
Copyright 2002, American Association for Artificial Intelligence. All rights reserved.
(http://www.aaai.org)

A Flexible Architecture for a Multimodal Robot Control Interface

Carl Burke Lisa Harper Dan Loehr

The MITRE Corporation
{cburke, lisah, loehr}@mitre.org

Abstract
Despite increased activity in robotics, relatively few
advances have been made in the area of human-robot
interaction. The most successful interfaces in the recent
RoboCup Rescue competition were teleoperational
interfaces. However, some believe that teams of robots
under supervisory control may ultimately lead to better
performance in real world operations. Such robots would
be commanded with high-level commands rather than
batch sequences of low-level commands. For humans to
command teams of semi-autonomous robots in a
dynamically changing environment, the human-robot
interface will need to include several aspects of human-
human communication. These aspects include
cooperatively detecting and resolving problems, making
using of conversational and situational context,
maintaining contexts across multiple conversations and use
of verbal and non-verbal information. This paper
describes a demonstration system and dialogue
architecture for the multimodal control of robots that is
flexibly adaptable to accommodate capabilities and
limitations on both PDA and kiosk environments.

Introduction
Robotics research has recently experienced a surge of
interest due to a growing awareness that robots can work
collaboratively with humans to perform tasks in situations
unsafe for humans. The 1997 Mars Sojourner rover was
tasked to act as a "mobile remote geologist" and
conducted soil experiments in several different terrains
(NASA 1997). Teleoperated robots assisted at the site of
the World Trade Center in New York City after the
September 11 attack. Robots were able to penetrate into
areas of rubble debris in cavities too narrow and
dangerous for humans and dogs (Kahney 2001). Finally,
the US Government’s Defense Advanced Research
Projects Agency (DARPA) has invested substantial
funding toward a vision in which robots will support
future combat systems. Future operations are envisioned
to be populated by teams of semi-autonomous robots
dispersed through the battlefield and controlled remotely
by one or several human operators on mobile platforms.

Despite this increased activity in robotics, relatively few
advances have been made in the area of human-robot
interaction. In RoboCup Rescue 2001 held in Seattle
Washington, the best contenders in the competition relied

upon teleoperation (joystick-style control) by human
controllers (Eyler-Walker, p.c.). Though ultimately
supervisory control of teams of semi-autonomous robots
is a very promising avenue for future research in robot
search and rescue, this technological approach does not
yet reach the level of competence of teleoperation. In the
1997 Mars mission, a large operations team was required
to command a single robot. The robot had little
navigational autonomy and because of communications
latency, commands had to be sent in batches of several
low-level commands. Recently, NASA has been
concerned with human-machine interactions that are
commanded by high-level commands rather than
sequences of low level commands. A grapefruit-sized
Personal Satellite Assistant (PSA) is being developed to
operate aboard the Space Shuttle's flight deck. It will
navigate using its own navigation sensors, wireless
network connections, and propulsion components. Rainer
et al. (2000a, 2000b) describe an architecture for a spoken
dialogue interface for communicating with the PSA.

An alternative approach to human-robot interaction by
Fong et al. (2001) bridges teleoperation with
"collaborative control". In this model, humans and robots
act as peers exchanging information in dialogue to
achieve goals. Instead of controlling the vehicular robot
solely by direct (manual) control, the human specifies a
set of waypoints that the robot can achieve on its own.
One problem observed with waypoint driving is that
robots may encounter obstacles for which its vision
system is inadequate to assess. In such a circumstance, the
robot can query the human about the nature of the
obstacle and receive assistance.

In this paper we describe a dialogue management
architecture we are developing for two different physical
interfaces: a Personal Digital Assistant (PDA)-based
dialogue interface and a touch screen kiosk interface to a
robot. We plan to extend the PDA-based interface toward
a team-based search and rescue task. Currently, both
kiosk and PDA modes support single user, single robot
dialogue in a limited navigation "RoboCup Rescue" style
arena with a simulated victim and various obstacles.
Using touch gestures and speech on the PDA interface,
users may task the robot, operate camera controls and

From: AAAI Technical Report WS-02-08. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

issue navigational commands. Later we plan to extend to
supervisory control of a small team of robots.

