
View Validation: A Case Study for Wrapper Induction and Text Classification

Ion Muslea, Steven Minton, and Craig A. Knoblock
University of Southern California & Fetch Technologies

4676 Admiralty Way
Marina del Rey, CA 90292, USA

muslea@isi.edu, minton@fetch.com, knoblock@isi.edu

Abstract

Wrapper induction algorithms, which use labeled exam-
ples to learn extraction rules, are a crucial component
of information agents that integrate semi-structured in-
formation sources.Multi-view wrapper induction algo-
rithms reduce the amount of training data by exploit-
ing several types of rules (i.e.,views), each of which
being sufficient to extract the relevant data. All multi-
view algorithms rely on the assumption that the views
aresufficiently compatiblefor multi-view learning (i.e.,
mostexamples are labeled identically in all views). In
practice, it is unclear whether or not two views are suf-
ficiently compatible for solving a new, unseen learning
task. In order to cope with this problem, we introduce
a view validationalgorithm: given a learning task, the
algorithm predicts whether or not the views are suffi-
ciently compatible for solving that particular task. We
use information acquired while solving several exem-
plar learning tasks to train a classifier that discriminates
between the tasks for which the views aresufficiently
and insufficiently compatiblefor multi-view learning.
For both wrapper induction and text classification, view
validation requires only a modest amount of training
data to make high accuracy predictions.

Introduction
Most mediator agents that integrate data from multiple Web-
based information sources usewrappersto extract the rel-
evant data from semi-structured documents. As a typical
mediator integrates data from dozens or even hundreds of
sources, it is crucial to minimize the amount of time and
energy that users spend wrapping each source. To address
this issue, researchers createdwrapper inductionalgorithms
such asSTALKER (Muslea, Minton, & Knoblock 2001a),
which learns extraction rules based on user-provided exam-
ples of items to be extracted. In previous work (Muslea,
Minton, & Knoblock 2000), we introduced amulti-viewver-
sion ofSTALKER, Co-Testing, that reaches higher extraction
accuracy based on fewer labeled examples. Co-Testing ex-
ploits the fact that, for most items of interest, there areal-
ternative waysto extract the data of interest (i.e., Co-Testing
is amulti-viewalgorithm). Even though Co-Testing outper-
forms it’s single-view counterpart on most extraction tasks,

Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

5

10

15

20

25

30

0 10 20 30 40

er
ro

r 
ra

te
 (

%
)

difference in the accuracy of the two views (%)

multi-view  algorithm
single-view algorithm

Figure 1: As the difference in the accuracy of the two
views increases, the views become more incompatible,
and the single-view algorithm outperforms its multi-view
counterpart.

there are tasks on which (single-view)STALKER converges
faster. In this paper we focus on the following problem: for a
new, unseen task, we want to predict whether or not a multi-
view algorithm will outperform its single-view counterpart.
Given the practical importance of this problem, we are in-
terested in a general purpose solution that can be applied to
any multi-view problem, including wrapper induction.

In a multi-view problem, one can partition the domain’s
features into subsets (views) each of which aresufficientfor
learning the target concept. For instance, one can classify
segments of televised broadcasts basedeitheron the video
or on the audio information; or one can classify Web pages
based on the words that appeareither in the documents or
in the hyperlinks pointing to them. (Blum & Mitchell 1998)
proved that by using the views to bootstrap each other, the
target concept can be learned from a few labeled and many
unlabeled examples. Their proof relies on the assumption
that the views arecompatibleanduncorrelated(i.e., every
example is identically labeled in each view;and, given the
label of any example, its descriptions in each view are inde-
pendent).

