
 Intelligent Service Integration � overview of work at LIA-EPFL
Ion Constantinescu, Boi Faltings, Steve Willmott

Artificial Intelligence Laboratory, Swiss Federal Institute of Technology, IN (Ecublens), CH-1015 Lausanne, Switzerland.

 {ion.constantinescu, boi.faltings, steve.willmott}@epfl.ch

Abstract
Current web infrastructure is oriented on human-machine
interactions. Developments for next generation systems
(such as Web Services and ebXML) however aim to allow
for automated interactions between arbitrary systems /
services. This is achieved by supplying high-level
descriptions of service capabilities and enabling information
systems to dynamically discover and access each other.

This paper takes into account 5 well-known behavioral
description languages (PDDL, DAML-S, WSFL, ebXML
and ConGolog), tries to propose an abstract representation
behavior representation and gives a mapping between it and
the existing formalisms.

Keywords: service integration, interaction protocols,
process definition, planning, multiagent systems.

1 Introduction
Today, the largest human designed and controlled
environment is the Internet. The Internet can be seen as a
dynamic environment with a huge heterogeneous collection
of infrastructures and services. There are many different
types of architectures and several metaphors for using them
but central to all is the concept of �service� providers of
static (e.g. informational web pages) or active (e.g. news
alerts service) resources. Active resources allow on their
invocation for changes in the environment to be effected.
As the number of services increases so does the need for
service reuse and service composability.

The underlying problem that needs to be solved in order to
realize the above vision is directly related with much of the
research that has been carried out in the Agent and AI
communities. Service integration can be seen as a complex
coordination problem [20] (since services must work
together over a period of time to achieve the initial user
request) with a reasoning problem at its core (constructing
a multi-agent plan to determine how services will work
together).

In this paper we are concerned with the formalisms used to
described services and in particular the behavioral
descriptions which could be used to reason about
composing services to form value added services. In
particular we briefly introduce a number of existing
description formalisms (Section 3) and subsequently argue
for the development of an Abstract Behavior
Representation (ABR) - Section 4. Section 5 briefly
outlines an example ABR and Section 6 concludes the
paper. We begin with a brief introduction to the challenges

of service integration in open environments such as
Agentcities.

2 Service Integration Challenges
The challenges related to automated service integration in
open environments might be divided into four steps:1

- Problem Identification: Identifying and describing an
integration problem (this may be simple goal setting or
come about through an agent monitoring the
environment for certain types of opportunities).

- Team Formation (Discovery / Binding): discovery of
appropriate services in the world to help solve the
problem identified (usually via reference to their
service descriptions). Also it can be the binding of an
advertisement for the problem in the environment.
Either of these involves communication relating to the
problem

- Plan formation (Reasoning): establishment of a plan
of action to solve the problem identified

- Joint Action (Execution): execution of the established
plan in the environment by the systems forming part of
the team.

A critical factor permeating all of these levels is the
description of services in the environment.2 These affect in
particular team formation (discovering / binding relevant
service information), plan formation (reasoning over
description to devise a workable plan). In an open
environment such as Agentcities or future Web Services
environments this raises a number of challenges including
the following:

- Description: how would systems operate if multiple
description formalisms were used (which seems very
likely to occur)? How can multiple formalisms be

From: AAAI Technical Report WS-02-07. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

composed (the DAML-S language for example leaves
unspecified how pre-conditions might be expressed)?

- Reasoning: what is the impact of reasoning
complexity for planning of each construct allowed in a
particular description formalism? How can reasoning
complexity be controlled?

- Execution: what flexibility is provided for description
and management of runtime execution of resulting
plans � in a multi-agent, hostile and dynamic
environment?

3 Existing behavioral formalisms
We begin by briefly reviewing a number of existing
behavioural description formalisms that appear particularly
relevant to the problem of service integration. For a full
description of those formalism see [5].

The Planning Domain Definition Language (PDDL)
[10][9][11], was developed as a problem-specification
language for the AIPS-98 planning competition. PDDL
draws from existing formalisms like ADL, SIPE-2,
Prodigy-4.0, UMCP, Unpop and UCPOP.

DAML-S - stands for DARPA Agent Markup Language
(DAML) Semantic Markup for Web Services [6][18]. One
of the targets of DAML-S is to enable the automatic
selection, composition and interoperation of Web services
to perform some task, given a high-level description of an
objective. Another objective is service monitoring that
should allow users or agents to determine the state of long-
running services and interact with their execution.

