
Haystack: A Platform for Creating, Organizing and Visualizing
Information Using RDF

David Huynh

MIT Artificial Intelligence Laboratory
200 Technology Square
Cambridge, MA 02139

dfhuynh@ai.mit.edu

David Karger

MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02139

karger@theory.lcs.mit.edu

Dennis Quan

MIT Artificial Intelligence Laboratory
200 Technology Square
Cambridge, MA 02139

IBM Internet Technology Division
1 Rogers Street

Cambridge, MA 02142
dquan@media.mit.edu

Abstract
The Resource Definition Framework (RDF) is designed to
support agent communication on the Web, but it is also
suitable as a framework for modeling and storing personal
information. Haystack is a personalized information
repository that employs RDF in this manner. This flexible
semistructured data model is appealing for several reasons.
First, RDF supports ontologies created by the user and
tailored to the user’s needs. At the same time, system
ontologies can be specified and evolved to support a variety
of high-level functionalities such as flexible organization
schemes, semantic querying, and collaboration. In addition,
we show that RDF can be used to engineer a component
architecture that gives rise to a semantically rich and
uniform user interface. We demonstrate that by aggregating
various types of users’ data together in a homogeneous
representation, we create opportunities for agents to make
more informed deductions in automating tasks for users.
Finally, we discuss the implementation of an RDF
information store and a programming language specifically
suited for manipulating RDF.

Introduction
The Resource Definition Framework (RDF) has been
developed to provide interoperability between applications
that exchange machine-understandable information on the
Web [6]. In other words, RDF is well-suited for facilitating
Web Services in resource discovery, cataloging, content
rating, and privacy policies.

Of course, the expressive power of RDF is more far-
reaching than just agent communication. We postulate that
RDF can be well exploited for managing users’
information. The semistructured nature of RDF lends itself
well to the heterogeneous disposition of personal
information corpora. In addition, since RDF provides a
standard, platform-neutral means for exchanging metadata,
it naturally facilitates sophisticated features such as
annotation and collaboration. In this paper, we propose and
demonstrate a personal information management system
that employs RDF as its primary data model.

Motivation
The goal of the Haystack project is to develop a tool that
allows users to easily manage their documents, e-mail
messages, appointments, tasks, and other information.
Haystack is designed to address four specific expectations
of the user.

First, the user should be allowed maximum flexibility in
how he or she chooses to describe and organize his or her
information. The system should allow the user to structure
his or her data in the most suitable fashion as perceived by
the user. Section 2 elaborates on Haystack’s support for
user-defined ontologies.

Second, the system should not create artificial distinctions
between different types of information that would seem
unnatural to the user. This point is related to the previous
point in that the system should not partition a corpus
simply because different programs are used to manipulate
different parts of that corpus. Rather, the system should
store all of the user’s information in one homogeneous
representation and allow the user to impose semantics that
partition the data appropriately.

Third, the system should allow the user to easily
manipulate and visualize his or her information in ways
appropriate to the task at hand. The user interface should
be aware of the context in which arbitrary information is
being displayed and should present an appropriate amount
of detail. We address these issues later in Section 3 where
we discuss Haystack’s user interface.

Fourth, the user should be able to delegate certain
information processing tasks to agents. Regardless of how
powerful a user interface we provide, there will still be
many repetitive tasks facing users, and we feel that users
will benefit from automation. The details of Haystack’s
agent infrastructure are given in Section 4.

From: AAAI Technical Report WS-02-11. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Contribution
By addressing these four needs, we show that Haystack is
able to use RDF to extend several profound benefits to
users. First, RDF can be readily exploited to add semantics
to existing information management frameworks and to
serve as a lingua franca between different corpora. On top
of this, we provide an ontology that supports capabilities
including collection-based organization, semantic
categorization, and collaboration and trust management. By
ontology we are referring to a vocabulary that specifies a
set of classes and the properties possessed by objects of
these classes. This ontology enables the user interface to
present the user’s information in a meaningful manner, and
it also provides an abstraction on which agents can run.

Next, we show that RDF can be used to describe the means
for visualizing heterogeneous data. In addition to the
obvious registration metadata found in all component
frameworks, RDF can be used to build user interface
specification abstractions that can be directly manipulated
by the user just as other metadata. This capability opens
many doors for user interface engineering including the
realization of a truly uniform interface.

Finally, we discuss the use of RDF for modeling
imperative computational processes. We present a
language called Adenine as a natural means for
manipulating metadata and thus writing agents for
Haystack. Adenine programs compile into an RDF
representation, affording them the same ability to be
annotated, distributed, and customized as other documents
and information.

History
The information overload problem has become more and
more evident in the past decade, driving the need for better
information management tools. Several research projects
have been initiated to address this issue. The Haystack
project [8] [9] was started in 1997 to investigate possible
solutions to this very problem. It aims to create a powerful
platform for information management. Since its creation,
the project has sought a data modeling framework suitable
for storing and manipulating a heterogeneous corpus of
metadata in parallel with a user’s documents. With the
introduction of RDF, a good match was found between the
versatility and expressiveness of RDF and the primary need
of Haystack to manage metadata. The project has recently
been reincarnated to make use of RDF as its primary data
model.

Related Work
There have been numerous efforts to augment the user’s
data with metadata. The Placeless Documents project at
Xerox PARC [3] developed an architecture for storing
documents based on properties specified by the user and by
the system. Like Haystack, Placeless Documents supported
arbitrary properties on objects and a collection mechanism

for aggregating documents. It also specified in its schema
access control attributes and shared properties useful for
collaboration. The Placeless Documents architecture
leveraged existing storage infrastructure (e.g. web servers,
file systems, databases, IMAP, etc.) through a driver layer.
Similarly, Haystack takes advantage of the same storage
infrastructure, using URLs to identify documents.