In real-world problems, both assumptions are often vio-
lated for a variety of reasons such as correlated or insuf-
ficient features. In a companion paper (Muslea, Minton, &
Knoblock 2002), we introduced an active learning algorithm
that performs well even when the independence assumption
is violated. We focus here on the view incompatibility issue,
which is closely related to the accuracy of the hypotheses

From: AAAI Technical Report WS-02-07. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



learned in the two views: the more accurate the views, the
fewer examples can be incompatible (i.e., labeled differently
in the two views). Figure 1, which is based on our results in
(Muslea, Minton, & Knoblock 2001b), illustrates the rela-
tionship between the incompatibility of the views and the
applicability of the multi-view algorithms: as the difference
between the accuracy of the hypotheses learned in the two
views increases (i.e., the views become more incompatible),
the single-view algorithm outperforms its multi-view coun-
terpart. This observation immediately raises the following
question: for a new, unseen learning task, should we use a
multi-view or a single-view learning algorithm?

The question above can be restated as follows: given two
views and a set of learning tasks, how can one identify the
tasks for which these two views aresufficiently compatible
for multi-view learning? In order to answer this question,
we introduce aview validation algorithmthat, for a given
pair of views, discriminates between the tasks for which the
views aresufficientlyandinsufficiently compatiblefor multi-
view learning. In other words, view validation judges the
usefulness of the views for a particular learning task (i.e.,it
validates the views for a task of interest).

View validation is suitable for applications such as wrap-
per induction (Muslea, Minton, & Knoblock 2000) and Web
page classification (Blum & Mitchell 1998), where the same
views are repeatedly used to solve a variety of unrelated
learning tasks. Consider, for instance, the Web page clas-
sification problem, in which the two views consist of “words
that appear in Web pages” and “words in hyperlinks pointing to
them”. Note that, in principle, we can use these two views
in learning tasks as diverse as distinguishing between home-
pages ofprofessorsandstudentsor distinguishing between
articles oneconomicsand terrorism. However, for any of
these learning tasks, it may happen that the text in the hy-
perlinks is so short and uninformative that one is better off
using just the words in the Web pages. To cope with this
problem, one can use view validation to predict whether or
not multi-view learning is appropriate for a task of interest.

This paper presents a general, meta-learning approach to
view validation. In our framework, the user provides sev-
eral exemplar learning tasks that were solved using thesame
views. For each solved learning task, our algorithm gener-
ates aview validation exampleby analyzing the hypothe-
ses learned in each view. Then it uses theC4.5 algorithm
to identify common patterns that discriminate between the
learning tasks for which the views aresufficientlyandinsuf-
ficiently compatiblefor multi-view learning. An illustrative
example of such a pattern is the following:“ IF for a taskT the
difference in the training errors in the two views is larger than 20%
and the views agree on less than 45% of the unlabeled examples
THEN the views areinsufficiently compatiblefor applying multi-
view learning toT ” . We consider two application domains:
wrapper induction and text classification. On both domains,
the view validation algorithm makes high accuracy predic-
tions based on a modest amount of training data.

View validation represents a first step towards our long-
term goal of automaticview detection, which would dramat-
ically widen the practical applicability of multi-view algo-
rithms. Instead of having to rely on user-provided views, one

Given :
- a learning task with two viewsV1 andV2
- a learning algorithmL
- the setsT andU of labeled and unlabeled examples

LOOPfor k iterations
- useL, V1(T ), andV2(T ) to learn classifiersh1 andh2
- FOR EACH classCi DO

- letE1 andE2 be thee unlabeled examples on whichh1
andh2 make the most confident predictions forCi

- removeE1 andE2 fromU , label them according toh1
andh2,respectively, and add them toT

- combine the prediction ofh1 andh2

Figure 2:The Co-Training algorithm.

can use view detection to search for adequate views among
the possible partitions of the domain’s features. In this con-
text, a view validation algorithm becomes a key component
that verifies whether or not the views that are generated dur-
ing view detection are sufficiently compatible for applying
multi-view learning to a learning task.

Background
The multi-view setting(Blum & Mitchell 1998) applies to
learning tasks that have a natural way to partition their fea-
tures into subsets (views) each of which aresufficientto learn
the target concept. In such tasks, an examplex is described
by a different set of features in each view. For example, in
a domain with two viewsV1 andV2, any examplex can be
seen as a triple[x1; x2; l], wherex1 andx2 are its descrip-
tions in the two views, andl is its label.

