
Reflective Collaborative Agents for Complex Service Integration

P. Maurine Hatch and Eleni Stroulia
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8

{maurine,stroulia}@cs.ualberta.ca

Abstract
With the advent of more and more services available on
the Web, a user can have a difficult job of assembling the
various pieces of a complex task to arrive at a final
solution. Not only would the user need to access each
web-based resource through its individual client-side
interface, but she would also need to interpret its
response to her request, and to manually combine the
multiple responses from the different resources to
accomplish the complex task.

In this paper, we discuss a multiagent, XML-based
framework that supports the development of aggregate
applications that rely on semantic-based reflective
monitoring and collaboration among several agents to
complete the user’s task. Our framework makes use of
declarative models of the domain information, the task-
specific information, and the semantic constraints of this
information. Each agent uses these models to interact
with the user, to coordinate the information exchange
with the various web resources, to monitor and control
the execution of the applications, and to take action when
a failure is detected. When an agent detects a failure, it
collaborates with other agents by distributing the tasks to
those agents which are capable of completing the task,
thus ensuring successful completion of the user’s request.

 We illustrate our approach and the architecture of
the aggregate applications that it produces using a book-
buying assistant as an example.

1. Motivation and background
As the World Wide Web continues to grow
exponentially, querying it for a particular service can be a
frustrating experience for a user. There are many different
web-based applications and they usually do not
interoperate. Not only does a user with a complex task
need to decide in which order to access multiple
applications, but she also needs to decide how to combine
the information in their responses in order to formulate
requests to yet other applications, and how to construct
the solution to the task at hand based on all the responses
received. The user’s task would be much easier if she
could simply request the complex service and have the
final solution returned to her. This requires the
development of an application that combines the

functionalities of multiple, independently developed,
web-based applications. The application aggregation
would need to control the information flow of the overall
task, translate the information among the existing
applications, and combine the many responses received
into a final solution

This interoperation of web-based applications is a
challenge because there exists neither an agreed upon
representation and semantics for the information required
and produced by these applications, nor a uniform access
mechanism for their services. Our work towards
addressing this challenge has resulted in a multi-agent
framework for task-specific aggregation of web-based
applications. Each agent within this framework uses an
eXtensible Markup Language (XML) [2] -specified
domain model for the information representation and
semantics, an XML-specified task structure model to
represent the workflow and a task agent component that
controls and coordinates the process by using these
models.

Our framework is based on the TaMeX framework
[13]. Similarly to TaMeX, wrappers are used to
encapsulate the web-based applications that provide the
information and services in a given domain. The role of a
wrapper is that of an adapter between the application’s
original user interface and a new interface based on a
common XML vocabulary for the domain. The wrappers
interact with a task agent that acts as an intelligent, task-
specific intermediary between the user and all the
wrapped applications that are needed to accomplish the
user’s task. The task agent uses the task structure model,
which is an explicit representation of a set of steps to
accomplish the user’s complex tasks, to control the
process and information flow. The task agent also uses a
domain model, which is a specification of the concepts of
the subject area of interest, to establish a common
language to be used by the user, the wrappers, and the
task agent itself.

We have extended TaMeX to include an explicit
representation of semantic constraints on the task and
domain models of the task agent and the wrappers, and
also a model of the distribution of capabilities between
several agents. These more complex representations also
required that the TaMeX models are specified using XML
schema [6,7,8] technology. We have further extended the
TaMeX framework by adding reflective monitoring with

From: AAAI Technical Report WS-02-07. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

domain-specific and task-specific semantics. This means
that the execution is monitored and the various
constraints on the information, both domain-specific and
task-specific, are checked. This constraint checking is to
ensure that there is valid input to and valid output from
each step involved in the successful completion of the
user’s request. We also converted the framework to a
multi-agent framework with the ability for the user-
contacted agent to identify and collaborate with other
agents. This collaboration is necessary when the
reflective monitoring of the user-contacted agent detects a
failure condition on one of its subtasks. Other agents are
then called into service to ensure that the user’s request is
satisfactorily deployed.

The rest of this paper is organized as follows.
Section 2 discusses the overall architecture of our multi-
agent framework for aggregation of web-based
applications. Section 3 describes and illustrates the run-
time behavior of an aggregate application by using a
prototype book-buying assistant as an example. Finally,
section 4 summarizes the approach and concludes by
identifying the contributions of this work.