On the surface, the main difference between Placeless’
architecture and Haystack’s is the adaptation of RDF as a
standard for information storage and exchange. Although
Haystack and Placeless share a lot of similarities in the data
model layer, Haystack takes a more ambitious approach to
the user interface problem. Placeless’ Presto user interface
focused on facilitating management of data in general
using a predetermined set of interfaces. In developing
Haystack, we are experimenting with ways to incorporate
the customization of user interfaces into the bigger problem
of personalized information management by providing a
platform upon which user interfaces can be modeled and
manipulated with the same facility as other metadata.

There are other systems, many in common use today, that
permit arbitrary metadata annotations on files. The
Windows NT file system (NTFS) supports file system-
level user-definable attributes. WebDAV [2], a distributed
HTTP-based content management system, also permits
attributes on documents. Lotus Notes and Microsoft
Exchange, two common knowledge management server
solutions, both support custom attributes on objects within
their databases. However, the metadata are not readily
interchangeable among different environments. Further, the
structure of metadata in these systems is highly constrained
and makes the expression of complex relationships
between objects difficult. For example, these systems do
not have first class support for making assertions about
predicates, making it difficult for the user interface and
agents to analyze data conforming to a foreign ontology
dynamically.

The Semantic Web project at the World Wide Web
Consortium (W3C), like Haystack, is using RDF to address
these issues of interchangeability [4]. The focus of the
Semantic Web effort is to proliferate RDF-formatted
metadata throughout the Internet in much the same fashion
that HTML has been proliferated by the popularity of web
browsers. By building agents that are capable of
consuming RDF, data from multiple sources can be
combined in ways that are presently impractical. The
simplest examples involve resolving scheduling problems
between different systems running different calendaring
servers but both speaking RDF. A more complex example
is one where a potential car buyer can make automated
comparisons of different cars showcased on vendors' web
sites because the car data is in RDF. Haystack is designed
to work within the framework of the Semantic Web.
However, the focus is on aggregating data from users' lives
as well as from the Semantic Web into a personalized
repository.

Describing and Organizing Heterogeneous
Information

In this section we examine strategies for managing a
heterogeneous corpus. First we examine how users can
define objects using their own ontology. Then we discuss
one means for aggregating objects—the collection—and
how it is used in Haystack to help users organize their
information.

Personalized Ontologies
One of Haystack’s objectives is to facilitate the use of an
ontology for organizing, manipulating and retrieving
personal information. Some classes will be defined in the
system ontology, such as those used for describing queries
and collections of objects. Also, some properties, such as
title, language, and description, will be defined by standard
ontologies such as the Dublin Core. Other classes and
properties can be defined by the user to suit his or her own
organization method.

On the surface, the Haystack model may not seem very
different from those of current systems. Programs such as
Lotus Notes and Microsoft Outlook support classes such as
e-mail message, contact, and appointment and provide
default properties, including subject, from, and date.
However, whereas the focus of these products is in
providing an efficient and user-friendly means for
maintaining objects with these standardized schemata,
Haystack attempts to facilitate the entry of data using the
user’s own class definitions. This functionality is typically
found in relational database products, where users first
specify a structured schema that describes the data they are
entering before populating the table. In reality however,
schema design is usually left for database and system
administrators, who circulate their designs toward end
users of Notes or Outlook.

This “one size fits all” approach for schema design is far
from perfect. End users are a fundamentally diverse
populace, and people often have their own ideas of what
attributes to store for particular classes of objects. A good
example is an address book. Some people only care about
storing one or two phone numbers and a mailing address,
while sales managers may be concerned with a breakdown
of all past contact with a customer as well as important
dates in the customer’s life, such as his or her birthday. The
current approach of making more and more fields built-in
to an address book product is problematic. Software
adopting this approach is often overloading to the user who
just wants a simple address book, yet perhaps not
functional enough for the sales manager. Using a personal
database such as Microsoft Access or FileMaker Pro only
aggravates this problem, since users are forced to rebuild
their address books from generic templates and generic
data types.

To solve this mismatch problem, we must examine means
for describing per-user customization. Technologies such

as RDF provide flexible data frameworks upon which
customized schema definitions and metadata can be
specified. RDF’s data model encourages the creation of
custom vocabularies for describing the relationships
between different objects. Furthermore, RDF’s XML
syntax makes these personalized vocabulary specifications
portable between different systems. This will be important
for allowing agents to enhance the user’s information, as is
discussed later.

The challenge exists in how to bring this ability to
customize a personal information store to the end user who
has no experience with database administration. To
accomplish this, we have devised tools for helping people
manipulate unstructured, semi-structured, and structured
data, abstracting the details of schema management from
end users. These tools are built upon a flexible, semi-
structured RDF data store that Haystack uses to manage
users’ information according to ontologies they choose.

We generalize the problem of editing data based on
arbitrary ontologies by providing a generic metadata editor.
This editor takes advantage of the RDF Schema [7] data
within Haystack’s RDF store in order to present the user
with a useful interface to their data. Future versions will
allow users to assign arbitrary properties (not just those
specified by the schema) to objects by simply typing the
name of the property and its value. In this way users need
not be conscientious about schemata, and incidental
properties specific to one object and not to the class can be
entered.

A customized view of an object will often provide a better
interface to the user than a generic tool, when one is
available. To support this we provide a sophisticated
platform for describing these customizations in our
prototype user interface tool called Ozone, discussed in
Section 0.

In addition to editing properties of specific objects, it is
often useful to the user to be able to manipulate the
relationship between objects. A graph editor allows users
to see a collection of objects and add and/or remove
relationships between these objects. This idea has been
popularized in tools such as Microsoft Visio, where
structures such as flow charts, organization charts, and
business processes can be modeled in a similar fashion.
Further, tools for drawing semantic diagrams by making
connections between concepts have become available. The
Haystack graph editor provides these functionalities to the
user but records this data in RDF, making the semantic
diagrams true representations of “live” data.