Blum and Mitchell (1998) proved that by using two views
to bootstrap each other, a target concept can be learned from
a few labeled and many unlabeled examples, provided that
the views arecompatibleanduncorrelated. The former re-
quires that all examples are labeled identically by the target
concepts in each view. The latter means that for any example
[x1; x2; l], x1 andx2 are independent givenl.

The proof above is based on the following argument: one
can learn a weak hypothesish1 in V1 based on the few la-
beled examples and then applyh1 to all unlabeled examples.
If the views are uncorrelated, these newly labeled examples
are seen inV2 as a random training set with classification
noise, based on which one can learn the target concept in
V2. An updated version of (Blum & Mitchell 1998) shows
that the proof also hold for some (low) level of view incom-
patibility, provided that the views are uncorrelated.

However, as shown in (Muslea, Minton, & Knoblock
2001b), in practice one cannot ignore view incompatibility
because one rarely, if ever, encounters real world domains
with uncorrelated views. Intuitively, view incompatibility
affects multi-view learning in a straightforward manner: if
the views are incompatible, the target concepts in the two
views label differentlya large number of examples. Conse-
quently, fromV2’s perspective,h1 may “misslabel” so many
examples that learning the target concept inV2 becomes im-
possible.

To illustrate how view incompatibility affects an actual
multi-view algorithm, let us consider Co-Training (Blum &



Given:
- a multi-view problemP with viewsV1 andV2
- a learning algorithmL
- a set of pairsf hI1; L1i, hI2; L2i, . . . ,hIn; Lni g, whereIk

are instances ofP , andLk labelsIk as having or not views
that aresufficiently compatiblefor multi-view learning

FOR each instanceIk DO
- let Tk andUk be labeled and unlabeled examples inIk
- useL, V1(Tk), andV2(Tk) to learn classifiersh1 andh2
- CreateV iewV alidationExample(h1; h2; Tk; Uk; Lk)

- trainC4.5 on the view validation examples
- use the learned classifier to discriminates between problem

instances for which the views aresufficientlyandinsufficiently
compatiblefor multi-view learning

Figure 3:The View Validation Algorithm.

Mitchell 1998), which is a semi-supervised, multi-view al-
gorithm.1 Co-Training uses a small set of labeled examples
to learn a (weak) classifier in the two views. Then each clas-
sifier is applied to all unlabeled examples, and Co-Training
detects the examples on which each classifier makes the
most confident predictions. These high-confidence exam-
ples are labeled with the estimated class labels and added to
the training set (see Figure 2). Based on the updated training
set, a new classifier is learned in each view, and the process
is repeated for several iterations.

When Co-Training is applied to learning tasks with com-
patible views, the information exchanged between the views
(i.e., the high-confidence examples) is beneficial for both
views because most of the examples have the same label in
each view. Consequently, after each iteration, one can ex-
pect an increase in the accuracy of the hypotheses learned
in each view. In contrast, Co-Training has a poor perfor-
mance on domains with incompatible views: as the differ-
ence between the accuracy of the two views increases, the
low-accuracy view feeds the other view with a larger amount
of mislabeled training data.

The View Validation Algorithm
Before introducing view validation, let us briefly present
the terminology used in this paper. By definition, amulti-
view problemis a collection of learning tasks that use the
same views; each such learning task is called aninstance of
the multi-view problemor a problem instance. For exam-
ple, consider a multi-view problemP1 that consists of all
Web page classification tasks in which the views are “words
in Web pages” and “words in hyperlinks pointing to the pages”.
We can use these two views to learn a classifier that dis-
tinguishes between homepages ofprofessorsandstudents,
another classifier that distinguishes between articles ongun
control andterrorism, and so forth. Consequently, all these
learning tasks represent instances of the same problemP1.

