From: AAAI Technical Report WS-02-07. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

View Validation: A Case Study for Wrapper Induction and Text Classification

lon Muslea, Steven Minton, and Craig A. Knoblock
University of Southern California & Fetch Technologies
4676 Admiralty Way
Marina del Rey, CA 90292, USA
muslea@isi.edu, minton@fetch.com, knoblock@isi.edu

Abstract . . .
Wrapper induction algorithms, which use labeled exam- %
ples to learn extraction rules, are a crucial component s 5r T
of information agents that integrate semi-structured in- <
formation sourcesMulti-view wrapper induction algo- g 20T s 7
rithms reduce the amount of training data by exploit- S 5l S i
ing several types of rules (i.evjewg, each of which @
being sufficient to extract the relevant data. All multi- 10 7 multi-view algorithm —t—
view algorithms rely on the assumption that the views | single-view algorithm ---x---
aresufficiently compatibléor multi-view learning (i.e., %0 10 20 30 40
mostexamples are labeled identically in all views). In difference in the accuracy of the two views (%)

practice, it is unclear whether or not two views are suf-
ficiently compatible for solving a new, unseen learning

I . Figure 1: As the difference in the accuracy of the two
task. In order to cope with this problem, we introduce

aview validationalgorithm: given a learning task, the :ne(\j/\l'csr,](l_nsq;e?:-es"é thael \gf'\tﬁsmt())eiorenr(faorrpr?srislrrlr?olmpi“ble,
algorithm predicts whether or not the views are suffi- Ingle-view algori utp : uiti-view

ciently compatible for solving that particular task. We counterpart.
use information acquired while solving several exem- there are tasks on which (single-vie®JALKER converges

plar learning tasks to train a classifier that discriminates faster. In this paper we focus on the following problem: for a

between the tasks for which the views auficiently task tt dict wheth ¢ i
and insufficiently compatibldor multi-view learning. new, unseen task, we want to predict whetner or nota muiti-

For both wrapper induction and text classification, view view algorithm will outperform its single-view counterpart.
validation requires only a modest amount of training Given the practical importance of this problem, we are in-
data to make high accuracy predictions. terested in a general purpose solution that can be applied to

any multi-view problem, including wrapper induction.

: In a multi-view problem, one can partition the domain’s
_ IntrOd_UCtlon) features into subsetsiéwg each of which arsufficientfor
Most mediator agents that integrate data from multiple Web- |earning the target concept. For instance, one can classify
based information sources ugeappersto extract the rel- ~ segments of televised broadcasts basiéiier on the video
evant data from semi-structured documents. As a typical or on the audio information; or one can classify Web pages
mediator integrates data from dozens or even hundreds of hased on the words that appeidtherin the documents or
sources, it is crucial to minimize the amount of time and jn the hyperlinks pointing to them. (Blum & Mitchell 1998)
energy that users spend wrapping each source. To addresgyroved that by using the views to bootstrap each other, the
this issue, researchers create@pper inductioralgorithms target concept can be learned from a few labeled and many
such assTALKER (Muslea, Minton, & Knoblock 2001a), ynlabeled examples. Their proof relies on the assumption
which learns extraction rules based on User'prOV|ded exam- that the views areompatib'eand uncorre'ated(i_e_, every
ples of items to be extracted. In previous work (Muslea, example is identically labeled in each vieand, given the
Minton, & Knoblock 2000), we introducedraulti-viewver- — |ape| of any example, its descriptions in each view are inde-
sion of STALKER, Co-Testing, that reaches higher extraction pendent).
accuracy based on fewer labeled examples. Co-Testing ex- |n real-world problems, both assumptions are often vio-
ploits the fact that, for most items of interest, thereaFe |ated for a variety of reasons such as correlated or insuf-
ternative wayso extract the data of interest (i.e., Co-Testing ficient features. In a companion paper (Muslea, Minton, &
is amulti-viewalgorithm). Even though Co-Testing outper- knoblock 2002), we introduced an active learning algorithm
forms it's Slngle-VIeW COUnterpart on most extraction taSkS, that performs well even when the independence assumption
Copyright © 2002, American Association for Artificial Intelli- is violated. We focus here on the view incompatibility issue,
gence (www.aaai.org). All rights reserved. which is closely related to the accuracy of the hypotheses

learned in the two views: the more accurate the views, the
fewer examples can be incompatible (i.e., labeled differently
in the two views). Figure 1, which is based on our results in
(Muslea, Minton, & Knoblock 2001b), illustrates the rela-
tionship between the incompatibility of the views and the
applicability of the multi-view algorithms: as the difference