Classifying Information
While users may be interested in customizing how their
contact information is stored in their address books, some
abstractions we argue are best defined by the base system.
This prevents the user from being too bogged down with

details of semantic modeling, while providing the user with
out-of-the-box functionality. Here we discuss one of these
key classes, Collection.

A big problem with many document management systems,
including paper-based ones, is the inability to conveniently
file documents in more than one category. Although
hierarchical folders are a useful and efficient means for
storing documents, the hierarchical folder system presents
challenges to users who attempt to use it to categorize
documents. Does a document named “Network Admin
Department Budget for 2001” belong in the “Budget”
folder, the “2001” folder, or the “Network Admin” folder?
Supposing an individual finds justification for placing it in
just one of these folders, it is very possible that other users
may have different views on classification and expect the
document to be in a different folder. It may also be the case
that some days a user will be interested in a time-based
classification and other days a department-based
classification.

Simply supporting files being in more than one folder at
once is not sufficient. Commonly used modern operating
environments such as Windows and MacOS already
provide mechanisms (called “shortcuts” and “aliases”
respectively) for placing objects in more than one folder.
On UNIX systems users can create hard links to files in
more than one directory at once. However, we find
relatively little use of these features for simultaneously
classifying documents into multiple categories.

We postulate that this is because the user interface does not
encourage simultaneous classification. How many
programs can be found whose file save feature prompts the
user for all the possible directories into which to place a
file? Many users place their files into a single directory
because they are not willing to expend the effort to classify
files. Of the fraction that are willing, there is yet a smaller
fraction who would be willing to save their files in one
place, then go to the shell to create the hard links into the
other directories.

Collections, like folders, are aggregations of objects; an
object may be a member of more than one collection,
unlike folders, whose interface encourages a strict
containment relationship between folders and objects. This
flexible system for grouping objects together is an
important tool for allowing users to organize objects in any
way they choose.

Throughout the Haystack user interface, we provide simple
facilities for specifying membership in more than one
collection. Of course, we support direct manipulation
schemes such as drag and drop between collections.
However, as noted earlier, the system must itself facilitate
the placement of objects in multiple collections in order to
be useful. For example, Haystack generates collections to
store the results of queries. Whereas in some systems, such
as Microsoft Outlook, first class membership in multiple

collections is only supported when the collection is a
search result set, this functionality is supported naturally
within Haystack. Still, we envision the greatest source of
multiple classification will be from agents automatically
categorizing documents for the user.

Semantic User Interface
In addition to modeling data, RDF is used as the medium
for specifying Haystack’s user interface and how Haystack
presents the user’s data. Haystack’s prototype user
interface, named Ozone, uses a custom component
architecture, and the user interface is constructed
dynamically at runtime based on metadata. In this section,
we introduce this metadata-based component architecture,
show how it helps construct a uniform user interface, and
describe the benefits such an interface might bring.

Component Architecture
The Ozone user interface is constructed from a
conglomeration of parts. An Ozone part is a code-backed
component that can contribute to the user interface in some
way. Attributes of each part are provided in metadata. In
particular, the part’s implementation, the types of data it
can render, and the functionality it provides are described.

Types of Parts. There are four types of parts: layout parts,
informative parts, decorative parts, and view parts. Layout
parts are responsible for segmenting the visual display into
distinct spaces and for positioning other parts in these
spaces. Informative parts present textual and graphical
information to the user. Decorative parts provide
decorations such as white margins, line dividers, text
spacing, list separators, etc. Finally, view parts use layout
parts, informative parts, and decorative parts as building
blocks in constructing a unified view of a single object to
the user.

Figure 1 shows an example of how the various types of
parts work together to present a meeting. Part (a) of the
figure shows the end result while part (b) shows the
internal wiring. The view part responsible for displaying
the meeting employs a vertically splitting layout part to
partition the display into two rows: the top row embeds an
informative part that renders the title of the meeting; the
bottom row contains the details of the meeting. The bottom
row in turn contains a stacking layout part that stacks the
three fields “Time,” “Location,” and “Attendees”
vertically.

Figure 1. Example of different types of parts working
together

The “Location” field consists of a decorative part that
renders the label “Location:” and a view part that displays
the room where the meeting is held. Note that because the
room is a separate entity, the meeting view part does not
attempt to present the room itself but rather employs
another view part specialized to present the room. (The
room is a separate entity because it has been modeled as a
resource rather than as a literal property of the meeting.)
The room view part includes an informative part to display
the room’s title “Room 102,” two decorative parts to show
the parentheses, and yet another view part to display the
building where the room is located.

The “Attendees” field consists of a decorative part that
renders the label “Attendees:” and a view part that shows
the collection of attendees. The collection view part uses a
list layout that positions the collection members
sequentially, with decorative parts showing comma and
“and” separators in between. The collection members are
rendered by their own appropriate view parts.

Note that each view part is responsible for displaying
exactly one semantic entity. In Figure 1, there are seven
distinct semantic entities: the meeting, the room, the
building, the attendee collection, and the three individual
attendees. If a semantic entity is related to other semantic
entities, the view part for that entity may incidentally
embed view parts for the other entities. The parent view
part determines the appropriate type of each child view part
to embed, so that the nested presentation looks pleasing.
For instance, a small parent view part embeds only small
child view parts.

Part Metadata. Given a semantic entity to present, Ozone
queries the RDF store for the part suitable for displaying
the entity. Figure 2 shows an example of the metadata that
links the entity to the suitable part.

an object
a view

instance

a java
implement-

ation

a part

a view
class

a daml:
Class

hs:view

rdf:type

hs:viewClass

ozone:viewDomain

hs:javaImplementation

rdf:type

“edu.mit.lcs.haystack.ozone.parts.ListViewPart”

hs:className

ozone:listViewPart

ozone:ListViewhs:Collection

hs:favorites

Figure 2. Part metadata example

In order to display the hs:favorites entity, Ozone queries
for any view instance associated with the entity through the
hs:view predicate.1 If no view instance is found, Ozone
determines the type of the entity (in this case,
hs:Collection) and the view class corresponding to that
type (ozone:ListView). Ozone then instantiates a unique
resource that serves as a view instance for the hs:favorites
entity and asserts that the view instance is of that view
class type. The view instance will be persisted thereafter
and it will serve to store custom settings applied by the
user while viewing the corresponding semantic entity. In
this example, such settings include the columns and their
order in the list view. Each type of view instances persists
its settings in its own custom ontology.