Note that, in practice, we cannot expect a pair of views

1View incompatibility affects in a similar manner other semi-
supervised, multi-view algorithms such as Co-EM (Nigam &
Ghani 2000) or Co-Boost(Collins & Singer 1999).

to be sufficiently compatible for all learning tasks. For in-
stance, in the problemP1 above, one may encounter tasks in
which the text in the hyperlinks is too short and uninforma-
tive for the text classification task. More generally, because
of corrupted or insufficient features, it is unrealistic to expect
the views to besufficiently compatiblefor applying multi-
view learning to all problem instances. In order to cope with
this problem, we introduce aview validationalgorithm: for
any problem instance, our algorithm predicts whether or not
the views are sufficiently compatible for using multi-view
learning for that particular task.

In practice, the level of “acceptable” view incompatibil-
ity depends on both the domain features and the algorithm
L that is used to learn the hypotheses in each view. Con-
sequently, in our approach, we apply view validation to a
given multi-view problem (i.e., pair of views) and learning
algorithmL. Note that this is a natural scenario for multi-
view problems such as wrapper induction and text classifi-
cation, in which the same views are used for a wide variety
of learning tasks.

Our view validation algorithm (see Figure 3) implements
a three-step process. First, the user provides several pairs
hIk; Lki, whereIk is a problem instance, andLk is a label
that specifies whether or not the views are sufficiently com-
patible for using multi-view learning to solveIk . The label
Lk is generated automatically by comparing the accuracy of
a single- and multi-view algorithm on a test set. Second,
for each instanceIk, we generate aview validation example
(i.e., a feature-vector) that describes the properties of the hy-
potheses learned in the two views. Finally, we applyC4.5
to the view validation examples; we use the learned decision
tree to discriminate between learning tasks for which the
views are sufficiently or insufficiently compatible for multi-
view learning,

In keeping with the multi-view setting, we assume that for
each instanceIk the user provides a (small) setTk of labeled
examples and a (large) setUk of unlabeled examples. For
each instanceIk, we use the labeled examples inTk to learn
a hypothesis in each view (i.e.,h1 andh2). Then we generate
a view validation examplethat is labeledLk and consists of
a feature-vector that describes the hypothesesh1 andh2. In
the next section, we present the actual features used for view
validation.

Features Used for View Validation
Ideally, besides the labelLk, a view validation example
would consist of a single feature: the percentage of exam-
ples that are labeled differently in the two views. Based on
this unique feature, one could learn athreshold valuethat
discriminates between the problem instances for which the
views are sufficiently/insufficiently compatible for multi-
view learning. In Figure 1, this threshold corresponds to
the point in which the two learning curves intersect. In prac-
tice, using this unique feature requires knowing the labels
of all examples in a domain. As this is an unrealistic sce-
nario, we have chosen instead to use several features that are
potential indicators of the how incompatible the views are.

In this paper, each view validation example is described
by the following seven features:



- f1: the percentage of unlabeled examples inUk that are
classified identically byh1 andh2;

- f2: min(TrainingErrors(h1); T rainingErrors(h2));

- f3: max(TrainingErrors(h1); T rainingErrors(h2));

- f4: f3 � f2;

- f5: min(Complexity(h1); Complexity(h2));

- f6: max(Complexity(h1); Complexity(h2));

- f7: f6 � f5.

Note that featuresf1-f4 are measured in a straightforward
manner, regardless of the algorithmL used to learnh1 and
h2. By contrast, featuresf5-f7 dependent on the represen-
tation used to describe these two hypotheses. For instance,
the complexity of a boolean formula may be expressed in
terms of the number of disjuncts and literals in the disjunc-
tive or conjunctive normal form; or, for a decision tree, the
complexity measure may take into account the depth and the
breadth (i.e., number of leaves) of the tree.

The intuition behind the seven view validation features is
the following:

- the fewer unlabeled examples fromUk are labeled identi-
cally by h1 andh2, the larger the number of potentially
incompatible examples;

- the larger the difference in the training error ofh1 andh2,
the less likely it is that the views are equally accurate;

- the larger the difference in the complexity ofh1 andh2,
the likelier it is that the most complex of the two hypothe-
ses overfits the (small) training setTk. In turn, this may
indicate that the corresponding view is significantly less
accurate than the other one.