Given :
- a learning task with two views: andVs
- a learning algorithnC
- the setsl” andU of labeled and unlabeled examples

LOOFPfor k iterations
-useL, Vi(T), andV>(T) to learn classifierd;, andh-

between the accuracy of the hypotheses learned in the two - FOR EACH clas€; DO

views increases (i.e., the views become more incompatible),

the single-view algorithm outperforms its multi-view coun-
terpart. This observation immediately raises the following

question: for a new, unseen learning task, should we use a

multi-view or a single-view learning algorithm?

The question above can be restated as follows: given two
views and a set of learning tasks, how can one identify the
tasks for which these two views asefficiently compatible
for multi-view learning? In order to answer this question,
we introduce aview validation algorithithat, for a given
pair of views, discriminates between the tasks for which the
views aresufficientlyandinsufficiently compatibléor multi-
view learning. In other words, view validation judges the
usefulness of the views for a particular learning task (te.,
validates the views for a task of intergst

View validation is suitable for applications such as wrap-
per induction (Muslea, Minton, & Knoblock 2000) and Web
page classification (Blum & Mitchell 1998), where the same
views are repeatedly used to solve a variety of unrelated

learning tasks. Consider, for instance, the Web page clas-

sification problem, in which the two views consist efdrds
that appear in Web padeand “words in hyperlinks pointing to
thent. Note that, in principle, we can use these two views

in learning tasks as diverse as distinguishing between home-

pages ofprofessorsandstudentor distinguishing between
articles oneconomicsandterrorism However, for any of
these learning tasks, it may happen that the text in the hy-
perlinks is so short and uninformative that one is better off
using just the words in the Web pages. To cope with this
problem, one can use view validation to predict whether or
not multi-view learning is appropriate for a task of interest.

- let E, andE; be thee unlabeled examples on whi¢h
andhy make the most confident predictions oy
- removeE; and E, from U, label them according th,
andhs,respectively, and add themTo
- combine the prediction df, andh.

Figure 2:The Co-Training algorithm.

can use view detection to search for adequate views among
the possible partitions of the domain’s features. In this con-
text, a view validation algorithm becomes a key component
that verifies whether or not the views that are generated dur-
ing view detection are sufficiently compatible for applying
multi-view learning to a learning task.

Background

The multi-view setting[Blum & Mitchell 1998) applies to
learning tasks that have a natural way to partition their fea-
tures into subsetviewg each of which arsufficiento learn

the target concept. In such tasks, an examykedescribed

by a different set of features in each view. For example, in
a domain with two viewd/; andVs;, any example: can be
seen as a tripl¢ry, -,], wherez; andz, are its descrip-
tions in the two views, andlis its label.

Blum and Mitchell (1998) proved that by using two views
to bootstrap each other, a target concept can be learned from
a few labeled and many unlabeled examples, provided that
the views arecompatibleanduncorrelated The former re-
quires that all examples are labeled identically by the target
conceptsin each view. The latter means that for any example
[z1,2,1], z; andz, are independent given

This paper presents a general, meta-learning approach to The proof above is based on the following argument: one

view validation. In our framework, the user provides sev-
eral exemplar learning tasks that were solved usingainee
views For each solved learning task, our algorithm gener-
ates aview validation exampléy analyzing the hypothe-
ses learned in each view. Then it uses @5 algorithm

to identify common patterns that discriminate between the
learning tasks for which the views asafficientlyandinsuf-
ficiently compatibldor multi-view learning. An illustrative
example of such a pattern is the followirigf for a taskl the
difference in the training errors in the two views is larger than 20%

can learn a weak hypothedis in V; based on the few la-
beled examples and then applyto all unlabeled examples.
If the views are uncorrelated, these newly labeled examples
are seen i/, as a random training set with classification
noise, based on which one can learn the target concept in
V5. An updated version of (Blum & Mitchell 1998) shows
that the proof also hold for some (low) level of view incom-
patibility, provided that the views are uncorrelated.