2. Overall architecture
The overall architecture of our multi-agent XML-based
framework consists of two loosely coupled environments:
a design-time environment and a run-time environment.
A multi-agent system consists of a group of agents that
interact and cooperate to accomplish some set of tasks in
a distributed way. Each agent offers a specific service or
services to other agents. The solution to a large task is
accomplished by combining and coordinating the
different services offered by the individual agents. In our
case, each agent is responsible for collaborating with the
other agent(s) to accomplish the specific tasks of their
own users. Once the task is accomplished, each agent is
responsible for returning the combined results to their
own users.

Figure 1: Run-time architecture of our multi-agent XML-
based framework.

The run-time architecture is diagrammatically
depicted in Figure 1, consisting of two agents. The main
components of this architecture are the web-based
applications being accessed and the agents that control
the processing between the users, these web-based
applications, and other agents. Each agent has the same
structure and is composed of a task agent component, a
wrapper component, and the repositories for the
supporting files for these two components. The important
supporting files for the task agent component are the
domain model, the task structure model, and the
constraints specified within these models. These models
are computer-usable, declarative representations of the
domain and the task structure respectively. The domain is
the subject area involved in the specific application being
run. The task structure is the specification of the
workflow of the overall task of the application. The
important supporting files for the wrapper component are
the learned request protocol and grammar rules.

The design-time environment supports the
development of these models/files needed for the
execution of the task agent and the construction of the
wrappers for the existing web-based applications for each
new user task. These XML models and wrapper-
construction files are used as input to the run-time
environment. Using these models, each agent within the
run-time environment monitors the execution, checks the
constraints, and aggregates the outputs of the underlying
wrapped web-based applications for its user(s) tasks.

2.1 The task agent
The role of a task agent is to interact with the user of the
multi-agent system, to evaluate the applicable conceptual
and functional constraints, and to coordinate the
information exchange among the wrappers of the existing
underlying applications and other agents needed for
accomplishing the user’s task.

To accomplish this coordination between the
wrappers and other agents, the task agent uses a
declarative, task-structure [10,11,12] approach to the
representation of its processing mechanism. In this
approach, a task is characterized by the type(s) of
information it consumes as input and produces as output,
and the nature of the transformation it performs between
the two. A complex task may be decomposed into a
partially ordered set of simpler subtasks. A simple, non-
decomposable task, i.e., a leaf task, corresponds to an
elementary procedure. The control of processing moves
from higher-level complex tasks to their constituent
subtasks. At the same time, information flows through the
task structure as it is produced and consumed by the
tasks. The actual process is non-deterministic because
there may be alternative decompositions for a given task,
applicable under different conditions, and the subtasks
resulting from the decomposition of a complex task are
only partially ordered. Complex, high-level tasks get
accomplished when all their subtasks are accomplished.

The XML-based task structure model used by the task
agent is described in section 2.2.

Each task agent implements a set of these XML-
specified tasks, with non-deterministic decompositions.
The user’s interaction with the task agent decides which
of the alternative decompositions is employed, and which
task is active at each point in time. Also, through some
user-interaction leaf tasks, the user specifies the problem
and receives the results as they get produced. The
wrappers of the individual underlying applications
implement elementary leaf tasks using the services of
their underlying sources (information-collection tasks).
When a particular task is sufficiently decomposed into
elementary tasks, the task agent requests the relevant
wrappers to accomplish them and to return their results

As well as using a task structure model, the task
agent also uses a system configuration model and a
domain model for its processing. The system
configuration model specifies information needed for
execution of the system, such as the name of the server
that the task agent is running on, the list of the registered
task models, and the list of all the resources that the
system knows about. The domain model specifies the
entities of the application domain and their constraints.
The task agent uses the constraints specified in the
models to validate the user’s input and the successful
execution of the subtasks involved.