In practice, featuresf1-f4 are measured in a straightfor-
ward manner; consequently, they can be always used in the
view validation process. In contrast, measuring the com-
plexity of a hypothesis may not be always possible or mean-
ingful (consider, for instance, the case of a Naive Bayes or
a k nearest-neighbor classifier, respectively). In such situa-
tions, one can simply ignore featuresf5-f7 and rely on the
remaining features.

The Test Problems for View Validation
We describe now the two problems that we use as case stud-
ies for view validation. First we present thewrapper induc-
tion problem, which consists of a collection 33 information
extraction tasks that originally motivated this work. Then
we describe a family of 60 parameterized text classification
tasks (for short,PTCT) that we used in (Muslea, Minton, &
Knoblock 2001b) to study the influence of view incompati-
bility and correlation on multi-view learning algorithms.

Multi-View Wrapper Induction
To introduce our approach to wrapper induction (Muslea,
Minton, & Knoblock 2000), let us consider the illustrative
task of extracting phone numbers from documents similar to
the Web-page fragment in Figure 4. In our framework, an
extraction ruleconsists of astart rule and anend rulethat
identify the beginning and the end of the item, respectively;

R1 R2

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

Figure 4:Extracting the phone number.

given that start and end rules are extremely similar, we de-
scribe here only the former. For instance, in order to find the
beginning of phone number, we can use the start rule

R1 = SkipTo( Phone:<i> ).
This rule is appliedforward, from the beginning of the page,
and it ignores everything until it finds the stringPhone:<i> .
For a slightly more complicated extraction task, in which
only the toll-free numbers appear in italic, one can use a
disjunctive start rule such as

R10 = EITHERSkipTo( Phone:<i> )
OR SkipTo( Phone: )

An alternative way to detect the beginning of the phone
number is to use the start rule

R2 = BackTo( Cuisine ) BackTo( ( Number ) )
which is appliedbackward, from theend of the document.
R2 ignores everything until it finds “Cuisine ” and then,
again, skips to the first number between parentheses.

As described in (Muslea, Minton, & Knoblock 2001a),
rules such asR1 and R2 can be learned based on user-
provided examples of items to be extracted. Note thatR1
andR2 represent descriptions of the same concept (i.e., start
of phone number) that are learned in two different views.
That is, the viewsV1 and V2 consist of the sequences of
characters thatprecedeandfollow the beginning of the item,
respectively.

For wrapper induction, the view validation features are
measured as follows:f1 represents that percentage of (un-
labeled) documents from which the two extraction rules ex-
tract the same string; forf2-f4, we count the labeled doc-
uments from which the extraction rules do not extract the
correct string. Finally, to measuref5-f7, we define the com-
plexity of an extraction rule as the maximum number of dis-
juncts that appear in either the start or the end rule.

Multi-View Text Classification
As a second case study, we use thePTCT family of pa-
rameterized text categorization tasks described in (Muslea,
Minton, & Knoblock 2001b).2 PTCT contains 60 text clas-
sification tasks that are evenly distributed over five levels of
view incompatibility: 0%, 10%, 20%, 30%, or 40% of the
examples in a problem instance are made incompatible by
corrupting the corresponding percentage of labels in one of
the views.

PTCT is a text classification domain in which one must
predict whether or not various newsgroups postings are of
interest for a particular user. InPTCT, a multi-view exam-
ple’s description in each view consists a document from the
20-Newsgroups dataset (Joachims 1996). Consequently,
we use the Naive Bayes algorithm (Nigam & Ghani 2000)

2We would have preferred to use a real-world multi-view prob-
lem instead ofPTCT. Unfortunately, given that multi-view learning
represents a relatively new field of study, most multi-view algo-
rithms were applied to just a couple problem instances.



to learn the hypotheses in the two views. As there is no ob-
vious way to measure the complexity of a Naive Bayes clas-
sifier, for PTCT we do not use the featuresf5-f7. The other
features are measured in a straightforward manner:f1 rep-
resents the percentage of unlabeled examples on which the
two Naive Bayes classifiers agree, whilef2-f4 are obtained
by counting the training errors in the two views.