The Web Services Flow Language (WSFL) is an XML
language for the description of the composition of Web
Services (see [16]). It aims to specify interaction pattern
either internal to an existing Service composed of other
services or external describing interactions between
composed services.

ebXML [3] is an XML based language with the objective
of providing an open XML-based infrastructure enabling
the global use of electronic business information in an
interoperable, secure and consistent manner. The Business
Process Specification Schema is an ebXML document
which describes in detail how Trading Partners take on
roles, relationships and responsibilities to facilitate
interaction with other Trading Partners in shared
collaborations. The interaction between roles takes place as
a choreographed set of business transactions. Each business
transaction is expressed as an exchange of electronic
Business Documents.

ConGolog [12][14] is an extended version of the Golog
(AlGOl in LOGic) [15] language. Golog was originally
developed as a high level language for programming robots
and software agents. ConGolog is based on a logical
formalism, the situation calculus [17], and can model multi-
agent processes, non-determinism and concurrency.
Traditionally simulation was the big virtue of state based
formalisms and reasoning over the formal properties of the
model was the main advantage of predicative models. By
doing a logical definition of an application domain the
ConGolog language can support both simulation and
verification.

 ABR PDDL DAML-S WSFL ebXML ConGolog
Core
Concept

ServiceDescr Action Process Activity,
ServiceProvider

BusinessActivity Action

Recursivity Composite
ServiceDescr

1.0: Action Composite
Process

FlowModel
ServiceProvider

CollaborationActi
vity
Binary
Collaboration

Procedure

End-level
Concept

ServiceDescr Action Atomic Process PortOperation,
ServiceProvider

Transaction
Activity

Action

Top-level
Concept

ServiceDescr Domain Process Model GlobalModel;
ServiceProvider

Multiparty
Collaboration

Domain dynamics + processes

Input Input Parameters Input Input Requesting Flow Predicative Parameters
Output Output Parameters Conditional

Output
Output Response Flow Not specified

Failure Exception Not explicit Not Explicit Failure Failure State Not specified
Preconditio
n

Precondition Precondition Precondition Transition, Join
Conditions

Precondition,
Begins When

Precondition

Preconditio
n spec

Bool expr Full FOL Thing XPath String Full FOL

Effect Effect Conditional
Effect

Conditional Effect Exit Condition Effect, Success /
Failure Guard,
Ends When

Conditional Effect

Effect Conditional Universal quant, Thing XPath String Full FOL

Specificatio
n

assignment fluent
assignments.

Control
Constructs

Nondeterminist
ic, concurrent,
If-then-else,
While-do / Do-
while

1.0: Choice,
Series, Foreach,
Forsome, Parallel

Split, Split-join,
Sequence, Choice,
TestCondition,
Unordered,
Iterate, If-Then-
Else, Repeat-
While, Repeat-
Until

If, Do-loop Start, Success,
Failure, Fork,
Join, Test Guard

Sequence, Choice, Iteration,
If-Then-Else, While-do,
Concurrent. Execution.
Concurrent Execution with
priorities. Concurrent
Iteration, Interrupt, Procedure
call

Time Start, end,
duration

Start, End,
Duration

Start, End,
During, Timeout

Duration, Retry timeToPerform,
timeToAckReceip
t
timeToAckAccept

Not explicit

Domain
Constraints

Ontologies 1.0: axioms +
safety constraints

Ontologies No No Frame axioms, Trans, Final

Pred /
numeric

Yes Yes No No No No

Exogenous
Actions

Yes- external Level 5 only No No No Yes

Execution
Control

Control
Operations

Not specified Stub Process
Control Model

Control
Operations

Not specified Not specified

Execution
Monitoring

Lifecycle
status, contact
info

Not specified Lifecycle status Lifecycle status,
Contact info

Lifecycle status Not specified

Table 1: A mapping between existing formalisms and the proposed ABR

In Table 1 we try to capture the main features of the above
languages and do a mapping between them and our
formalism proposed next.

Note: for some of the formalisms the recursive case is
slightly different from the core case:
- DAML-S - specifies Computed IOPEs instead of plain

IOPEs
- WSFL - FlowModels don�t specify preconditions and

exit conditions
- ConGolog procedures don�t specify preconditions and

effects
The definition of our formalism is structured in two
sections: a planning section which has as objective to
describe the model of a given domain and an execution
section which defines a number of features useful for
supporting the execution of the domain model.