However, as shown in (Muslea, Minton, & Knoblock
2001b), in practice one cannot ignore view incompatibility

and the views agree on less than 45% of the unlabeled examples because one rarely, if ever, encounters real world domains

THEN the views arénsufficiently compatibléor applying multi-
view learning toT”. We consider two application domains:
wrapper induction and text classification. On both domains,
the view validation algorithm makes high accuracy predic-
tions based on a modest amount of training data.

View validation represents a first step towards our long-
term goal of automatigiew detectiopwhich would dramat-
ically widen the practical applicability of multi-view algo-
rithms. Instead of having to rely on user-provided views, one

with uncorrelated views. Intuitively, view incompatibility
affects multi-view learning in a straightforward manner: if
the views are incompatible, the target concepts in the two
viewslabel differentlya large number of examples. Conse-
quently, fromVs’s perspectiveh; may “misslabel” so many
examples that learning the target conceptirbecomes im-
possible.

To illustrate how view incompatibility affects an actual
multi-view algorithm, let us consider Co-Training (Blum &

Given: o to be sufficiently compatible for all learning tasks. For in-
-a PWU:E;}\élewlpr?ik:LinﬁﬂP with views V1 andVz stance, in the probler, above, one may encounter tasks in
- a‘earning aigo which the text in the hyperlinks is too short and uninforma-

- t of pai I, L I>, Ls), ...,{I,, L) }, wherel, . L2
1?: in%tgﬁgi(o;’ ar%‘ l</k2lyab2e)l‘s I a’é haviné %rvxo‘f:/eie\’jvs tive for the text classification task. More generally, because

that aresufficiently compatibléor multi-view learning of corrupted or insufficient features, it is unrealistic to expect
the views to besufficiently compatibléor applying multi-
FOR each instanch, DO view learning to all problem instances. In order to cope with
- let T}, andUy, be labeled and unlabeled exampledin this problem, we introducedew validationalgorithm: for
- useL, Vi(Ty), andV>(Ty) to learn classifierd, andhs any problem instance, our algorithm predicts whether or not
- CreateViewValidationExample(hy, ha, Ti, Uk, Lk) the views are sufficiently compatible for using multi-view

learning for that particular task.

In practice, the level of “acceptable” view incompatibil-
ity depends on both the domain features and the algorithm
L that is used to learn the hypotheses in each view. Con-
sequently, in our approach, we apply view validation to a
given multi-view problem (i.e., pair of views) and learning
algorithm £. Note that this is a natural scenario for multi-
view problems such as wrapper induction and text classifi-
Mitchell 1998), which is a semi-supervised, multi-view al- cation, in which the same views are used for a wide variety
gorithm?! Co-Training uses a small set of labeled examples of learning tasks.
to learn a (weak) classifier in the two views. Then each clas- Our view validation algorithm (see Figure 3) implements
sifier is applied to all unlabeled examples, and Co-Training a three-step process. First, the user provides several pairs
detects the examples on which each classifier makes the (I, L), wherel} is a problem instance, and; is a label
most confident predictions. These high-confidence exam- that specifies whether or not the views are sufficiently com-
ples are labeled with the estimated class labels and added topatible for using multi-view learning to solvg. The label
the training set (see Figure 2). Based on the updated training L, is generated automatically by comparing the accuracy of
set, a new classifier is learned in each view, and the processa single- and multi-view algorithm on a test set. Second,
is repeated for several iterations. for each instancé;, we generate giew validation example

When Co-Training is applied to learning tasks with com- (i.e., a feature-vector) that describes the properties of the hy-
patible views, the information exchanged between the views potheses learned in the two views. Finally, we appiy5
(i.e., the high-confidence examples) is beneficial for both to the view validation examples; we use the learned decision
views because most of the examples have the same label intree to discriminate between learning tasks for which the
each view. Consequently, after each iteration, one can ex- views are sufficiently or insufficiently compatible for multi-
pect an increase in the accuracy of the hypotheses learnedview learning,
in each view. In contrast, Co-Training has a poor perfor- In keeping with the multi-view setting, we assume that for
mance on domains with incompatible views: as the differ- each instancé, the user provides a (small) sEf of labeled
ence between the accuracy of the two views increases, theexamples and a (large) s€}, of unlabeled examples. For
low-accuracy view feeds the other view with a larger amount each instancé;, we use the labeled examplesiipto learn