Our primary research interest is the development of a
dialogue system architecture robust enough to tolerate
continuous operational use, flexible enough for porting to
different domains and tasks and devices, and able to
support multiple, simultaneous conversations involving
one or more humans and one or more cooperative robot
entities. The dialogue management architecture we are
developing is based on the TRINDIKit (Task oRiented
Instructional Dialogue Toolkit) (TRINDI 2002)
framework, although we have introduced a number of
implementational changes in the re-engineering of a
TRINDIKit architecture.

Original System Concept
Our architecture was first assembled for development of a
demonstration system called Mia, the MITRE Information
Assistant. Mia is an information kiosk equipped with a
touch screen and a microphone, and stocked with
information about MITRE’s internal research projects for
use as a visitors’ guide to a MITRE trade show (see
Figure 1). Our intent was to prototype a system in which
novice users would be able to step up to the kiosk and
immediately be able to speak and point with no coaching
or training. In fact, our system met this goal well though
we discovered a number of shortcomings during design
and development.

Mia was built as a set of independent modules
communicating across SRI's Open Agent Architecture
(OAA). The Graphical User Interface (GUI) was written
in Tcl/Tk. The GUI (see Figure 2) handled push-to-talk
for the speech recognizer, maintained a text menu of
possible user utterances, showed a map of the overall
trade show layout with the ability to zoom in on specific
rooms, and displayed pre-recorded output videos of the
animated agent speaking and gesturing. Speech
recognition was performed by Nuance while gesture input
was limited to selection of exhibit rooms and booths on a
touch screen. When speaking, Mia appeared as a talking
head, as in Figure 2; when gesturing, Mia appeared as a
full-body agent, as in the bottom of Figure 1.

In this demonstration system, all output was pre-recorded
into discrete video and sound clips using a custom head
imported into DEC's FaceWorks and onto a body
provided by the Engineering Animation, Inc.'s Jack
ergonomic toolkit. Speech synthesis was accomplished
via Lernout & Hauspie's concatenative speech synthesizer
RealSpeak and synthesized speech was essentially spliced
onto the Faceworks head using TechSmith's DubIt.
Ideally, we would have generated system output in real
time, but our goal was to focus solely on an initial

assessment of TRINDIKit's potential for building a
multimodal dialogue manager. This system will be
described further below.

Figure 1: MITRE Information Assistant (Mia)

Robot Control Tasks
After completion of this first phase, we devised new goals
with respect to a robot control task. Our primary goal was
to re-use most, if not all, components in a configuration
such that we could run virtually the same set of user tasks
on both a PDA and kiosk. The difference in available
screen space between interface configurations poses a
significant challenge, so we are constructing our
interfaces for the kiosk (Figure 2) and the PDA (Figure 3)
from task-oriented components which can be assembled
as desired.

Figure 2: Kiosk Graphical User Interface

Figure 3: PDA Graphical User Interface

With this component-based approach we are able to reuse
graphical components such as the trade show map
between different configurations, even when it is
impractical or undesirable to use identical interfaces.

Our second goal was to extend our system to use robots
and humans in teams. We developed two new tasks for
the control of three Pioneer 2-AT robots (Figure 4).

Figure 4

The first task is to assist guiding the robot to a particular
location in the arena. Though the robots have the
capability to navigate autonomously, we envision the
robot encountering obstacles that may require human
intervention and assistance. The second task is to provide
access to cameras affixed to one of several robots, so that
a user can dynamically request various camera views.
Figure 5 shows an example dialogue script from such an
interaction.

(H) Show me the view from this robot
(R) Okay
(H) Go to this location <pointing on the PDA map>
(R) Okay
(H watching incoming video feed on PDA) Stop here
(R) Okay
(H) Pan left 180 degrees
(R) The maximum I can pan is 95%. Would you like me to turn left 180 degrees
and show you the view?
(H) Yes. (Because the video head can only pan approximately 95 degrees left and
right)
(R) Okay (executes 180 degree turn and displays view on camera)

Figure 5: Sample Dialogue

These tasks were selected as a starting point for
evaluating the usability of a conversational multimodal
interface in a future RoboCup Rescue event.