Once a view instance exists and its view class is known,
Ozone queries for a part whose view domain
(ozone:viewDomain) is the class of the given view

1 The hs: prefix denotes a URI belonging to
the Haystack namespace. Note that the idea
of views is inherent to the Haystack
ontology, whereas the view parts used to
display them are inherent to Ozone.

instance. In this example, the part ozone:listViewPart is
found. Ozone then finds the implementation of this part,
instantiates the corresponding Java class, and initializes it
with the semantic entity.

Benefits. The ability to encode the user interface in
metadata and then render the interface from that metadata
is appealing for a number of reasons. First, it allows the
component architecture to construct the user interface
dynamically at run-time; any change made to the metadata
can be applied immediately. This is not possible with
conventional user interface programming models for which
user interface layouts are compiled into binary resources or
code and loaded at runtime. Any change to such layouts
requires recompilation unless the code is specifically
parameterized to accept runtime customization. Even in
rapid application development tools like Microsoft Visual
Basic in which user interfaces can be built by drag and
drop operations, there are two distinct edit and runtime
modes. The user is only allowed to interact with the
application in runtime mode when the user interface is
already fixed and unchangeable. Skinnable applications
also have a similar limitation. Skins are made by skin
designers and then published to users. The users can select
which skins to apply to the applications, but they cannot
customize the skins themselves. Again, there are two
distinct design and use modes that deny the users the power
of customizing the user interfaces themselves. Likewise,
web pages have two edit and view modes: in view mode,
the user cannot make modifications. Our Ozone interface
architecture imposes no such modes and allows the user to
make changes to the user interface at runtime.

Note that user interface changes performed by the user are
high-level: they are to programmers’ user interface work as
interior design is to carpentry. In other words, customizing
the user interface is akin to editing a word processing
document or manipulating a spreadsheet. The user is
allowed to arrange parts and apply visual themes over
them; all the necessary “carpentry work” is handled
automatically by Ozone. Since arguably there is no
universal interface that suits the needs of every user, this
ability to customize one’s user interface is desirable. In
fact, such personalization features have been explored in
simple forms on several portal web sites like
http://my.yahoo.com. We would like to bring
personalization to our information management platform.
In addition to arranging pre-installed parts, the user is
offered to select new parts from a part repository and drag
them to desired locations in the Ozone interface.

One might argue that similar component architectures and
personalization engines have been implemented without
the need for RDF. In fact, anything implemented using
RDF can be done with custom formats. However, what
RDF offers is a unified and extensible framework much
needed in the presence of several incompatible custom
formats.

The second benefit of user interface metadata is that, like
any other type of data, the user interface metadata can be
saved, published, and shared. The ability to publish user
interface metadata is particularly attractive. Consider a
scenario in which a new employee enters a company with a
large intranet. This intranet offers countless useful
resources to the new employee, but because of its sheer
volume, it is intimidating to get used to. Fortunately, other
employees have over time collected a selection of Ozone
parts that provide access to the most useful features of the
intranet. The new employee can simply make use of these
parts as a starting point. These parts are brought into the
employee’s Haystack and tailored based on his or her
preferences. These parts can interact with the employee’s
Haystack and perform automatic customization that makes
Haystack much more powerful than a static web page
listing a set of useful links to the intranet.

User interfaces, hence, can be evolved by the users for
themselves as their needs emerge and coalesce. Users with
different needs tailor their interfaces differently. Those
with similar needs share their interface layouts. This
philosophy relieves the interface designers from the
impossible task of making universal interfaces that satisfy
both expert and novice users. Instead, we provide tools for
the user to tailor his or her own user interface. In addition,
by providing an ontology describing user interface
interactions, such interactions can be tracked automatically
and agents can apply machine learning algorithms to better
fit the user interface to the user’s implicit needs and
preferences.

The third benefit of user interface metadata is that the user
interface designer is encouraged to think semantically as he
or she encodes the interface in metadata. Since the
interface is rendered automatically by the component
architecture based on a unified set of semantics, the barrier
to creating user interfaces is much lowered. By removing
the burden of fiddling with the interface “until it works” or
“so it looks nice,” we encourage the designer to think at the
level of the user’s semantics rather than at the level of how
the user interface is syntactically constructed. Such
abstraction leads to consistency, the most advocated
property of user interface [10].

Finally, because the user interface is modeled in RDF just
as the user’s data is, the tools offered by Ozone for
allowing the user to manipulate his or her data are the same
as those used when manipulating the interface itself. For
example, the mechanism for changing a contact’s name is
also used for changing the caption of a button. The
mechanism for changing the font in an email message body
can be used to change the font in which all labels are
displayed. In fact, the mechanism for looking up a word in
the body of a document is made available for looking up a
menu command that one does not understand. This uniform
fashion in which all things can be manipulated makes the
interface of Ozone consistent and hence, natural and
powerful.

Figure 3. Actions for a contact name in a list view
(Microsoft Outlook XP)

Uniform User Interface
Using the power of the component architecture, we explore
the concept of a uniform user interface [10]. In such an
interface, any two user interface elements that look
semantically identical to the user afford the same set of
actions regardless of context. For instance, a contact name
shown in the “From” column for an email message in a list
view (Figure 3) should expose the same actions as the same
contact name shown in the “From” text field in the email
message window (Figure 4). In Microsoft Outlook XP and
other existing email clients, those two elements provide
almost entirely different sets of actions. The former
element is a dead text string painted as part of the whole
list view item representing the email message. Right-
clicking on it is equivalent to right-clicking anywhere in
that list view item. The same context menu for the whole
message is always shown regardless of the right-click
location. The latter element is a control by itself. It
represents a contact object and shows the context menu
applicable to that object when right-clicked. To the user,
both elements represent the same contact object and should
give the same context menu. (Uniformity in this case
implies modelessness.)