- trainC4.5 on the view validation examples

- use the learned classifier to discriminates between problem
instances for which the views asefficientlyandinsufficiently
compatiblefor multi-view learning

Figure 3:The View Validation Algorithm.

of mislabeled training data. a hypothesisin each view (i.é.; andhs). Then we generate
aview validation exampléhat is labeled;, and consists of
The View Validation Algorithm a feature-vector that describes the hypothésemdhs. In
the next section, we present the actual features used for view

Before introducing view validation, let us briefly present
the terminology used in this paper. By definitionpraulti-
view problemis a collection of learning tasks that use the Features Used for View Validation
same views; each such learning task is callethatance of .) C

Ideally, besides the label,, a view validation example

the multi-view problenor a problem instance For exam- . .)

ple, consider a multi-view probler®, that consists of all ~ Would consist of a single feature: the percentage of exam-
Web page classification tasks in which the views averds pr:(_as that are} labeled dlfferen'lc:jy Im thehiwohwlzws.l Bahsed on
: ; « . : I this unique feature, one could learrtraeshold valuethat

in Web pageSand "words in hyperlinks pointing (o the pades discriminates between the problem instances for which the

We can use these two views to leam a classifier that dis- views are sufficiently/insufficiently compatible for multi
inguish ween hom spodf rsan n X . X !)
tinguishes between homepage essorsand students view learning. In Figure 1, this threshold corresponds to

another classifier that distinguishes between articleguom h intin which the two | . int t
control andterrorism, and so forth. Consequently, all these ticeepos'nmm'slc - eev‘gaet’arrg'?g Curr;’:sk'goer.snecthen Igrba(-;_s
learning tasks represent instances of the same praBlem , USINg thiS uniqu re require wing the

of all examples in a domain. As this is an unrealistic sce-

Note that, in practice, we cannot expect a pair of views . !
nario, we have chosen instead to use several features that are
lView incompatibility affects in a similar manner other semi- ~ potential indicators of the how incompatible the views are.
supervised, multi-view algorithms such as Co-EM (Nigam & In this paper, each view validation example is described
Ghani 2000) or Co-Boost(Collins & Singer 1999). by the following seven features:

validation.

R1 R2

Name:<i>Gino’s</i><p>Phone:<i>|(800) 111-1717 </i><p>Cuisine: ...

- f1: the percentage of unlabeled exampled/jnthat are
classified identically by:; andhs;

- fo: min(TrainingErrors(hy), TrainingErrors(hs)); . _

- f3: max(TrainingErrors(hy), TrainingErrors(hs)); Figure 4:Extracting the phone number.

- fal f3— fo given that start and end rules are extremely similar, we de-

A ibe here only the f For instance, in order to find th

e . . _ scribe here only the former. For instance, in order to find the
fs: mm(complem.ty(hl)’ Complem.ty(hﬂ)’ beginning of phone number, we can use the start rule

- fo: maz(Complexity(hy), Complexity(hs)); R1= SkipTo(Phone:<i>).

- frife—fs. This rule is appliedorward, from the beginning of the page,

and it ignores everything until it finds the strirgone:<i>
For a slightly more complicated extraction task, in which
only the toll-free numbers appear in italic, one can use a

Note that feature$, - f, are measured in a straightforward
manner, regardless of the algorithfrused to learrk; and
ho. By contrast, featureg;- f; dependent on the represen-

tation used to describe these two hypotheses. For instance,
the complexity of a boolean formula may be expressed in
terms of the number of disjuncts and literals in the disjunc-
tive or conjunctive normal form; or, for a decision tree, the
complexity measure may take into account the depth and the
breadth (i.e., number of leaves) of the tree.

disjunctive start rule such as
R1' = EITHER SkipT o(Phone:<i>)
OR SkipTo(Phone:)
An alternative way to detect the beginning of the phone
number is to use the start rule
R2 = BackT o(Cuisine) BackT o((Number))

The intuition behind the seven view validation featuresis Which is appliedbackward from theend of the document.
the following: R2 ignores everything until it findsCuisine ” and then,