Empirical Results
Generating theWI and PTCT Datasets
To label the 33 problem instances for wrapper induc-
tion (WI), we compare the single-viewSTALKER algorithm
(Muslea, Minton, & Knoblock 2001a) with its multi-view
version described in (Muslea, Minton, & Knoblock 2000).
On the six extraction tasks in which the difference in the
accuracy of the rules learned in the two views is larger than
10%, single-viewSTALKER does at least as well as its multi-
view counterpart. We label these six problem instances as
having views that are insufficiently compatible for multi-
view learning.

In order to label the 60 instances inPTCT, we compare
single-view, semi-supervisedEM with Co-Training, which is
the most widely used semi-supervised multi-view algorithm
(Collins & Singer 1999) (Pierce & Cardie 2001) (Sarkar
2001). We use the empirical results from (Muslea, Minton,
& Knoblock 2001b) to identify the instances on which semi-
supervisedEM performs at least as well as Co-Training. We
label the 40 such instances as having views that are insuffi-
ciently compatible for multi-view learning.

For bothWI andPTCT, we have chosen the number of ex-
amples inTk (i.e.,Size(Tk)) according to the experimental
setups described in (Muslea, Minton, & Knoblock 2001a)
and (Muslea, Minton, & Knoblock 2001b), in whichWI and
PTCT were introduced. ForWI, in which an instanceIk may
have between 91 and 690 examples,Size(Tk)=6 andUk

consists of the remaining examples. ForPTCT, where each
instance consists of 800 examples, the size ofTk andUk is
70 and 730, respectively.

The Setup
In contrast to the approach described in Figure 3, where
a singleview validation example is generated per problem
instance, in our experiments we createseveralview valida-
tion examples per instance. That is, for each instanceIk ,
we generateExsPerInst = 20 view validation examples
by repeatedly partitioning the examples inIk into randomly
chosen setsTk andUk of the appropriate sizes. The motiva-
tion for this decision is two-fold. First, the empirical results
should not reflect a particularly (un)fortunate choice of the
setsTk andUk. Second, if we generate a single view vali-
dation example per instance, for bothWI andPTCT we ob-
tain a number of view validation examples that is too small
for a rigorous empirical evaluation (i.e., 33 and 60, respec-
tively). To conclude, by generatingExsPerInst = 20
view validation examples per problem instance, we obtain
larger number of view validation examples (660 and 1200,
respectively) that, for each problem instanceIk, are repre-
sentative for a wide variety of possible setsTk andUk.

10

15

20

25

30

35

40

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r 
ra

te
 (

%
)

problem instances used for training (%)

ViewValidation(WI)
Baseline(WI)

ViewValidation(PTCT)
Baseline(PTCT)

Figure 5:View validation clearly outperforms a baseline
algorithm that predicts the most frequent label.

To evaluate view validation’s performance, for bothWI
and PTCT, we partition the problem instances intotrain-
ing and test instances. For each such partition, we cre-
ate the training and test setsfor C4.5 as follows: all
ExsPerInst = 20 view validation examples that were cre-
ated for atraining instanceare used in theC4.5 training
set; similarly, all 20 view validation examples that were cre-
ated for atest instanceare used in theC4.5 test set. In other
words, all view validation examples that are created based
on the same problem instance belong either to the training
set or to the test set, and they cannot be split between the
two sets. In our experiments, we train on1

6
, 1

3
, and 2

3
of

the instances and test on the remaining ones. For each of
these three ratios, we average the error rates obtained over
N = 20 random partitions of the instances into training and
test instances.

Figure 5 shows the view validation results for theWI and
PTCT datasets. The empirical results are excellent: when
trained on 66% of the available instances, the view valida-
tion algorithm reaches an accuracy of 92% on both theWI
andPTCT datasets. Furthermore, even when trained on just
33% of the instances (i.e., 11 and 20 instances forWI and
PTCT, respectively), we still obtain a 90% accuracy. Last but
not least, for bothWI andPTCT, view validation clearly out-
performs a baseline algorithm that simply predicts the most
frequent label in the corresponding dataset.