4 Abstract Behavior Representations
Having reviewed a number of existing formalisms we argue
that it would be of considerable value to develop an abstract
behavioral description formalism.3 In particular this could:

- Act as a partial �interlingua� between existing and
future description formalism � allowing at least partial
mappings between different formalisms.

3 Note that this idea has been mentioned in various discussion forums �
please see acknowledgements section.

- Provide common terms of reference for discussions on
service descriptions at a level above syntax and
interfaces currently possible.

- Enable initial characterization an consideration of the
complexity and other properties of particular
combinations of languages.4

5 An Example ABR
Clearly building (much less agreeing upon) such an ABR is
a non-trivial task. We begin with a brief example that is
based on concepts drawn from the 5 formalisms reviewed in
Section 3.

5.1 Service Integration model
Our approach for Service Integration relies on a model
containing mainly two steps: problem identification and
deployment.

Deployment is the process by which a service gets actually
used. Either from a service consumer perspective (e.g. user)
that has some needs and requests some results or from a
service producer perspective that makes available his
capabilities for a given reason.

4 Planning languages for example have seen a lot of work on problem
complexity they generate and this should be leveraged in the service
composition context.

Figure 1 describes some of the possible interactions between
the three elements of our system and exterior entities such as
users, sensors, binding repositories/matchmaking systems
and actual service instances.

Figure 1: Model for Service Integration

5.2 Planning
In Figure 2 we describe visually the structure of our
proposed formalism using the Unified Modeling Language
(UML).

Figure 2: UML description of the proposed ABR

5.2.1 ServiceDescription
The core concept of the ABR is the ServiceDescription. A
ServiceDescription is the most basic item of the ABR and
each ABR model specifies at least one. A
ServiceDescription defines also an invocation pattern for the
underlying service that can be request/response,
submit/response, notification or one-way message. A

ServiceDescription has a number of attributes described
below.

Ontologies: Each ServiceDescription refers to a number of
ontologies that define the domains of parameters like input,
output, exception, precondition and effect and a number of
constraints between these parameters.

Input: Defines the information that the service needs to be
passed upon invocation.

Output: Defines the information that the service produces
upon successful invocation.

Exception: Defines the information that the service produces
upon abrupt termination of the invocation (e.g. due to a
failure).

Precondition: Is a boolean expression (see below) that
defines the state of affairs required before the invocation of
the service. For standalone ServiceDescriptions (not
contained by a CompositeServiceDescription) the
precondition expression can refer only to information
specified in the Input parameter.

Effect: Defines the state of affairs generated by the
invocation of the service. The effect is specified as a
conjunction of assignments conditioned by boolean
expressions (e.g. (and (when boolean expr1 assign 1) (when
boolean expr2 assign 2) (always assign3)). "always" is
equivalent with a condition with the boolean expression
true. When defining standalone Services (not contained by a
composite service) the effect boolean expression and
assignments can refer only to information specified by the
output or exception parameters.

Time: Since real-life systems need to be bounded by time
constraints a service can specify a number of time
parameters like Start, End and Duration. Still it is subject to
discussion if this can be considered as a planning feature or
has to be kept for the moment as an execution feature since
reasoning over time domains can prove to be more difficult.

5.2.2 CompositeServiceDescription
The CompositeServiceDescription is used for introducing
recursivity in our model. Also a
CompositeServiceDescription serves as a �scope� or
�world� for the contained services.

Variables: A composite service can explicitly define a
number of variables over which the contained Services can
evaluate preconditions, effect value changes and which they
can use in the input, output or exception parameters. Also
the input, output and exception parameters of the composite
service define implicit variables. The preconditions for the
composite service can be considered as initial values for
those variables.

A composite service is an abstract description that is
extended by a number of concrete specifications below. The
most important is the Nondeterministic description since all
others can be seen as syntactic sugar that can be then
expanded to it.

discovery
and bindingreasoning

execution

User enters
service defintion (operators)
and problem (goals)

composition
service definition (operators)
and service grounding
information (facts)

Registries,
Matchmakers

Sensorssensor datareplanning
needed

searching
contingency
information

submitting
plan

service
definition

User controls
and monitors
execution

user problem

Planning
And Execution
System Services

The execution egine does
the actual interaction
with services

problem
identification

deployment

5.2.3 Nondeterministic
The Nondeterministic serivce only defines a set of contained
"components". The choice of the components is not
prescribed and is limited by only the preconditions and
effects of the components.