Robot Control Needs Assessment
The robot tasks of navigation and camera control are
perhaps less rigid than the question-answer task supported
by Mia. However, the same kind of core dialogue
functionality is needed. These aspects include
cooperatively detecting and resolving problems, making
using of conversational and situational context, and
making use of verbal and non-verbal information. The
robot task as extended for RoboCup Rescue will require
one additional aspect not considered for our interim
technology symposium demonstration: we will need to be
able to maintain contexts across multiple conversations.
The human controller will need to be able to
communicate with each robot individually and as a team.
Furthermore, we expect that robots not participating
directly in an exchange may need to over-hear other
exchanges. For this reason, our dialogue management
toolkit must provide for the maintenance of multiple
conversational states. Other considerations with regard to
specific implementation issues will be discussed below.

Original Dialogue Management Architecture
TRINDIKit itself provides the basic infrastructure of our
dialogue manager. It provides structured data types and
the means to define an Information State (IS) from those
types, a language for defining the modules of a Dialogue
Move Engine (DME), and a language for controlling the
application of individual modules to the job of dialogue
management. With all TRINDIKit provides, it does not
implement a theory of dialogue. For that we used the
GoDiS (Gothenburg Dialogue System) (Larsson et al
2000) system, which implements the Questions Under
Discussion model in TRINDIKit. We were able to adapt
existing GoDiS dialogues to our kiosk domain in a very
short time.

In order to integrate TRINDIKit into the kiosk using the
OAA, we used TRINDIKit’s concurrent mode, which

incorporates support for use of the OAA. While this
seemed to be a natural choice, and allowed more natural
definition of module interactions, it also raised several
problems, as discussed below.

Speed
TRINDIKit in concurrent mode ran very slowly.
Although modules run independently in concurrent mode,
updates to IS were still transmitted to each module
individually. Updates were sent whether they were used
by that module or not, and all other processing waited
until that module finished its work. Furthermore, the
original TRINDIKit code was uncompiled SICStus
Prolog was not compilable using original source code.

Data Consistency
TRINDIKit does not exercise good controls over
asynchronous modifications to an Information State. At
one point we had to build artificial delays into our system
to work around these limitations. The dialogue manager
we built for Mia was based on GoDiS, which requires
very structured turn-taking. In several cases, however, the
interactions with the user flowed better if these responses
were automatic. Processing was sufficiently slow that our
GUI’s automatic acknowledgement often arrived and was
processed before TRINDIKit was finished cleaning up
from the previous utterance. As a result, it was possible to
change the IS twice before the DME could respond to one
change, and the system lost track of the dialogue state.
We feel this is an unacceptable outcome. It's also unwise
to depend on faster execution to solve the problem;
consistency of data has to be assured throughout the
design of the system.

Inconsistent Semantics
We encountered situations where constructs of the GoDiS
plan language were interpreted differently depending on
the depth of the plan. With the proliferation of small
languages implemented by different sets of macros, it was
difficult to track down bugs in the rules and conversation
scripts. This was made more difficult by the nature of
Prolog. Clauses that fail do not normally generate any
error messages, because failure is a normal aspect of
program execution. Unfortunately, database bugs and
misspelled names often caused unexpected failures,
causing the system to generate either no response or a
response that looked reasonable but was in fact incorrect.
We feel it’s necessary to provide explicit notification of
certain kinds of failure, such as failure to find a named
variable, failure to find a matching value in a table, and so
on.

Lack of Multimodal Support
Neither TRINDIKit nor GoDiS provides any direct
support for multimodal processing. The primary interface

driving the development of these systems was language;
there is no separation of events by source, no temporal
tagging of input events, and no provision for assessing
temporal relationships between different inputs. For Mia,
we worked around this by using touch to generate events
that were indistinguishable from the output of the speech
recognizer agent. For the robot control task, where we
would like to allow the user the freedom to refer to
locations or paths in a more natural way, this workaround
doesn't let us get at the problem in a meaningful way.