The Influence ofExsPerInst and Size(Tk)

The results in Figure 5 raise an interesting practical ques-
tion: how much can we reduce the user’s effort without
harming the performance of view validation? In other
words, can we label only a fraction of theExsPerInst view
validation examples per problem instance and a subset ofTk,
and still obtain a high-accuracy prediction? To answer this
question, we designed two additional experiments in which
we vary one of the parameters at the time.

To study the influence of theExsPerInst parameter, we
keepSize(Tk) constant (i.e., 6 and 70 forWI and PTCT,
respectively), and we consider the valuesExsPerInst =
1; 5; 10; 20. That is, rather than including all 20 view vali-
dation examples that we generate for each instanceIk, the



6

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r 
ra

te
 (

%
)

problem instances used for training (%)

WI

ExsPerInst = 1
ExsPerInst = 5
ExsPerInst = 10
ExsPerInst = 20

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r 
ra

te
 (

%
)

problem instances used for training (%)

PTCT

ExsPerInst = 1
ExsPerInst = 5
ExsPerInst = 10
ExsPerInst = 20

Figure 6:We keepSize(Tk) constant and vary the value ofExsPerInst (1, 5, 10, and 20).

6

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r 
ra

te
 (

%
)

problem instances used for training (%)

WI

Size(Tk) = 2
Size(Tk) = 4
Size(Tk) = 6

8

10

12

14

16

18

20

22

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r 
ra

te
 (

%
)

problem instances used for training (%)

PTCT

Size(Tk) = 20
            = 30
            = 40
            = 50
            = 60
            = 70

Figure 7:For ExsPerInt = 20, we consider several values forSize(Tk): 2/4/6 for WI, and 20/30/40/50/60/70 forPTCT.

C4.5 training sets consist of (randomly chosen) subsets of
one, five, 10, or 20 view validation examples for each train-
ing instance. Within the correspondingC4.5 test sets, we
continue to use all 20 view validation examples that are
available for each test instance.

Figure 6 displays the learning curves obtained in this ex-
periment. The empirical results suggest that the benefits
of increasingExsPerInst become quickly insignificant:
for both WI and PTCT, the difference between the learn-
ing curves corresponding toExsPerInst = 10 and20 is
not statistically significant, even though for the latter we use
twice as many view validation examples than for the former.
This implies that a (relatively) small number of view vali-
dation examples is sufficient for high-accuracy view valida-
tion. For example, our view validation algorithm reaches a
90% accuracy when trained on 33% of the problem instances
(i.e., 11 and 20 training instances, forWI andPTCT, respec-
tively). ForExsPerInst = 10, this means thatC4.5 is
trained on just 110 and 200 view validation examples, re-
spectively.

In order to study the influence of theSize(Tk) parameter,
we designed an experiment in which the hypothesesh1 and
h2 are learned based on a fraction of the examples in the
original setTk. Specifically, forWI we use two, four, and
six of the examples inTk; for PTCT we use 20, 30, 40, 50,
60, and 70 of the examples inTk. For bothWI andPTCT, we

keepExsPerInst = 20 constant.
Figure 7 shows the learning curves obtained in this ex-

periment. Again, the results are extremely encouraging: for
bothWI andPTCT we reach an accuracy of 92% without us-
ing all examples inTk. For example, the difference between
Size(Tk) = 4 and 6 (forWI) or Size(Tk) = 60 and 70 (for
PTCT) arenotstatistically significant.

The experiments above suggest two main conclusions.
First, for bothWI andPTCT, the view validation algorithm
makes high accuracy predictions. Second, our approach re-
quires a modest effort from the user’s part because both the
number of view validation examples and the size of the train-
ing setsTk are reasonably small.

The distribution of the errors
In order to study the errors made by the view validation al-
gorithm, we designed an additional experiment. For both
WI and PTCT, we use for training all-but-one of the prob-
lem instances, and we test the learned decision tree on the
remaining instance.3 This setup allows us to study view val-
idation’s performance on each individual problem instance.