2.2 The task-structure model
The role of the task structure model is to enable the task
agent to:
1. decompose high-level tasks into elementary (leaf)

ones
2. present a hierarchical menu of tasks to the user
3. compose individual wrappers’ results in a coherent

solution to the overall user’s task
The task structure is specified using XML. A generic

task structure is specified with an XML schema and is
part of the design-time environment. See Appendix B for
the XML structure diagram and XML schema for the
generic task structure used in our framework. An
application-specific XML task structure instance is
specified, in conformance with the task structure schema,
for each high-level complex task to be executed by the
user. This task structure instance is used by the task agent
to present the task structure to the user as a hierarchical
menu where the high-level tasks correspond to the top-
level menus and their alternative decompositions are
represented in sub-menus. The tasks presented are color-
coded so that the user knows which tasks are executable
and which have been completed. This representation style
gives any specific task agent a simple intuitive interface
through which the user can traverse the task structure and
invoke the tasks that it can accomplish.

 There are five types of tasks in the generic task
structure. There are the two user-interaction tasks: the

input task that gathers information from the user and the
output task that presents results to the user. For each input
and output task there is an associated XSL stylesheet [3]
for user presentation. There is the wrapper task that is an
information-collection task and accesses an external
resource. For each wrapper task, a wrapper must be
constructed to provide the functionality specified by the
task. There is the internal task that performs non-
interactive processing. For each internal task, a new
component must be implemented to provide the
functionality specified by the task. Finally, there is the
grouping task that is used to structure the other tasks in
sub-groupings to correspond to the intermediate sub-goals
of the user’s overall task.

2.3 The domain Model
The role of the domain model is to establish a common
language for specifying the application information that
can be understood by the user, the task agent and the
wrappers of all the integrated applications. The
application information that is specified using this
domain model is the information provided by the user, the
information produced by the task agent as it elaborates
the user’s problem specification, and the information
provided to and by the wrappers and agents.

The domain model, used by the task agent, specifies:
1. the entities of the application domain
2. the attributes of these entities
3. the composition relationships between these

entities
4. the logic constraints of these entities
The domain model is specified using XML

documents. An application-specific domain model and
some of its constraints are specified with an XML
schema. Constraints that cannot be specified in the XML
domain schema are specified in an XSLT stylesheet.

2.4 Constraints and Reflective monitoring
The role of the constraints is to provide the semantics
used by the reflective monitoring process of the task
agent. At run time, the task agent checks the constraints
to ensure that the information consumed and produced at
each stage of the processing is valid. Upon discovery of
invalid information, the task agent takes action, such as
invoking the services of another agent, to resolve the
problem.

There are two main categories of constraints:
conceptual constraints, which are domain-specific
constraints defining the assumed ontology of the domain,
and functional constraints, which are task-specific
constraints specifying the nature of the information
transformation expected of each task. Table 1 shows a
breakdown of the types of constraints within each
category, along with their description and where they are
specified within our framework.

Constraint Type Description Where Specified
Conceptual Value Constraint

Single Field
-constraints on the value of a single field of
information in the domain model

XML domain schema

Value Constraint
Multiple Fields

-semantics on the relationship between values
of multiple fields in the domain model

XSLT domain stylesheet

Functional Structural
Constraint

-semantics on the relationship between the
tasks in the task structure model

XML task structure schema
and instance

Task Parameter -semantics on the relationship between the
tasks in the task structure model

extension to XML domain
schema

Table 1: Constraints used by reflective monitoring in our framework

2.5 The Wrappers
The wrapper components in the architecture shown in
Figure 1 act as adapters between the web-based resource’s
original API and a new API based on a common XML
vocabulary for the domain. The wrapper receives an
information-collection request from the task agent that is
the problem specified in terms of this XML domain
model. The wrapper responds to this request by returning
an answer in the form of an XML document containing
one or more instances of some concept (or concepts) in
the domain model. This concept is called the target
concept and is the entity (or entities) of the XML domain
model that answer the problem specification from the task
agent.

Our wrapper-construction process is based on the
approach developed by Stroulia, Thomson, and Situ [13].
This approach exploits the hierarchical structure of both
XML and HTML documents. XML documents are
structured hierarchically where each XML element can be
composed of simpler XML elements. We rely on this
characteristic of XML for creating the semantic map of
documents used in wrapping the WWW applications. The
XML documents used are those for specifying the domain
model, the information-collection request to the wrapper,
and the answer returned from the wrapper that contains
the instances of the target concept.