. . again, skips to the first number between parentheses.
the fewer unlabeled examples frdf are labeled |der_1t|- As described in (Muslea, Minton, & Knoblock 2001a),
cally by iy andh,, the larger the number of potentially o <\ch a1 and R2 can be learned based on user-
incompatible examples; provided examples of items to be extracted. Note Bt
the larger the difference in the training errorfafandh., andR2 represent descriptions of the same concept (i.e., start
the less likely it is that the views are equally accurate; of phone number) that are learned in two different views.
the larger the difference in the complexity bf andh.,

That is, the viewsl; andV; consist of the sequences of
the likelier it is that the most complex of the two hypothe- ~ characters thairecedeandfollow the beginning of the item,
ses overfits the (small) training s&t. In turn, this may

respectively.
indicate that the corresponding view is significantly less ~ For wrapper induction, the view validation features are
accurate than the other one.

measured as followsf; represents that percentage of (un-
In practice, featureg;-f, are measured in a straightfor-

labeled) documents from which the two extraction rules ex-
ward manner: consequently, they can be always used in the Fact the same string; fof,-f4, we count the labeled doc-
view validation process. In contrast, measuring the com- UMents from which the extraction rules do not extract the
plexity of a hypothesis may not be always possible or mean- COTectstring. Finally, to measugg-f7, we define the com-
ingful (consider, for instance, the case of a Naive Bayes or PIEXity Of an extraction rule as the maximum number of dis-
a k nearest-neighbor classifier, respectively). In such situa- Juncts that appear in either the start or the end rule.

tions, one can simply ignore featurés f; and rely on the

remaining features.

Multi-View Text Classification

As a second case study, we use thecT family of pa-

The Test Problems for View Validation rameterized text categorization tasks described in (Muslea,
We describe now the two problems that we use as case stud-Minton, & Knoblock 2001by. PTCT contains 60 text clas-
ies for view validation. First we present theapper induc- sification tasks that are evenly distributed over five levels of
tion problem, which consists of a collection 33 information VIeW incompatibility: 0%, 10%, 20%, 30%, or 40% of the
extraction tasks that originally motivated this work. Then €Xamples in a problem instance are made incompatible by
we describe a family of 60 parameterized text classification CO'TUPting the corresponding percentage of labels in one of
tasks (for shortpTcT) that we used in (Muslea, Minton, & e views. L o ,
Knoblock 2001b) to study the influence of view incompati- PTCTis a text classification domain in which one must

bility and correlation on multi-view learning algorithms. predict whether or not various newsgroups postings are of
interest for a particular user. TCT, a multi-view exam-

ple’s description in each view consists a document from the
20-Newsgroups dataset (Joachims 1996). Consequently,
we use the Naive Bayes algorithm (Nigam & Ghani 2000)

Multi-View Wrapper Induction

To introduce our approach to wrapper induction (Muslea,
Minton, & Knoblock 2000), let us consider the illustrative
task of extracting phone numbers from documents similarto 2yyg would have preferred to use a real-world multi-view prob-
the Web-page fragment in Figure 4. In our framework, an |em instead obTcT. Unfortunately, given that multi-view learning
extraction ruleconsists of astart rule and anend rulethat represents a relatively new field of study, most multi-view algo-
identify the beginning and the end of the item, respectively; rithms were applied to just a couple problem instances.

to learn the hypotheses in the two views. As there is no ob-
vious way to measure the complexity of a Naive Bayes clas-
sifier, forPTCTwe do not use the featurgs-f;. The other
features are measured in a straightforward manfierep-

resents the percentage of unlabeled examples on which the

two Naive Bayes classifiers agree, whjle f, are obtained
by counting the training errors in the two views.

Empirical Results
Generating thewi and pTCT Datasets

To label the 33 problem instances for wrapper induc-
tion (w1), we compare the single-vie®TALKER algorithm
(Muslea, Minton, & Knoblock 2001a) with its multi-view
version described in (Muslea, Minton, & Knoblock 2000).
On the six extraction tasks in which the difference in the
accuracy of the rules learned in the two views is larger than
10%, single-viewsTALKER does at least as well as its multi-

view counterpart. We label these six problem instances as

having views that are insufficiently compatible for multi-
view learning.