5.2.4 Concurrent
A concurrent service defines a concurrent execution of
services. Two sets of services can be specified: a fork set
and a join set. Services specified by the fork set are started
in parallel. Then the concurrent service waits for services
specified in the join set to complete and then returns.

5.2.5 If-Then-Else
A conditional construct uses a boolean expression condition
to test which of two contained services to execute.

5.2.6 While-do / Do-while
Looping constructs use a boolean expression as a condition
for repeatedly invoking a contained service. In the case of
While-do the condition is evaluated before the invocation. In
the case of the do-while the condition is evaluated after the
service invocation.

5.2.7 Variables
Variables defined by a composite service designate the
constructs that can appear in preconditions and effects of the
contained Services. We assume that they are "internal" and
discrete and are defined over enumerable domains. Internal
in the sense that their value is modified only by the
contained Services. Discrete in the sense that their value can
be evaluated and changed only when a contained Service
starts or ends. In other words their value cannot be accessed
or changed by a Services while it runs (see [10][5]) for a
discussion on how continuous variables can be converted to
discrete). An enumerable domain is considered here to be a
domain for which the size and the elements can be
computed.

Predicative Variables: describe the truth-value of a literal
grouping together a tuple of values.

Numeric Variables: describe a numeric state and can be
integer or floating point.

Initial values: composite services can specify also initial
values for explicitly defined predicative or numeric
variables.

5.2.8 Boolean expressions
 A boolean expression is a construct built using operators
like not, and, or, iff, implies, ==, !=, <, >, <=, >= and
implicit or explicit variables.

5.2.9 Assignment expressions
In the case of predicative variables the assignment can be
either true or false. A true assignment can also be specified
by the plain expression of the predicate (e.g. open(door1))
and a false assignment can be specified by as a plain

expression of the predicated preceded by a not construct
(e.g. not open(door1)).

In the case of numeric variables the value can be changed
either by the direct assignment of a constant variable or by
the change of the value with by a given constant. Supported
changes are value increase/decrease and scale-up/scale-
down.

5.2.10 Partial service descriptions, user problems
and goals

There is a direct interdependency between the abstraction
level of the problem specification, the reasoning support and
the flexibility of the system.

As such some systems (e.g. intelligent agents) can usually
handle high-level problem descriptions and be very flexible
in terms of low-level choices. On the other hand this usually
is expensive in terms of system design, as it requires highly
trained professionals and in terms of reasoning support as it
requires more powerful reasoning engines.

Other systems work using a lower level formalism (e.g. RPC
oriented Web Services). Chaining together a number of such
services using a programmatic formalism leads to smaller
flexibility but it�s easier to understand and develop and
requires less powerful reasoning capabilities.

Our approach is to consider the gap between the two
approaches as a continuum and allow different levels of
completeness of behavior descriptions. In other words we
allow for integration problems and solutions to be specified
using the same formalism and be differentiated by different
degrees of completeness.

For example for initiating a service integration process a
user might specify an incomplete service description with
the actual goals to be achieved as the effect attribute. Or the
result of a planning reasoning over a
CompositeServiceDescription might be a new more specific
CompositeServiceDescription.

5.2.11 External Services and Variables
A number of existing formalisms (PDDL[10] Level 5,
ConGolog [12][14]) introduce the concept of exogenous
(external) actions. These are actions that are not in the
control of the planning entity and can happen at random
moments. From that we can easily derive the concept of
external variables as variables modified or by such actions
or provided to such actions. In our proposal we propose to
use the "external" identifier for designating such variables or
services. As it is not clear what kind of reasoning can be
performed over them we submit this as a subject for more
discussions.

5.3 Execution
For controlling the execution of a service we define a
number of operations:

Init: Called in order to initialize a service instance.

Destroy: Called to signal that the execution of the service
instance has to be aborted and resources have to be freed.

Suspend: Called for suspending the execution of a service
instance.

Resume: Called for resuming the execution of a service
instance.