Our approach also utilizes the hierarchical structure
of HTML. Currently, most web-based applications
provide information encoded using HTML. These
applications automatically generate HTML documents in
response to a particular request type. The visual layout of
these generated HTML documents for individual
responses is similar, even though the actual content is
different. In order to extract an instance of the target
concept from one of these HTML responses, the
hierarchical structure of this response is traversed to
discover and select the needed elements of the target
concept. This is done by parsing the HTML document
into a tree representation rooted at the < html > tag, so
that document subtrees that may contain the information
of interest can be efficiently located, using a DOM-like
API [1]. The wrapper uses a set of rules, or grammar, to
traverse this document tree to locate the instances of the
target concept’s constituent elements. This extraction
grammar is learned at design-time and is formulated

using XPATH [5] expressions and is specified in an XML
document.

In order to wrap a web-based application, the
wrapper needs to know the protocol by which the
responses of interest can be requested from the
application server, and the grammar for extracting the
instances of the target concept from the server’s
responses. The XML files that contain this information,
the learned request protocol file and the grammar rules
file, are stored in a repository for use by the wrapper.

The learned request protocol is the interaction
protocol between the user’s browser and the application.
This protocol is specified in XML. Its role is to provide
the wrapper component with a means to translate an
XML problem specification into an appropriate request to
the application server.

The grammar rules are the XPATH expressions for
extracting each component of the target concept from the
application’s response. They are specified in XML. The
role of the grammar rules is to provide the wrapper
component with a means to extract the instances of the
target concept from the application server’s responses.

3. Run-time Behavior
To illustrate the run-time behavior of the aggregate
applications developed with our multi-agent framework,
we will use as an example a book-buying assistant
prototype. This prototype was built to support explorative
comparative book shopping, and more specifically book
price checking. Today there are many websites offering
books for sale. Knowledgeable consumers with specific
constraints and preferences must access several different
sites to identify available options. Then they have to
compare the results from these different sites prior to
making a decision. The aggregation of existing book-
selling applications to support tasks such as comparative
shopping is a compelling instance of web-based
application aggregation. Our book-buying prototype
application integrates two different book-selling web-
based applications.

As the first step in the development of this
application, the entities, their attributes, their
compositions, and their constraints needed for the book-
buying domain are specified in an XML schema and
XSLT stylesheet. This book-buying domain XML
schema file and XSLT stylesheet are shown in Appendix

A. A pictorial representation of the book-buying domain
model is shown in Figure 2.

Figure 2: Domain Model XML Structure Diagram for the
Book Buying Assistant.

This representation is an XML structure diagram
generated by Together 5.5 from the XML schema file of
the domain model. The multiplicities are shown on the
diagram by ’?’, ’1’, or ’*’, where ’?’ signifies zero or one
instance, ’1’ signifies exactly one instance, and ’*’
signifies zero up to an unlimited number of instances. The
composition relationships can be seen clearly from this
diagram. For example, it can be seen that the
searchResult, the sortedResult, and the filteredResult, are
all composed of books, with each book being composed
of a mandatory title and author and an optional price and
type of book. Examples of types of books are hardcover
or softcover.

Our example of the book-buying assistant prototype
is run with three agents. Each agent contains the same
book buying assistant’s task structure as diagrammatically
depicted in Figure 3. The book buying assistant’s XML
task structure instance is shown in Appendix C.

Find Book
Information
T0

Specify Book
Selection
Criteria
T01

Specify
Min and Max
T03131

Access
Amazon
T021

Book Buying Assistant
Task Structure

Filter Books by
Price Range
T03132

Access
Chapters-Indigo
T022

Filter Book Info
by Price
T0313

Access Book-
Selling Resources
T02

Display
Book Info
T032

Group Books
by Type
T0312

Sort Books
by Price
T0311

Key: Grouping
Tasks

Leaf
Tasks

Arrange
Books
T031

Narrow Down
Book Selections
T03

Pick
Books
T04

Looping task

Figure 3: Task Structure for the Book Buying Assistant.

Though each agent uses the same task structure, each
agent has different capabilities within this task structure.
Agent A can perform all the tasks except for any of the
"Access Book-Selling Resources". Agent B can perform
all the tasks. Agent C can perform all the tasks except
"Access Chapters-Indigo" and "Group Books by Type".
In our example, Agent C is the agent that interacts with
the user. Agent A and Agent B are the agents that have
task capabilities within the book-buying assistant
application that Agent C does not have. Agent C will
accomplish the user’s overall task by traversing the book-
buying assistant task structure and performing the tasks
within that structure. Agent C will either perform these
tasks directly by itself, if capable, or will identify and
then collaborate with other agents that are capable of
performing these tasks.