The graphs in Figure 8 display the results on theWI and
PTCT datasets, respectively. On thex axis, we show the
number of view validation examples that are misclassified

3For each problem instance we use the entire training setTk
and allExsPerInst = 20 view validation examples.



0

5

10

15

20

0 2 4 6 8 10 12 14 16

pr
ob

le
m

 in
st

an
ce

s

misclassified view validation examples

WI

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

pr
ob

le
m

 in
st

an
ce

s

misclassified view validation examples

PTCT

Figure 8:The distribution of the errors for WI (left) and PTCT (right).

by view validation (remember that each test set consists of
theExsPerInst = 20 view validation examples generated
for the problem instance used for testing). On they axis we
have the number of problem instances on which our algo-
rithm misclassifies a particular number view validation ex-
amples.

Consider, for example, the graph that shows the results on
the 33 problem instances inWI (see Figure 8). The leftmost
bar in the graph has the following meaning: on 22 of the
problem instances, our algorithm makeszeroerrors on the
view validation examples in the corresponding 22 test sets;
that is, view validation correctly predicts the labels of all
ExsPerInst = 20 examples in each test set. Similarly, the
second bar in the graph means that on two other problem
instances, view validation misclassifies justone of the 20
examples in the test set.

These results require a few comments. First, for more
than half of the problem instances in bothWI andPTCT, our
algorithm labels correctlyall view validation examples; i.e.,
regardless of the particular choice of the setsTk andUk that
are used to generate a view validation example, our algo-
rithm predicts the correct label. Second, for most instances
of WI andPTCT (29 and 44 of the 33 and 60 instances, re-
spectively), view validation has an accuracy of at least 90%
(i.e., it misclassifies at most two of theExsPerInst = 20
view validation examples). Last but not least, for all but
one problem instance, our algorithm labels correctlyat least
60% of the view validation examples generated for each
problem instance.

Conclusions and Future Work
In this paper we introduce the first approach to view val-
idation. We use several solved problem instances to train
a classifier that discriminates between problem instances for
which the views aresufficientlyandinsufficiently compatible
for multi-view learning. For both wrapper induction and text
classification, view validation requires a modest amount of
training data to make high-accuracy predictions. In the short
term, we plan to apply the view validation to new domains
and to investigate additional view validation features. Our

long-term goal is to create aview detectionalgorithm that
partitions the domain’s features in views that are adequate
for multi-view learning.

References
Blum, A., and Mitchell, T. 1998. Combining labeled and
unlabeled data with co-training. InProc. of the Conference
on Computational Learning Theory, 92–100.
Collins, M., and Singer, Y. 1999. Unsupervised models for
named entity classification. InProceedings of Empirical
Methods in NLP and Very Large Corpora, 100–110.
Joachims, T. 1996. A probabilistic analysis of theRocchio
algorithm withTFIDF for text categorization. InComputer
Science Tech. Report CMU-CS-96-118.
Muslea, I.; Minton, S.; and Knoblock, C. 2000. Selec-
tive sampling with redundant views. InProc. of National
Conference on Artificial Intelligence, 621–626.
Muslea, I.; Minton, S.; and Knoblock, C. 2001a. Hier-
archical wrapper induction for semistructured sources.J.
Autonomous Agents & Multi-Agent Systems4:93–114.
Muslea, I.; Minton, S.; and Knoblock, C. 2001b. Selective
sampling + semi-supervised learning = robust multi-view
learning. InIJCAI-2001 Workshop on Text Learning: Be-
yond Supervision.
Muslea, I.; Minton, S.; and Knoblock, C. 2002. Active
+ semi-supervised learning = robust multi-view learning.
Submitted at ICML-2002.
Nigam, K., and Ghani, R. 2000. Analyzing the effective-
ness and applicability of co-training. InProc. of Informa-
tion and Knowledge Management, 86–93.
Pierce, D., and Cardie, C. 2001. Limitations of co-training
for natural language learning from large datasets. InProc.
of Empirical Methods in NLP, 1–10.
Sarkar, A. 2001. Applying co-training methods to statisti-
cal parsing. InProc. of NAACL 2001, 175–182.