Figure 4. Actions for a contact name in the email compose
window (Microsoft Outlook XP)

Context menus have been adopted by most operating
systems as the mechanism to query for actions applicable
to the indicated object. However, context menus are rarely
used consistently throughout any user interface. Some user
interface elements afford context menus while others do
not. Furthermore, some context menus do not expose all
possible actions that the user associates semantically with
their corresponding objects. Their inconsistency and
incompleteness make context menus less powerful, and
hence, less useful and less widely adopted by users than
they should be. We aim to fix such inconsistency and
incompleteness by providing context menus for all user
interface elements and by systematically constructing the
menus from metadata.1 We believe that this uniformity will
make the interface much easier to use.

In order to construct context menus from metadata, we first
note that every pixel on the screen corresponds to a
particular Ozone part that renders that pixel. If that part is a
view part, there is a corresponding semantic entity that it is
responsible for displaying. That view part can be contained
in other outer view parts. All of these view parts together
specify a collection of semantic entities that underlie the
pixel. We postulate that one of these semantic entities is
the thing with which the user wants to interact. To
construct a context menu when that pixel is right-clicked,
we simply list all actions applicable to those semantic
entities.

Like semantic entities, Ozone parts can also afford actions.
For instance, the informative part that displays the text
“Vineet Sinha” in Figure 3 allows the user to copy its text.

1 Context menus are not widely adopted also
because they are not currently
discoverable. Once discovered, they are
very memorable. We propose labeling the
right mouse button “Show Commands” to
make context menus more discoverable.

The layout part that shows the messages in a list view
format allows the user to reorder the columns.

Figure 5 gives a sample context menu that will be
implemented for an upcoming release. The menu is divided
into several sections, each listing the commands for a
particular semantic entity or Ozone part. The email author
entity named “Vineet Sinha” is given the first section. The
email message entity is given the next section. Finally the
text label used to display the contact’s name is given the
third section. Commands for other semantic entities and
parts can be accessed through the “More…” item at the
bottom of the menu. This is only an example of how
context menus can be constructed. The exact order of the
sections will be optimized by user study and feedback.

Figure 5. Sample context menu

Of note in Figure 5 are some capabilities not provided in
existing email clients. In particular, the “Text” section in
the menu offers ways to copy, look up, and spell-check an
otherwise dead piece of text. In other email clients, only
text inside email bodies can be spell-checked. One can also
imagine the usefulness of spell-checking file names [10]
and email subjects.

It is arguable that when a user interface element is
associated with several semantic entities and parts, its
context menu will be overloaded. We believe that with
proper modeling of prioritization of commands and in-
depth user study, we can heuristically select the most
useful commands to list in the menu. Other commands are
still accessible through “More…” links. Further, because
menu commands are simply members of the collection of

all actions applicable to some semantic entity, the user can
use the mechanism provided by Ozone for browsing and
searching collections to locate particular menu commands.
In existing software, menu commands can only be found
by visual scans.

Agent Infrastructure
We now turn our attention to agents, which play an
important role in not only improving the user experience
with regards to keeping information organized, but also in
performing tedious tasks or well-defined processes for the
user. We also describe some underlying infrastructure
needed to make writing and using agents in Haystack
efficient and secure.

Agents
In the past, programs that aggregated data from multiple
sources, such as mail merge or customer relationship
management, had to be capable of speaking numerous
protocols with different back-ends to generate their results.
With a rich corpus of information such as that present in a
user’s Haystack, the possibility for automation becomes
significant because agents can now be written against a
single unified abstraction. Furthermore, agents can be
written to help users deal with information overload by
extracting key information from e-mail messages and other
documents and presenting the user with summaries.

As we alluded to earlier, collections can be maintained
automatically by agents. Modern information retrieval
algorithms are capable of grouping documents by
similarity or other metrics, and previous work has found
these automatic classifications to be useful in many
situations. Additionally, users can build collections
prescriptively by making a query. An agent, armed with a
specification of what a user is looking for, can create a
collection from the results of a query, and it can watch for
new data entering the system that matches the query.

For example, agents can automatically filter a user’s e-mail
for documents that appear to fit in one or more collections
defined by the user, such as “Website Project” or “Letters
from Mom”. Because membership in collections is not
one-to-one, this classification can occur even while the
message remains in the user’s inbox.

Agents are used in Haystack to automatically retrieve and
process information from various sources, such as e-mail,
calendars, the World Wide Web, etc. Haystack includes
agents that retrieve e-mail from POP3 servers, extract
plaintext from HTML pages, generate text summaries,
perform text-based classification, download RSS
subscriptions on a regular basis, fulfill queries, and
interface with the file system and LDAP servers.

The core agents are mostly written in Java, but some are
written in Python. We utilize an RDF ontology derived
from WSDL [5] for describing the interfaces to agents as

well as for noting which server processes hosts which
agents. As a consequence, we are able to support different
protocols for communicating between agents, from simply
passing in-process Java objects around to using HTTP-
based RPC mechanisms such as HTTP POST and SOAP
Error! Reference source not found..

Belief
When multiple agents are used to generate the same
information, issues arise as to how to deal with conflicts.
For instance, if one agent is tasked with determining the
due date of a document by using natural language
processing and another agent does the same by extracting
the first date from a document, which is to be believed
when there is a conflict? In instances such as this, it is
important that information be tagged with authorship
metadata so the user can make an informed choice of
which statement to choose.