Revised Dialogue Management Architecture
We are moving ahead with the design for a dialogue
manager for robot control. From our experience with the
dialogue manager in Mia, we’re convinced of the
advantages of a kit-based approach. We feel that
TRINDIKit was a good first cut at it, and hope that our
efforts will lead to a second, somewhat better iteration.

Figure 5: Dialog manager architecture

Our dialog management architecture, with the GoDiS
suite of modules, is shown in figure 5. It comprises a set
of software modules (some generic, some domain-
dependent) communicating with and through a distributed
information state; it provides a basic set of structured
datatypes for implementing the information state; it
provides languages for writing rules and algorithms
linked closely with the information state, to implement
theories of dialog within a DME; and it contains tools to
support the development and testing of dialog systems.
While the overall design is similar to the TRINDIKit
architecture, our kit differs in several aspects which
incorporate the lessons learned from our experience with
TRINDIKit.

Distributed Information State
We’ve chosen to model all of our module interactions as
if they were asynchronous. This provides the cleanest
separation of modules, and the cleanest conceptual
integration with the asynchronous requirements of robot
control. Our approach to solving this problem is to define

an explicit interface definition language, which will be
used to define every module’s interface with the outside
world. We explicitly include the information state
structure in this interface definition, perhaps as a module
in itself. Since TRINDIKit does not include a separate
language for specifying module interfaces, we are
designing our own. This language is analogous to
CORBA Interface Definition Language, but with less
concern for the physical implementation.

There are a large number of protocols and infrastructures
that have been developed to support communications
between agents, each with characteristics optimized for
particular tasks or emphasizing desired functionality. We
intend to support small standard set of operations that
have wide applicability across programming languages
and communication protocols.

Controlled Extensibility
Our interface specifications will need to be translated into
specific computer languages before they can be executed.
The translation will vary depending on the underlying
protocol used to communicate between modules. While
we want to support the widest possible audience, we
don’t want to get bogged down in the construction of
translators for every possible set of implementation
language and protocol. Our approach is to exploit an
existing standard set of translation software, namely XML
and XSLT processors such as Xalan. We are specifying a
dialect of XML for modules interface definitions, and a
small set of templates for realizing interfaces with
specific combinations of programming language and
protocol. Additional templates can be written as necessary
to extend the kit to other languages and protocols without
requiring modification of the kit itself.

The same approach extends to the specifications of DME
rules, module synchronization and control, and the
definition of new “languages” for the kit. We have
defined what well-formed formulas look like in our kit’s
scripting language: what names look like, the types of
expressions that are possible, how expressions and
statements are aggregated to form programs. What is left
unspecified is the exact sequences of expressions that
form statements in any particular script language. Those
are specified using templates analogous to XML DTDs,
which gives us the flexibility to define new constructs as
needed.

Rule Engine
The DME rules in TRINDIKit have strong similarities to
rules in expert systems. We plan to implement these rules
in both a sequential form, equivalent to the current
TRINDIKit, and in an expert system form which may be
more efficient. We expect that there will be differences in

operating characteristics between those two styles, and we
want to identify and quantify those differences.

One issue we must address in our design is unification.
While logic variables are natural for modelling discourse
given the history of the field, most languages typically
used to implement robot software do not support it
directly. Our kit must ensure that sound unification
procedures are provided for every language it supports, so
that semantics are common across all realizations of a
script. We must also provide for backtracking or iteration
through the set of alternatives in a straightforward way.

Control and Synchronization
Our primary focus is multimodal communication,
potentially multiparty as well. We are extending
TRINDIKit’s triggers to include support for consideration
of temporal relationships between events, both within and
across modes.