In this task structure, the grouping tasks that are used
to arrange the other tasks into sub-groupings are shown as
regular solid boxes. The leaf tasks, which do the actual
processing, are shown as heavy-lined solid boxes. The
overall task of the book buying assistant, i.e., to find book
information, gets decomposed into the tasks of specifying
book selection criteria, accessing book-selling resources
via the wrapped web-based applications, narrowing down
the retrieved book selections, and finally by picking the
books to purchase from the narrowed down list of books.
The task agent of an agent capable of executing the book
buying assistant uses the XML-specified model of this
task structure to produce a task menu on the user’s
browser interface. This menu, shown in Figure 4, is the
user’s means of interacting with the task agent. The first
step in the process is to specify the problem inputs. This
is the user-interaction (input) task of "Specify Book
Selection Criteria (T01)". The task agent sends to the
browser the query entry form, which is generated by the
XSL stylesheet corresponding to this input task. Using
this form, the user specifies the name of the author whose
books he wants to find. For the problem at hand, the user
specifies the author to be "Sheri Reynolds" by typing
"Sheri Reynolds" in the "author’s name" entry field.

Figure 4: Task Menu for the Book-Buying Assistant

After the desired book selection criteria have been
specified, the task agent proceeds to accomplish the next
task, i.e., to access the book-selling resources (T02) via
the wrapped web-based applications. This grouping task
is decomposed into a set of information-collection
(wrapper) tasks, one for each wrapped web-based
application. In this example there are two wrapper tasks,
"Access Amazon (T021)" and "Access Chapters-Indigo
(T022)", to access the wrapped applications of the
Amazon (www.amazon.com) and Chapters-Indigo
(www.chapters.ca) book selling websites
respectively. Each wrapper task is accomplished by
invoking a request to the task-specified wrapped web-
based application. This process is started when a user
selects a wrapper task from the menu. The task agent
responds by sending a request to the particular wrapper of
the selected application that will produce the desired
output given the already-entered set of inputs.

Since, in this example, the user wants to see all of the
books that are available she selects each wrapper task in
turn. When the user selects the first wrapper task of
"Access Amazon (T021)" Agent C’s task agent responds
directly (since Agent C is capable of performing this task)
by sending a request to the particular wrapper of the
Amazon application that produces a list of books given
the author’s name. The author’s name that is used for this
access was previously entered by the user in the "Specify
Book Selection Criteria (T01)" task and is "Sheri
Reynolds". So, in this case, the T021 task will return a list
of all the books authored by Sheri Reynolds that can be
found at the Amazon website.

The user then selects the next wrapper task of
"Access Chapters-Indigo (T022)." However, this time
Agent C fails at this task because it does not have the
capability to access the Chapters-Indigo website. Agent C
takes corrective action and identifies that Agent B is
capable of performing task T022. After having identified
Agent B, Agent C begins its collaboration with this agent
by sending Agent B the entire DOM with an indication to
perform the T022 task. Rather than starting at the
beginning of the book buying assistant task structure,
Agent B jumpstarts its processing by starting with the
T022 task. Agent B’s task agent executes T022 by
sending a request to the particular wrapper of the
Chapters-Indigo application that produces a list of books
given the author’s name. After getting the results, Agent
B updates the DOM with the retrieved information and
then returns this updated DOM to the originating Agent
C. Agent C has now completed the "Access Book-Selling
Resources (T02) task.

Agent C then continues traversing the book buying
assistant’s task structure by performing the next task of
"Narrow Down Book Selections (T03)". This grouping
task is an iterative task that the user keeps performing
until she has the selection of displayed books to her
liking. Each iteration of this task consists of an "Arrange
Books (T031)" task and a "Display Book Info (T032)"

task. The "Arrange Books (T031)" grouping task allows
the user to choose one of three choices: sort the books by
price, group the books by type of book, or filter the book
information by a price range entered by the user. The
first two subtasks within T031, "Sort Books by Price
(T0311)" and "Group Books by Type (T0312)" are
internal tasks and are executed as soon as they are chosen
by the user. The third subtask within T031, "Filter Book
Information by Price (T0313)", is a grouping task that is
made up of specifying the minimum and maximum price
to use for filtering the books and then the actual filtering
of the books by using this price range.