For monitoring the execution we define the following
features:

Contacts: An attribute listing contact information of persons
actually responsible for the execution of the service and
which can be contacted for providing execution support.

getStatus, subscribeMonitor, unsuscribeMonitor: for
execution each service has an associated status reflecting
lifecycle properties. The current state can be queried or it
can be monitored by subscribing for notifications of status
change.

6 Conclusion
In this paper we outline some of the challenges involved in
enabling automated service integration in open
environments and in particular discuss issues related to the
behavioral description of services. We review a number of
existing representations and argue that the development of
an abstract behavior representation would be a useful step in
supporting service integration in both Agentcities and other
such environments. An example ABR is also given and is
intended to:

- Encourage for discussion on practical requirements for
behavioral service descriptions in the frame of the
Agentcities network.

- Serve as an initial blueprint for the design of a system
for automatic service integration.

7 Acknowledgements
The research described in this paper is partly supported by
the EC project Agentcities.RTD (IST-2000-28385). The
opinions expressed in this paper are those of the authors and
are not necessarily those of the EU Agentcities.RTD
partners. We would also like to state that there has been
some discussion on abstract service descriptions in the
context Agentcities Service Description and Web Services
working groups as well as the FIPA Web Services Activity
and we intend this paper to be a contribution to those
discussions.

References
[1]. International Planning Competition,

http://www.dur.ac.uk/d.p.long/competition.html, 2002.

[2]. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D.
McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K.
Sycara, and H. Zeng. DAML-S (version 0.6) Walk-Through, 2001.

[3]. Business Process Project Team. ebXML Business Process
Specification Schema Version 1.01, May 2001.

[4]. World Wide Web Consortium. XML Path Language (XPath) Version
1.0, 1999.

[5]. I. Constantinescu and B. Faltings. Behavior Description Formalisms
for Service Integration: Technical Report No TBD. Technical report,
Artificial Intelligence Laboratory, Swiss Federal Institute of
Technology, 2002, http://liawww.epfl.ch/.

[6]. DAML Services Coalition (alphabetically A. Ankolekar and M.
Burstein and J. Hobbs and O. Lassila and D. Martin and S. McIlraith
and S. Narayanan and M. Paolucci and T. Payne and K. Sycara and H.
Zeng). DAML-S: Semantic Markup for Web Services. In Proceedings
of International Semantic Web Working Symposium (SWWS), 2001.

[7]. DARPA Agent Markup Language Program. Reference description of
the DAML+OIL (March 2001) ontology markup language, 2001.

[8]. R. Fikes and N. Nilsson. STRIPS: A new Approach to the Application
of Theorem Proving to Problem Solving. In Artificial Intelligence,
1971.

[9]. M. Fox and D. Long. PDDL+: An extension to PDDL2.1 for modeling
planning domains with continuous time-dependent effects, 2002.

[10]. M. Fox and D. Long. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains, 2002.

[11]. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M.
Veloso, D. Weld, and D. Wilkins. PDDL-The Planning Domain
Definition Language, 1998.

[12]. Giuseppe De Giacomo, Yves Lesperance, and Hector J. Levesque.
ConGolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence, 121(1-2): 109-169, 2000.

[13]. O. Lassila and K. Swick. Resource Description Framework (RDF)
model and syntax specification. Technical report, World Wide Web
Consortium, 1999.

[14]. Yves Lesperance, Todd G. Kelley, John Mylopoulos, and Eric S. K.
Yu. Modeling dynamic domains with ConGolog. In Conference on
Advanced Information Systems Engineering, pages 365-380, 1999.

[15]. Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen
Lin, and Richard B. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming, 31(1-3): 59-83,
1997.

[16]. F. Leymann. Web Services Flow Language (WSFL 1.0), May 2001.

[17]. J. McCarthy and P. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Machine Intelligence, 1969.

[18]. S. McIlraith, T.C. Son, and H. Zeng. Mobilizing the Semantic Web
with DAML-Enabled Web Services. In Proceedings Second Int'l
Workshop Semantic Web (SemWeb'2001), 2001.

[19]. Sheila McIlraith and Tran Cao Son. Adapting Golog for programming
the semantic web.

[20]. M. Wooldridge and N. R. Jennings. Towards a Theory of Cooperative
Problem Solving. In Proceedings Workshop Modelling Autonomous
Agents in a Multi Agent World (MAAMAW'94), pages 15-26. 1994.