Integrated Environment
An ideal toolkit would have an integrated set of tools for
designing, testing, and debugging dialogues. We would
like to support static and dynamic analysis of dialogues,
recording and playback of dialogues, graphical dialogue
design tools, a “validation suite” of tests to support
extension of the toolkit to new programming languages
and agent protocols, and above all, the ability to plug-in
as-yet-undefined capabilities as needed.

Future Work
Our two current goals are 1) to reach the same level of
functionality as the TRINDIKit/GoDiS system, using our
approach; and 2) use the same dialogue manager from
two different interfaces. Significant effort has been
devoted to defining our mutable language capability. This
capability provides both a reasonable transition path from
TRINDIKit scripts and a means for specifying module
interfaces and information state structure using a common
XML representation.

Our intent is to provide support for several different
transport mechanisms to explore the limitations of our
approach. To date, we have completed an initial interface
definition specification and have developed templates to
realize those interfaces with the OAA. DARPA's Galaxy
Communicator is the second transport mechanism we will
be considering. Time and resources permitting, we will
examine some additional transports with differing
characteristics, such as CORBA, Java Remote Method
Invocation (RMI), or Linda.

We have devoted considerable time to up-front
consideration of scripting languages, portable code

generation, and module communications, and are now
beginning the task of implementing our versions of the
TRINDIKit scripting languages. Our target realization for
these scripts is a combination of Java code and expert
systems that can be executed within a Java program. As
the kit becomes more mature, we would like to add
additional languages such as Prolog and C to support both
the computational linguistics community and the
developers of software systems.

Finally, we plan to experiment with different
configurations of DM software on small devices. It isn’t
clear to us yet how we should best allocate functions
across devices, particularly when those devices have
relatively meagre resources to devote to dialogue
management. While a small footprint is not one of our
primary goals, it would be instructive to discover just
how small and efficient a kit-based dialogue manager can
be.

Conclusion
We have described our evolving architecture (based on
the TRINDIKit framework) for a flexible dialogue
manager capable of robust, multimodal, multiparty
control of robots. A dialogue manager constructed with
the toolkit is used to drive both PDA and kiosk interfaces.

References
Fong T., C. Thorpe, and C. Baur (2002), Robot as

Partner: Vehicle Teleoperation with Collaborative
Control, Workshop on Multi-Robot Systems NRL,
Washington, D.C.

Galaxy Communicator (2002) Web Site.
http://communicator.sourceforge.net.

JESS (2002) Web Site. http://herzberg.ca.sandia.gov/
jess/

Kahney, Leander (2001) Robots Scour WTC Wreckage.
Wired Magazine, http://www.wired.
com/news/print/0,1294,46930,00.html

Larsson, Staffan, Robin Cooper, Stina Ericsson (2000)
System Description of GoDis. Third Workshop in
Human-Computer Conversation, Bellagio, Italy.

NASA (1997) Past Missions – Mars Pathfinder. NASA,
http://www.jpl.nasa.gov/missions/past/
marspathfinder.html

Rayner, M., B.A. Hockey, and F. James. (2000a) Turning
Speech into Scripts. AAAI Spring Symposium on
Natural Dialogues with Practical Robotic Devices.

Rayner, M., B.A. Hockey, and F. James (2000b) A
compact architecture for dialogue management based
on scripts and meta-outputs. Proceedings of Applied
Natural Language Processing (ANLP).

Perzanowski, Dennis, A. Schultz, and W. Adams, (1998)
Integrating Natural Language and Gesture in a
Robotics Domain. Proceedings of the IEEE
International Symposium on Intelligent Control:
ISIC/CIRA/ISAS Joint Conference. Gaithersburg, MD:
National Institute of Standards and Technology, pp.
247-252.

Triesch, Jochen and Christoph von der Malsburg (1998)
A gesture interface for Human-Robot Interaction. In:
Proceedings of the Third IEEE International
Conference on Automatic Face and Gesture
Recognition (FG'98), April 14-16 1998 in Nara, Japan.

TRINDI Website 2002.
http://www.ling.gu.se/projekt/trindi.

OAA Website. 2002. http://www.ai.sri.com/OAA.