In our example, the user wants to group the books by
whether they are hardcover or paperback so she selects
the "Group Books by Type (T0312)" task from her
browser’s menu. Agent C fails at performing this task
directly because it does not have the capability to group
books by type. Agent C identifies that Agent A is capable
of performing task T0312 and sends Agent A the entire
DOM with an indication to perform this task. Agent A
performs its internal task of T0312 by using the DOM
passed to it as the input to the task. After execution,
Agent A updates its own DOM with the results of the task
execution which are a new grouping of books by type of
the book information. Then, Agent A returns this updated
DOM to the originating Agent C. Agent C then executes
another user-interaction task, the output task of "Display
Book Information (T032)" and displays this grouping of
books to the user. The first iteration of T03 has now been
completed.

The user decides that she is satisfied with the
selection of books displayed on her browser and proceeds
to select the task "Pick Books (T04)". This user-
interaction task allows the user to pick the books she
would like to buy by entering an indication by the
appropriate displayed books.

The extended version of the prototype , supporting
the example just described, is currently under
development.

4. Conclusions
In this paper, we discussed an XML-based framework for
the aggregation of web-based applications involving
agents that collaborate to ensure that the requested service
is delivered. The two main contributions of this work are

(a) the semantic-based reflective monitoring of the
task-agents’ behavior, and

(b) the agents’ collaboration and tasks distribution
that occurs when an agent fails.

In our framework, agents use declarative models of the
application domain, the task structure and the semantic
constraints specifying the information in this domain and
the nature of the transformations it suffers in the task
structure. Each agent uses these models to interact with
the user, to coordinate the information exchange among
the wrappers of the underlying web applications, to
monitor and control the execution of the applications, and

to collaborate with the other agents when it cannot alone
complete the desired task.

References
1. Document Object Model (DOM) Level 2 Specification,

http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/
2. Extensible Markup Language (XML),

http://www.w3.org/XML/
3. Extensible Stylesheet Language (XSL) Version 1.0 W3C

Recommendation 15 October 2001,
http://www.w3.org/TR/xsl/

4. Muffin, World Wide Web filtering system
http://muffin.doit.org/

5. XML Path Language (Xpath) Version 1.0 W3C
Recommendation 16 November 1999,
http://www.w3.org/TR/xpath/

6. XML Schema Part 0:Primer W3C Recommendation, 2
May 2001, http://www.w3.org/TR/xmlschema-0/

7. XML Schema Part 1:Structures W3C Recommendation, 2
May 2001, http://www.w3.org/TR/xmlschema-1/

8. XML Schema Part 2:Datatypes W3C Recommendation, 2
May 2001, http://www.w3.org/TR/xmlschema-2/

9. XSL Transformations (XSLT) Version 1.0 W3C
Recommendation 16 November 1999,
http://www.w3.org/TR/xslt/

10. B. Chandrasekaran, "Task Structures, Knowledge
Acquisition and Machine Learning", Machine Learning,
4:341-347, 1989.

11. E. Stroulia and A.K. Goel, "A Model-Based Approach to
Blame Assignment: Revising the Reasoning Steps of
Problem Solvers", Proceedings of the 13th Annual
Conference on Artificial Intelligence, pp. 959-965, AAAI
Press, 1996.

12. E. Stroulia and A.K. Goel, "Redesigning a Problem
Solver’s Operators to Improve Solution Quality.
Proceedings of the 15th International Joint Conference on
Artificial Intelligence, pp. 562-567, 1997.

13. E. Stroulia, J. Thomson, and Q. Situ, "Constructing XML-
speaking wrappers for WEB Applications: Towards an
Interoperating WEB", Proceedings of the 7th Working
Conference on Reverse Engineering, 23-25 November
2000, Brisbane, Queensland, Australia, pp. 59-68, IEEE
Computer Society Press.

The appendices referred to in this paper are included in the
Computing Science Department, University of Alberta,
Technical Report TR02-06.