To accomplish this we discuss a part of the system
ontology that is used for describing attributes about actual
statements themselves, such as who asserted them and
when they were asserted. Under the premise that only three
values, namely subject, predicate, and object, are required
to describe statements in our model, it is possible to give
statements identifiers and to assert an author and creation
time to the original statement. In fact, the RDF model
prescribes that in order to make statements about
statements, the referent statement must be reified into a
resource and assigned a URI, and the referring statements
can then use the reified resource in the subject or object
field.

This use of reification brings up a subtle issue concerning
RDF. In a document containing RDF, it is assumed that all
statements are asserted to be true by the author. In order to
make a statement about another statement that the author
does not necessarily believe is true, the target statement
must exist only in reified form. In essence, the author is
binding a name to a specific statement with a certain
subject, predicate, and object, but is not asserting the
statement to be true, only instead asserting other properties
about that statement using the name.

Keeping track of various levels of trustworthiness is
important in a system that contains statements made by
numerous independent agents, as well as information from
users’ colleagues, friends, family, solicitors, and clients. In
order to maintain metadata on the statements themselves in
an information store, one solution is to have the
information store become a “neutral party”, recording who
said what and when those things were said, but not
asserting their truth. This is accomplished by having all
statements made by parties other than the information store
reified. (An alternative is to have one entity—perhaps the
user--be at the same trust level as the data store. However,
this results in statements made by the user being handled in
one fashion and those made by others (which have been

reified) handled in a different fashion. For simplicity of
implementation, we keep the data store neutral.)

Once we have a system for recording statement metadata,
we can examine issues of retraction, denial, and expiration
of assertions, i.e., statements asserted by specific parties.
Consider an example where an agent is responsible for
generating the title property for web pages. Some web
pages, such as those whose contents are updated daily,
have titles that change constantly. Often users want to be
able to locate pages based on whatever it is they remember
about the page. One approach for handling constant
mutations in the information store is to allow agents to
delete a previous assertion and to replace it with an up-to-
date version. However, it would be powerful to allow users
to make queries of the form “Show me all web pages that
had the title Tips for Maintaining Your Car at some point
in time.” By allowing agents to retract their assertions,
queries can still be made to retrieve past or obsolete
information because this information is not deleted.
Additionally, this system permits users to override an
assertion made by an agent by denying the assertion, yet
retains the denied assertion for future reference.

In a system such as this where multiple parties and agents
provide information, we are often concerned with
impersonation and forgery. To solve these problems, we
propose supporting digitally signed RDF. The digital
signature permits the information store to determine and
verify the author of statements with certainty. In an ideal
system, users and agents sign all RDF they produce with
assigned digital signatures. However, the W3C is still
working on the details of supporting signed RDF at the
statement level, and the implementation of a digital
signature system is beyond the scope of this project. For
our current prototype, identifier strings are used in place of
true signatures.

Adenine
In a system such as Haystack, a sizeable amount of code is
devoted to creation and manipulation of RDF-encoded
metadata. We observed early on that the development of a
language that facilitated the types of operations we
frequently perform with RDF would greatly increase our
productivity. As a result, we have created Adenine. An
example snippet of Adenine code is given in
Figure 6.

The motivation for creating this language is twofold. The
first key feature is making the language’s syntax support
the data model. Introducing the RDF data model into a
standard object-oriented language is fairly straightforward;
after all, object-oriented languages were designed
specifically to be extensible in this fashion. Normally, one
creates a class library to support the required objects.
However, more advanced manipulation paradigms specific
to an object model begin to tax the syntax of the language.
In languages such as C++, C#, and Python, operator

overloading allows programmers to reuse built-in operators
for manipulating objects, but one is restricted to the
existing syntax of the language; one cannot easily construct
new syntactic structures. In Java, operator overloading is
not supported, and this results in verbose APIs being
created for any object oriented system. Arguably, this
verbosity can be said to improve the readability of code.

On the other hand, lack of syntactic support for a specific
object model can be a hindrance to rapid development.
Programs can end up being three times as long as necessary
because of the verbose syntactic structures used. This is the
reason behind the popularity of domain-specific
programming languages, such as those used in Matlab,
Macromedia Director, etc. Adenine is such a language. It
includes native support for RDF data types and makes it
easy to interact with RDF containers and services.

Figure 6. Sample Adenine code

The other key feature of Adenine is its ability to be
compiled into RDF. The benefits of this capability can be
classified as portability and extensibility. Since 1996, p-
code virtual machine execution models have resurged as a

result of Java’s popularity. Their key benefit has been
portability, enabling interpretation of software written for
these platforms on vastly different computing
environments. In essence, p-code is a set of instructions
written to a portable, predetermined, and byte-encoded
ontology.

Adenine takes the p-code concept one step further by
making the ontology explicit and extensible and by
replacing byte codes with RDF. Instead of dealing with the
syntactic issue of introducing byte codes for new
instructions and semantics, Adenine takes advantage of
RDF’s ability to extend the directed “object code” graph
with new predicate types. One recent example of a system
that uses metadata-extensible languages is Microsoft’s
Common Language Runtime (CLR). In a language such as
C#, developer-defined attributes can be placed on methods,
classes, and fields to declare metadata ranging from thread
safety to serializability. Compare this to Java, where

serializability was introduced only through the creation of a
new keyword called transient. The keyword approach
requires knowledge of these extensions by the compiler;
the attributes approach delegates this knowledge to the
runtime and makes the language truly extensible. In
Adenine, RDF assertions can be applied to any statement.

