, in the sense that they are determined by the totality of
the linked preferences (conditional and unconditional) and
display themselves only as the links are forged. It is analo-
gous to making a cake. The various ingredients (flour, sugar,
water, heat, etc.) influence each other in complex ways, but
it is not until they are all combined in proper proportions that
a harmonious group notion of “cakeness” emerges.

Thus, just as the satisficing utility functions compare in-
trinsic, rather than extrinsic, attributes of strategies, the no-
tions of both individual and group preference that emerge
from their application are also intrinsic. They develop within
the group of players as they evaluate their possibilities. Any
notions of either group or individual rationality that emerge
need not be anticipated or explicitly modeled. Rather than
being imposed via either a top-down or bottom-up regime,
such preferences may be characterized as inside-out, or
meso-to-micro/macro. Both individual and group prefer-
ences emerge as consequences of local conditional interests
that propagate throughout the community from the interde-
pendent local to the interdependent global and from the con-
ditional to the unconditional.

To illustrate the emergence of individual and group pref-
erences, let us now address the Pot-Luck Dinner problem
that was introduced in Example 1. To examine this problem
from the satisficing point of view, we first need to specify
operational definitions for selectability and is a function of
six independent variables and may be factored,rejectability.
Although there is not a unique way to frame this problem, let
us take rejectability as cost of the meal and take selectability
as enjoyment of the meal. The interdependence function is
a function of six independent variables and may be factored,
according to the chain rule, as

PS1ScSmRLRcRMm (:U, Yy, zu,v, 'LU) =
PSc|SLSu Ry, Ro R (YT, 234, v, w)

* PSLSmRLRcRM (T, 2,4, v,w),  (9)
where the subscripts L, C, and M correspond to Larry,
Curly, and Moe, respectively. The mass function
PSc|SLSm R Ro Ry (U|Z, 2; 4, v, w) expresses the selectabil-
ity that Curly places on y, given that Larry selects = and
rejects u, that Curly rejects v, and that Moe selects z and
rejects w. From the hypothesis of the problem, we realize
that, conditioned on Larry’s selectability, Curly’s selectabil-
ity is independent of all other considerations, thus we can
simplify this conditional selectability to obtain

PSclSLSmRLRe Ry (V1T 24, v, ) = psg)s, (y])-
Next, we apply the chain rule to the second term on the right
hand side of (9), which yields

PSS RLRcRMm (37, zZu,v, ’LU) =
pSL,SM]RLRcRM ((L‘, zlu, v, w) *PRLRcRM (u1 v, ‘LU)



But, given Curly’s rejectability, the joint selectability for
Larry and Moe is independent of all other considerations,
S0

PSLSm|RLRcRar (:l:, zlu,v,w) = PSLSm|Rc (z, |v).

By making the appropriate substitutions, (9) becomes

PSLScSuRL R R (T, ¥; 2,4, 0, W) = psgys, (y|z)
'pSLSMIRc(xs ZI’U) 'PRLRCRM(U,'U;'LU)- (10)

We desire to obtain 334, the satisficing strategy profiles for
the group and £, £, and T, the individually satisficing
strategy sets for (i.arry, Curly, and Moe, respectively. To do
50, we must specify each of the components of (10). To
compute ps. (s, , recall that Curly prefers beef to chicken to
pork by respective factors of 2 conditioned on Larry prefer-
ring soup and that Curly is indifferent, conditioned on Larry
preferring salad. We may express these relationships by the
conditional selectability functions:

Psc|s, (beef|soup) = 4/7 ps,s, (beef|sald) =1/3
Psc|s, (chkn|soup) = 2/7 Psc|s, (chkn|sald) = 1/3
Psc|s, (pork|soup) = 1/7 Pscisy (pork|sald)=1/3.

