
1

A Reusable Time Ontology
Richard Fikes Qing Zhou

Knowledge Systems Laboratory, Stanford University
Stanford, CA, 94305

fikes@ksl.stanford.edu zhou@ksl.stanford.edu

Abstract

In this paper we present a reusable time ontology for large-
scale knowledge system applications that provides an easily
understandable, flexible, formally defined, and effective
means of representing knowledge about time. Our
underlying time theory treats both time points and time
intervals as primitive elements on a time line, and the
ontology contains a class hierarchy, relations, axioms and
instances built on those primitives. The ontology
distinguishes between closed and open intervals, as opposed
to many previous time ontologies. However, we provide
flexibility of usage by providing two sets of relations on
intervals: one that assumes that distinction and one that does
not. Time granularity is implemented in the ontology to
facilitate representing time in varying granularity in a
layered model and switching from or relating one
granularity to a coarser or finer one. The ontology also
includes a representation of periodic intervals and of the
standard components and properties of calendars such as
calendar months, calendar days, and weekdays.

Introduction
The representation of time is fundamental to any
knowledge base that includes representations of change
and action. Ontologies providing representations for time
are therefore particularly important building blocks for a
broad range of knowledge system applications. Although
such time ontologies are available from both academic
(e.g., Ontolingua [3]) and commercial sources (e.g.,
Cycorp [4]), they all have significant deficiencies in
expressive power, formality, and/or coherence. Our
objective is to provide a time ontology that overcomes
those deficiencies and provides knowledge engineers with
an effective and easily understandable means of
representing knowledge about time. The advantages of a
standard time ontology include saving repetitious
knowledge building efforts and facilitating potential
merging of multiple ontologies built by different authors
but using the same time ontology. Our time ontology is
targeted toward practical use, and we made many design
decisions during its development to facilitate knowledge
engineering that we will describe later in this paper.

A temporal ontology is based on a temporal logic. There
are many different time theories in the literature [1], and
there are difficulties associated with each of them. For
example, instant-based time theories [5,6,7] are not natural
for representing events that have a duration, and Allen’s
interval-based theory has trouble with the Dividing Instant

Problem [8]. In [9, 10], the approach of treating both
instants and intervals as independent primitives is
presented, which is the approach we adopted. It is of
interest to study, as we have here, what kinds of instants
(instants of zero duration or instants of unit duration and
which unit) and what kinds of intervals (convex or non-
convex, open or closed) should be in a library ontology.

Since our time ontology must allow knowledge
engineers to specify precisely and easily wide-ranging
granular systems, different time granularities must be
supported in our ontology. Varying granularity doesn’t
merely mean one can use different time units, but it
involves semantic issues of a layered temporal model and
switching from one representation to a coarser or finer one.
(See, for example, several formalisms for quantitative and
qualitative time granularity in [14,15,16].)

Periodic intervals and calendar dates are also
representation problems dealt with in our ontology. In
[11,12], temporal formalisms provide frameworks for
specification of periodic events and operations on them.
Calendar dates have been studied more in the temporal
database research area. (For example, [13] discusses
calendar support for database systems using user-defined
calendars.)

Ontology Overview
Our time ontology is implemented in KIF (Knowledge
Interchange Format) [17] augmented with the frame
language specified in the knowledge model of the OKBC
(Open Knowledge Base Connectivity) knowledge server
API [18]. The ontology is available from the Ontolingua
server [3] in Stanford’s Knowledge Systems Laboratory,
and a source file is available at
http://ksl.stanford.edu/ontologies/time. The ontology is
compatible with the HPKB-Upper-Level-Kernel ontology
in the Ontolingua library, which was developed in
DARPA’s High Performance Knowledge Base (HPKB)
program [19].

Choice of Time Theory
Our ontology is based on the notion of a time line
analogous to a continuous number line. Time instants and
intervals are the temporal entities about which assertions
are made. Each time point on the time line is analogous to
a real number, and each connected time interval is

From: AAAI Technical Report WS-02-11. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

2

analogous to an interval on the number line, one of [a, b]
(both “a” and “b” are included in the interval), (a, b] (“a”
is not included in the interval, but “b” is), [a, b) (“a” is
included in the interval, but “b” is not), and (a, b) (neither
“a” nor “b” is included in the interval), where a < b. We
also define intervals that are not connected. Taking this
approach implies that time is continuous and linear in our
ontology. This is an intuitive assumption that is also useful
in practice.

Ontology Class Hierarchy Structure
Time-Point and Time-Interval are the two fundamental
classes in our ontology. Time-Point is the class of time
points on the time line corresponding to real numbers on
the number line. “13:00:00 exactly on Jan 3, 1970” is an
instance of this class, whose corresponding real number is
219600, assuming “00:00:00 exactly on Jan 1, 1970” is the
zero point and second is the unit of measurement.