In order to label the 60 instances MTCT, we compare
single-view, semi-supervise with Co-Training, which is
the most widely used semi-supervised multi-view algorithm
(Collins & Singer 1999) (Pierce & Cardie 2001) (Sarkar
2001). We use the empirical results from (Muslea, Minton,
& Knoblock 2001b) to identify the instances on which semi-
supervised&M performs at least as well as Co-Training. We
label the 40 such instances as having views that are insuffi-
ciently compatible for multi-view learning.

For bothwi andpTCT, we have chosen the number of ex-
amples inTy, (i.e., Size(T})) according to the experimental
setups described in (Muslea, Minton, & Knoblock 2001a)
and (Muslea, Minton, & Knoblock 2001b), in whiski and
pTcTwere introduced. Fowi, in which an instancé, may
have between 91 and 690 examplésze(T))=6 andUy
consists of the remaining examples. FaicT, where each
instance consists of 800 examples, the siz&éndUy, is
70 and 730, respectively.

The Setup

In contrast to the approach described in Figure 3, where
a singleview validation example is generated per problem
instance, in our experiments we creagveralview valida-
tion examples per instance. That is, for each instafce
we generatéxsPerInst = 20 view validation examples
by repeatedly partitioning the examples/jninto randomly
chosen set$), andU}, of the appropriate sizes. The motiva-
tion for this decision is two-fold. First, the empirical results
should not reflect a particularly (un)fortunate choice of the
setsT}, andUj. Second, if we generate a single view vali-
dation example per instance, for both andpPTCT we ob-
tain a number of view validation examples that is too small
for a rigorous empirical evaluation (i.e., 33 and 60, respec-
tively). To conclude, by generatinzsPerinst = 20
view validation examples per problem instance, we obtain
larger number of view validation examples (660 and 1200,
respectively) that, for each problem instarge are repre-
sentative for a wide variety of possible s&tsandUj,.

T T T T T T T T T T T
40 4o Ao A
35 ViewValidation(WI) —&—
= Baseline(Wl) ---3---
S 30 ViewValidation(PTCT) —a—
@ Baseline(PTCT) ----4---
g 25 4
S 20 | -
5 R e COOEEETTEEPCRER =
15 —
10 jsa\ .
AR R R Tl T T Y N R .=

15 20 25 30 35 40 45 50 55 60 65 70
problem instances used for training (%)

Figure 5:View validation clearly outperforms a baseline
algorithm that predicts the most frequent label.

To evaluate view validation’s performance, for bath
and PTCT, we partition the problem instances inti@in-
ing and test instances For each such partition, we cre-
ate thetraining and test setsfor C4.5 as follows: all
ExzsPerInst = 20 view validation examples that were cre-
ated for atraining instanceare used in th&€4.5 training
set similarly, all 20 view validation examples that were cre-
ated for dest instancare used in th€4.5 test setln other
words, all view validation examples that are created based
on the same problem instance belong either to the training
set or to the test set, and they cannot be split between the
two sets. In our experiments, we train gn £, and 2 of
the instances and test on the remaining ones. For each of
these three ratios, we average the error rates obtained over
N = 20 random partitions of the instances into training and
test instances.

Figure 5 shows the view validation results for theand
PTCT datasets. The empirical results are excellent: when
trained on 66% of the available instances, the view valida-
tion algorithm reaches an accuracy of 92% on bothvihe
andPTCT datasets. Furthermore, even when trained on just
33% of the instances (i.e., 11 and 20 instancesKfoand
PTCT, respectively), we still obtain a 90% accuracy. Last but
not least, for botlwi andpPTCT, view validation clearly out-
performs a baseline algorithm that simply predicts the most
frequent label in the corresponding dataset.

The Influence of ExsPerInst and Size(T})

The results in Figure 5 raise an interesting practical ques-
tion: how much can we reduce the user’s effort without
harming the performance of view validation? In other
words, can we label only a fraction of thi&rs Per Inst view
validation examples per problem instance and a sub4at,of
and still obtain a high-accuracy prediction? To answer this
guestion, we designed two additional experiments in which
we vary one of the parameters at the time.