These two features make Adenine very similar to Lisp, in
that both support open-ended data models and both blur the
distinction between data and code. However, there are
some significant differences. The most superficial
difference is that Adenine’s syntax and semantics are
especially well-suited to manipulating RDF data. Adenine
is mostly statically scoped, but has dynamic variables that
address the current RDF containers from which existing
statements are queried and to which new statements are
written. Adenine’s runtime model is also better adapted to
being run off of an RDF container. Unlike most modern
languages, Adenine supports two types of program state:
in-memory, as is with most programming languages, and
RDF container-based. Adenine in effect supports two kinds
of closures, one being an in-memory closure as is in Lisp,
and the other being persistent in an RDF container. This
affords the developer more explicit control over the
persistence model for Adenine programs and makes it
possible for agents written in Adenine to be distributed.

The syntax of Adenine resembles a combination of Python
and Lisp, whereas the data types resemble Notation3 [11].
As in Python, tabs denote lexical block structure.
Backslashes indicate a continuation of the current line onto
the next line. Curly braces ({}) surround sets of RDF
statements, and identifiers can use namespace prefixes (e.g.
rdf:type) as shorthand for entering full URIs, which are
encoded within angle brackets (<>). Literals are enclosed
within double quotes.

Adenine is an imperative language, and as such contains
standard constructs such as functions, for loops, arrays, and
objects. Function calls resemble Lisp syntax in that they
are enclosed in parentheses and do not use commas to
separate parameters. Arrays are indexed with square
brackets as they are in Python or Java. Also, because the
Adenine interpreter is written in Java, Adenine code can
call methods and access fields of Java objects using the dot
operator, as is done in Java or Python. The execution
model is quite similar to that of Java and Python in that an
in-memory environment is used to store variables; in
particular, execution state is not represented in RDF.
Values in Adenine are represented as Java objects in the
underlying system.

Adenine methods are functions that are named by URI and
are compiled into RDF. To execute these functions, the
Adenine interpreter is passed the URI of the method to be
run and the parameters to pass to it. The interpreter then
constructs an initial in-memory environment binding
standard names to built-in functions and executes the code
one instruction at a time. Because methods are simply

Prefixes for simplifying input of URIs
@prefix : <urn:test-namespace:>

:ImportantMethod rdf:type rdfs:Class

method :expandDerivedClasses ; \
rdf:type :ImportantMethod ; \
rdfs:comment \
"x rdf:type y, y rdfs:subClassOf z => x rdf:type z"

Perform query
First parameter is the query specification
Second is a list of the variables to return,

in order
= data (query {

?x rdf:type ?y
?y rdfs:subClassOf ?z

} (List ?x ?z))

Assert base class types
for x in data

Here, x[0] refers to ?x
and x[1] refers to ?z

add { x[0] rdf:type x[1] }

resources of type adenine:Method, one can also specify
other metadata for methods. In the example given, an
rdfs:comment is declared and the method is given an
additional type, and these assertions will be entered
directly into the RDF container that receives the compiled
Adenine code.

The top level of an Adenine file is used for data and
method declarations and cannot contain executable code.
This is because Adenine is in essence an alternate syntax
for RDF. Within method declarations, however, is code
that is compiled into RDF; hence, methods are like
syntactic sugar for the equivalent Adenine RDF
“bytecode”.

Development on Adenine is ongoing, and Adenine is being
used as a platform for testing new ideas in writing RDF-
manipulating agents.

Data Storage
RDF Store
Throughout this paper we have emphasized the notion of
storing and describing all metadata in RDF. It is the job of
the RDF store to manage this metadata. We provide two
implementations of the RDF store in Haystack. The first is
one built on top of a conventional relational database
utilizing a JDBC interface. We have adopted HSQL, an in-
process JDBC-compatible database written in Java.
However, early experiments showed that for the small but
frequent queries we were performing to render Ozone user
interfaces, the RDF store was overloaded by the fixed
marshalling and query parsing costs. Switching to a larger
scale commercial database appears to result in worse
performance because of the socket connection layer that is
added in the process.

To solve these problems we developed an in-process RDF
database written in C++ (we use JNI to connect it to the
rest of our Java code base). By making it specifically suited
to RDF, we were able to optimize the most heavily used
features of the RDF store while eliminating a lot of the
marshalling and parsing costs. However, we acknowledge
this to be a temporary solution, and in the long term we
would prefer to find a database that is well-suited to the
types of small queries that Haystack performs.

Storing Unstructured Content
It is important for us to address how Haystack interacts
with unstructured data in the existing world. Today, URLs
are used to represent files, documents, images, web pages,
newsgroup messages, and other content accessible on a file
system or over the World Wide Web. The infrastructure for
supporting distributed storage has been highly developed
over the past decades. With the advent of technologies such
as XML Namespaces and RDF, a larger class of identifiers
called URIs subsumed URLs. Initially, RDF provided a
means for annotating web content. Web pages, identified
by URL, could be referred to in RDF statements in the

subject field, and this connected the metadata given in RDF
to the content retrievable by the URL. This is a powerful
notion because it makes use of the existing storage
infrastructure.

However, with more and more content being described in
RDF, the question naturally arises: why not store content in
RDF? While this is certainly possible by our initial
assumption that RDF can describe anything, we argue this
is not the best solution for a couple of reasons. First,
storing content in RDF would be incompatible with
existing infrastructure. Second, leveraging existing
infrastructure is more efficient; in particular, using file I/O
and web protocols to retrieve files is more efficient than
using XML encoding.

Hence, we do not require that existing unstructured content
be stored as RDF. On the contrary, we believe it makes
sense to store some of the user’s unstructured data using
existing technology. In our prototype, we provide storage
providers based on HTTP 1.1 and standard file I/O. This
means that storing the content of a resource in Haystack
can be performed with HTTP PUT, and retrieving the
content of a resource can be performed with HTTP GET,
analogously to how other resources’ contents (e.g., web
pages) are retrieved. Our ontology uses the Content class
and its derivatives, HTTPContent, FilesystemContent, and
LiteralContent to abstract the storage of unstructured
information.