To compute pg, s,,|rc» We recall, given that Curly views
pork as completely rejectable, Moe views lemon custard pie
as highly selectable and Larry is indifferent. Given that
Curly views beef as completely rejectable, Larry views soup
as selectable, and Moe is indifferent; and given that Curly
views chicken as completely rejectable, both Larry and Moe
are indifferent. These relationships may be expressed as

PSLSu|Rc (S0up, lestlpork) = 0.5
DSy Sar|Re (Soup, berm|pork) = 0.0
Ps. su|Rc(sald, lestlpork) = 0.5
Ps.Sy|Re (sald, berm|pork) = 0.0,
PsLSm|Rc (Soup, lest|beef) = 0.5
PS.Sm|Rc (soup, berm|beef) = 0.5
Ps.Su|Rc(sald, lcst|beef) = 0.0
Ps.Su|Rc (sald, bermlbeef) = 0.0,
and
Ps.Sy|Re (Soup, lestjchkn) = 0.25
Ps.Sa|Re (Soup, berm|chkn) =  0.25
PsiSu|Re (sald, lest|chkn) = 0.25
Ps.Su|Rc (sald, berm|chkn) = 0.25.

Lastly, we need to specify pr; rc R, > the joint rejectabil-
ity function. This is done by normalizing the meal cost
values in Table 1 by the total cost of all meals (e.g,
DRy Rc R (SOUp, beef, lest) = 23/296).

With the interdependence function so defined and letting
g = 1, the jointly satisficing meals are as displayed in Table

107

2, each of which is good enough for the group, considered
as a whole. The individually satisficing items, as obtained
by computing the selectability and rejectability marginals,
are also provided in Table 2 to be soup, beef, and lemon cus-
tard. Fortunately, this set of choices is also jointly satisficing
without lowering the index of caution. Thus, all of the pref-
erences are respected at a reasonable cost and, if pies are
thrown, it is only for recreation, not retribution.

Jointly Satisficing

Meal PS1.ScSm | PRLRcRM
{soup, beef, lcst} 0.237 0.078
{soup, chkn, lest} 0.119 0.074
{soup, beef, berm} 0.149 0.091
{sald, pork, lcst} 0.080 0.074

Individually Satisficing
Participant | Choice | pgs PR

Larry soup | 0.676 | 0.480

Curly beef | 0.494 | 0.351

Moe lest 0.655 | 0.459

Table 2: Jointly and individually satisficing choices for the
Pot-Luck Dinner.

With the Pot-Luck Dinner, we see that, although total or-
derings for neither individuals nor the group are specified,
we can use the a priori partial preference orderings from
the problem statement to generate emergent, or a posteriori,
group and individual orderings. A posteriori individual or-
derings also emerge from this exercise: Larry prefers soup
to salad, Moe prefers lemon custard pie to banana cream
pie, and Curly prefers beef to either chicken or pork. Note,
however, that Curly is not required to impose a total order-
ing on his preferences (chicken versus pork)—this approach
does not force the generation of unwarranted preference re-
lationships. We see that a group-wide preference of avoiding
conflict emerges, since the individually satisficing strategies
are also jointly satisficing. This group desideratum was nor
specified a priori.

Conclusion

Satisficing game theory offers a way for the interests of the
group and of the individuals to emerge through the con-
ditional preference relationships that are expressed via the
interdependence function due to its mathematical structure
as a probability (but not with the usual semantics dealing
with randomness or uncertainty). Just as the joint probabil-
ity function is more than the totality of the marginals, the
interdependence function is more than the totality of the in-
dividual selectability and rejectability functions. It is only
in the case of stochastic independence that a joint distribu-
tion can be constructed from the marginal distributions, and
it is only in the case of complete lack of social concerns that
group welfare can be expressed in terms of the welfare of
individuals.

Optimization is a strongly entrenched procedure and dom-
inates conventional decision-making methodologies. There



is great comfort in following traditional paths, especially
when those paths are founded on such a rich and enduring
tradition as rational choice affords. But when synthesizing
an artificial system, the designer must employ a more so-
cially accommodating paradigm. The approach described
in this paper seamlessly accounts for group and individual
interests. Order can emerge through the local interactions
that occur between agents who share common interests and
who are willing to give deference to each other. Rather than
depending upon the non-cooperative equilibria defined by
individual rationality, this alternative may lead to the more
socially realistic and valuable equilibrium of shared interests
and acceptable compromises.
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