To study the influence of thEBxzsPerInst parameter, we
keepSize(T}) constant (i.e., 6 and 70 fow1 and PTCT,
respectively), and we consider the valugssPerInst =
1,5,10,20. That is, rather than including all 20 view vali-
dation examples that we generate for each instdpcéhe

Wi PTCT

20 T T T T T T T T T T 20 T T T T T T T T T T
ExsPerlnst = 1 — ExsPerlnst = 1 —t
18 | ExsPerlnst = 5 —m=--] 18 + ExsPerlnst=5 —eXems o
= 16 | ExsPerInst = 10 S| — ExsPerinst = 10 R
> ExsPerInst = 20 -3 S 16 ExsPerInst = 20 e
@ 14 o - @ \
s K < 14 _
o 12 pesinie E = ‘ ;
o - S 12 b .
o 10 S e T o élf.?.?:,iii‘: -
|) x _ 10 +) ;i'?:ﬁ’:?::;:;;:‘ ________________ -
8 - S LIIIIIT »,:é
6 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1
15 20 25 30 35 40 45 50 55 60 65 70 15 20 25 30 35 40 45 50 55 60 65 70
problem instances used for training (%) problem instances used for training (%)

Figure 6:We keepSize(T}) constant and vary the value ofExzsPerInst (1,5, 10, and 20).

Wi PTCT
20 T T T T T T T T T T T T T T T L T T T T
Size(T,) = 2 —_— 22 | Size(T,) =20 —+— 1
18 - Size(T,) = 4 IV 20 L =30 —-x— |
—_ L Size(T,) =6 B S — \ =40 ---%---
Sl P SELES =50 o 1
) 14 o 7] @ 16 k =60 --=- |
S L | 5] Koo =70 ---o--
5 S 5 14 [X
501 e] R
- ‘*_ 10 'Qa:\»r\ﬁhb N & N D_
L 1 1 1 1 1 1 1 1 L] 8 1 1 *T*'l:"T B Mt Ikt ihbule et -
15 20 25 30 35 40 45 50 55 60 65 70 15 20 25 30 35 40 45 50 55 60 65 70
problem instances used for training (%) problem instances used for training (%)

Figure 7:For ExsPerInt = 20, we consider several values fofize(T}): 2/4/6 for wi, and 20/30/40/50/60/70 fopTCT.

C4.5 training sets consist of (randomly chosen) subsets of keepExsPerInst = 20 constant.

one, five, 10, or 20 view validation examples for each train- Figure 7 shows the learning curves obtained in this ex-
ing instance. Within the correspondigt.5 test sets, we periment. Again, the results are extremely encouraging: for
continue to use all 20 view validation examples that are bothwi andPTCTwe reach an accuracy of 92% without us-
available for each test instance. ing all examples iff,. For example, the difference between

Figure 6 displays the learning curves obtained in this ex- ©:2¢(Zk) = 4 and & (fc;lrwo Or.]:.gize(T’f) = 60:and 70 (for
periment. The empirical results suggest that the benefits PTCT) arenotstatistically significant.

of increasingExzsPerInst become quickly insignificant: _The experiments above suggest two main conclusions.
for both wi and PTCT, the difference between the learn- First, for_bothW| and PTCT,_th_e view validation algorithm
ing curves corresponding tBzs PerInst = 10 and20 is makes high accuracy predictions. Second, our approach re-

not statistically significant, even though for the latter we use duires a modest effort from the user's part because both the
twice as many view validation examples than for the former, NUMmber of view validation examples and the size of the train-
This implies that a (relatively) small number of view vali- "9 SetsI}; are reasonably small.

dation examples is sufficient for high-accuracy view valida- o
tion. For example, our view validation algorithm reaches a The distribution of the errors

90% accuracy when trained on 33% of the problem instances In order to study the errors made by the view validation al-

(i.e., 11 and 20 training instances, for andpTCT, respec- gorithm, we designed an additional experiment. For both
tively). For ExsPerInst = 10, this means thaC4.5 is wi andPTCT, we use for training all-but-one of the prob-
trained on just 110 and 200 view validation examples, re- lem instances, and we test the learned decision tree on the
spectively. remaining instancé.This setup allows us to study view val-

idation’s performance on each individual problem instance.
The graphs in Figure 8 display the results onwheand