Putting It Together
At this point, we have described ontologies for personal
information management and user interfaces, as well as an
agent infrastructure and a data storage layer. In order to
gain a fuller understanding of how these components work
together, we illustrate an example interaction between the
user and Haystack

Figure 7 shows the user’s home page, which is displayed
when Ozone is first started. Like a portal, the Ozone home
page brings together in one screen information important to
the user. This information is maintained by agents working
in the background. The actual presentation of this
information is decoupled from the agents and is the
responsibility of Ozone view parts. For instance, the home
page displays the user’s incoming documents collection,
which is managed by the Incoming Agent. When messages
arrive, the Incoming Agent may decide to enter them into
the incoming documents collection. Similarly, when read
messages have been in the incoming documents collection
for some period of time, the Incoming Agent may decide to
remove them. These mutations to the incoming documents
collection are automatically detected by the collection view
part sitting on the home page; the view part updates the
display accordingly. One can envision the Incoming Agent
taking on more intelligent behaviors in the future, such as
moving a message deduced to be important but yet unread
to the top of the collection

As mentioned earlier, strings of text on the screen
corresponding to appointments, news articles, or e-mail
messages are not merely dead pixels. Instead, users can
manipulate them with context menus and drag and drop
them between different areas of the screen. For example,
one can imagine dragging an e-mail from the incoming
documents view to the calendar in order to set up an
appointment. Because the underlying semantic object is
connected to the visual representation, the calendar view
part can intelligently determine the correct response to the
drop operation.

By removing the burden of user interface rendering from
the agents, the software designers are encouraged to enrich
the agents with more capabilities. One can imagine prolific
collaboration between different agents in the Haystack
system. For instance, upon retrieving the weather forecast
for today, the Weather Agent can notify the Calendar
Agent of the grave possibility of a snow storm
approaching; the Calendar Agent in turn can attempt to
reschedule the user’s appointments appropriately. In other
systems, especially portals, the focus of a weather agent
would be on rendering the weather as HTML, not
interacting with other agents to maximize end user benefit.

The news applet displays news downloaded from Resource
Site Summary (RSS) feeds of interest to the user. The RSS
Agent downloads news on a periodic basis and
incorporates the RSS files (which are RDF) into the user’s
corpus. To take advantage of the collection view part for
displaying news, another agent translates the news from the
RSS ontology into the Haystack collection ontology. In the
future it will be possible to have another agent filter the
RSS feeds for the particular articles thought to be most

Figure 7. Ozone screenshot

interesting to the user.

Furthermore, the layout of the entire home page and all of
its customizations is described in metadata. As with other
objects, this layout can be annotated, categorized, and sent
to others.

Future Work
Haystack provides a great platform for organizing and
manipulating users’ information. In this section we touch
upon two topics we are currently investigating that build
new abstractions on top of the data model discussed above.

Collaboration
Enabling users to work together, exchange information,
and communicate has become an absolutely essential
feature of modern information management tools. The
focus of current off-the-shelf products has been on e-mail
and newsgroup-style discussions. However, the addition of
rich metadata manipulation facilities creates many
possibilities for Haystack in fostering collaboration.

First, Haystack encourages users to have individualized
ontologies, so converting between these ontologies when
exchanging data will need to be examined. Agents can be
instructed in the relationships between different ontologies
and can perform conversion automatically. As an
alternative one can imagine an ontological search engine
that is consulted whenever a user enters data. This way
users end up using the same ontologies to describe
similarly-structured data.

Second, security issues arise when sharing data. Support
for belief networks will need to be expanded to allow users
to distinguish their own information from information
obtained from others. Access control and privacy will need
to be examined to allow users to feel comfortable about
storing information in Haystack.

Finally, metadata describing individual users’ preferences
towards certain topics and documents can be used and
exchanged to enable collaborative filtering. Sites such as
epinions.com promote user feedback and subjective
analysis of merchandise, publications, and web sites.
Instead of going to a separate site, users’ Haystacks can
aggregate this data and, by utilizing the belief network,
present users with suggestions.

Organization Schemes
We have started to investigate the many ways in which
people organize their personal information in physical
form, such as bookcases and piles. We believe that each
method of organization has different advantages and
disadvantages in various situations. In light of this, we
propose to support several virtual organization schemes
simultaneously, such that the user can choose the
appropriate organization scheme to use in each situation.
Different schemes act like different lenses on the same

corpus of information. We will provide agents that help the
user create and maintain these organization schemes.

References
[1] Box, D., Ehnebuske, D., Kavivaya, G., et al. SOAP:

Simple Object Access Protocol.
http://msdn.microsoft.com/library/en-
us/dnsoapsp/html/soapspec.asp .

[2] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and
Jensen, D. HTTP Extensions for Distributed Authoring
– WEBDAV. http://asg.web.cmu.edu/rfc/rfc2518.html .

[3] Dourish, P., Edwards, W.K., et al. "Extending
Document Management Systems with User-Specific
Active Properties." ACM Transactions on Information
Systems, vol. 18, no. 2, April 2000, pages 140–170.

[4] Berners-Lee, T., Hendler, J., and Lassila, O. "The
Semantic Web." Scientific American, May 2001.

[5] Christensen, E., Cubera, F., Meredith, G., and
Weerawarana, S. Web Services Description Language
(WSDL) 1.1. http://www.w3.org/TR/wsdl .

[6] Resource Description Framework (RDF) Model and
Syntax Specification.
http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/ .

[7] Resource Description Framework (RDF) Schema
Specification. http://www.w3.org/TR/1998/WD-rdf-
schema/ .

[8] Adar, E., Karger, D.R., and Stein, L. “Haystack: Per-
User Information Environments” in 1999 Conference
on Information and Knowledge Management.

[9] Karger, D and Stein, L. “Haystack: Per-User
Information Environments”, February 21, 1997.

[10] Raskin, J. “The Humane Interface.” Addison-Wesley,
2000.

[11] Berners-Lee, T. Primer: Getting into RDF & Semantic
Web using N3.
http://www.w3.org/2000/10/swap/Primer.html .