PTCT datasets, respectively. On tleaxis, we show the

number of view validation examples that are misclassified

In order to study the influence of tt#&ze(T},) parameter,
we designed an experiment in which the hypothéseand
ho are learned based on a fraction of the examples in the
original setT},. Specifically, forwi we use two, four, and
six of the examples iff;; for PTCT we use 20, 30, 40, 50, 3For each problem instance we use the entire trainingset
60, and 70 of the examples). For bothwi andpTCT, we and allExzsPerInst = 20 view validation examples.

wi
T T T T T T T T
20 H 1
%2}
Q
o
g 15 [8
2]
k=
£ 10 -
o
S
L |
OI 11 1] I’—‘I 1 1 1 [0
0 2 4 6 8 10 12 14 16

misclassified view validation examples

35
30
25
20
15
10

problem instances

1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8

misclassified view validation examples

Figure 8:The distribution of the errors for wi (left) and PTCT (right).

by view validation (remember that each test set consists of
the ExsPerInst = 20 view validation examples generated
for the problem instance used for testing). Onyhaxis we
have the number of problem instances on which our algo-
rithm misclassifies a particular number view validation ex-
amples.

Consider, for example, the graph that shows the results on
the 33 problem instances Wi (see Figure 8). The leftmost
bar in the graph has the following meaning: on 22 of the
problem instances, our algorithm makasyo errors on the
view validation examples in the corresponding 22 test sets;
that is, view validation correctly predicts the labels of all
EzsPerlInst = 20 examples in each test set. Similarly, the
second bar in the graph means that on two other problem
instances, view validation misclassifies juste of the 20
examples in the test set.

These results require a few comments. First, for more
than half of the problem instances in bath andpPTCT, our
algorithm labels correctlgll view validation examples; i.e.,
regardless of the particular choice of the sBtandU;, that
are used to generate a view validation example, our algo-
rithm predicts the correct label. Second, for most instances
of wi andpPTCT (29 and 44 of the 33 and 60 instances, re-
spectively), view validation has an accuracy of at least 90%
(i.e., it misclassifies at most two of thérsPerInst = 20
view validation examples). Last but not least, for all but
one problem instance, our algorithm labels correatligast
60% of the view validation examples generated for each
problem instance.

Conclusions and Future Work

In this paper we introduce the first approach to view val-
idation. We use several solved problem instances to train
a classifier that discriminates between problem instances for
which the views arsufficientlyandinsufficiently compatible

for multi-view learning. For both wrapper induction and text
classification, view validation requires a modest amount of
training data to make high-accuracy predictions. In the short
term, we plan to apply the view validation to new domains
and to investigate additional view validation features. Our

long-term goal is to create dew detectioralgorithm that
partitions the domain’s features in views that are adequate
for multi-view learning.

References

Blum, A., and Mitchell, T. 1998. Combining labeled and
unlabeled data with co-training. Proc. of the Conference
on Computational Learning Theqr92—100.

Collins, M., and Singer, Y. 1999. Unsupervised models for
named entity classification. IRroceedings of Empirical
Methods in NLP and Very Large Corpqra00-110.

Joachims, T. 1996. A probabilistic analysis of ttecchio
algorithm withTFIDF for text categorization. lComputer
Science Tech. Report CMU-CS-96-118

Muslea, I.; Minton, S.; and Knoblock, C. 2000. Selec-
tive sampling with redundant views. Proc. of National
Conference on Artificial Intelligenc€21—-626.

Muslea, I.; Minton, S.; and Knoblock, C. 200l1a. Hier-
archical wrapper induction for semistructured sourcés.
Autonomous Agents & Multi-Agent Systetr33—-114.

Muslea, I.; Minton, S.; and Knoblock, C. 2001b. Selective
sampling + semi-supervised learning = robust multi-view
learning. InIJCAI-2001 Workshop on Text Learning: Be-

yond Supervision

Muslea, I.; Minton, S.; and Knoblock, C. 2002. Active

+ semi-supervised learning = robust multi-view learning.
Submitted at ICML-2002

Nigam, K., and Ghani, R. 2000. Analyzing the effective-
ness and applicability of co-training. Proc. of Informa-
tion and Knowledge ManagemeB86—-93.

Pierce, D., and Cardie, C. 2001. Limitations of co-training

for natural language learning from large dataset$roc.
of Empirical Methods in NLP1-10.

Sarkar, A. 2001. Applying co-training methods to statisti-
cal parsing. IrProc. of NAACL 2001175-182.