Class Time-Interval is the class of sets of two or more
time points. Each time interval has two distinguished
points called the Starting-Point and the Ending-Point.
Note that instances of Time-Interval do not directly
correspond to connected intervals on the number line.
“The time when I went jogging this week” is an instance of
Time-Interval, but it is not connected. This generalized
class makes it much easier to represent events such as “I
play tennis every day from 6 to 7 p.m.” or “Let’s meet
every Wednesday ”, etc. With only connected time-

intervals, we can still find ways to express the above
scenarios, but only in awkward ways.

We have made Time-Point and Time-Interval disjoint
classes. It would be theoretically sound to let Time-
Interval be the class of all sets of points on the time line, so
that Time-Point becomes a subclass of Time-Interval
where there is only a single time point in the set. That
choice, however, leads to a more cumbersome recursive
formalization in which the start and end points of an
interval are themselves intervals each of which has its own
start and end points, etc. Our formalization also supports
the requirement of the Allen relations [2] on Time-Interval
that the starting point and ending point of a time interval be
distinct so that the relations are disjoint from each other.

Down in the hierarchy tree, Convex-Time-Interval,
which corresponds to connected intervals on the number
line, is now a subclass of Time-Interval. Useful subclasses
of Convex-Time-Interval are Calendar-Month and
Calendar-Day. (Other subclasses such as Calendar-Year or
Calendar-Week can be easily added.) Calendar-Month has
12 subclasses, Calendar-Month-January through Calendar-
Month-December, Calendar-Day has subclasses, Calendar-
Day-1 through Calendar-Day-31, and Calendar-Sunday
through Calendar-Saturday. “January, 1999” is an instance
of Calendar-Month-January, etc.

Figure 1. Class Hierarchy of Time Ontology

Non-Convex-Time-Interval and Convex-Time-Interval
are a disjoint and complete decomposition of Time-
Interval. Non-Convex-Time-Interval is the class of time
intervals that are not connected, i.e. with “holes” in them.

Regular-Non-Convex-Time-Interval is a subclass of
Non-Convex-Time-Interval. This class is handy for

representing regularly recurring events. For example,
“every Wednesday in September” can be an instance of
Regular-Non-Convex-Time-Interval. It consists of 4 or 5
(depending on which year) connected intervals, each of
which represents a Wednesday. The connected intervals
contained in an instance of Non-Convex-Time-Interval

Calendar
-January

.

Time-Point Time-Interval

Convex-Time-Interval

Regular- Non-
Convex -Time-
Interval

Time-
Interval
-Left-
Open

Time-
Interval
-Right-
Open

Time-
Interval
-Right-
Closed

Time-
Interval
-Left-
Open-
Right-
Open

Time-
Interval
-Left-
Closed-
Right-
Closed

Time-
Interval
-Left-
Open-
Right-
Open

Time-
Interval
-Left-
Closed-
Right-
Closed

Calendar-Month Calendar-Day

Non-Convex-
Time-Interval

Calendar
-Sunday

Calendar
-Saturday

Calendar
-Day-1

Calendar
-Day-31

Calendar-
December

Time-Quantity

Time-
Interval
-Left-
Closed

3

must all be instances of the same subclass of Convex-
Time-Interval, as in the above example, class Calendar-
Wednesday.

Class Time-Quantity is a subclass of Physical-Quantity
from library ontology “Physical-Quantities” [20]. A time
quantity is an “amount” of time that is represented by a
real number and a time unit. Relation Magnitude from the
Physical-Quantities ontology has three arguments, a
physical quantity, a unit, and a real number. If Q is a time
quantity of 90 minutes, then “(Magnitude Q Minute 90)”
and “(Magnitude Q Hour 1.5)” would both be true.
Conversion between different time units can be done using
Magnitude. Adding two time quantities is analogous to
adding two real numbers.

Functions and Relations
We defined the following functions on domain Time-Point.
Function Location-Of maps a time point to a time quantity
(i.e., a duration) that is the amount of time from “point
zero” on the time line to the time point. That time quantity
locates the time point on the time line and can be used to
determine relations between two time points. Functions
Year-Of, Month-Of, Day-Of, Week-Day-Of, Hour-Of,
Minute-Of and Second-Of are functions defined for
convenience in terms of the value of Location-Of. In many
domains, it is natural to specify time points by year, month,
day, etc. In that case, the function value of Location-Of
can be calculated from those specified function values.
Year-Of, Hour-Of, Minute-Of and Second-Of have range
Integer, Month-Of and Day-Of and Week-Day-Of have
range Calendar-Month-Type, Calendar-Day-Type and
Calendar-Week-Day-Type respectively. Calendar-Month-
Type is a class of classes whose instances are the 12
subclasses of Calendar-Month. Calendar-Day-Type is also
a class of classes whose 31 instances are classes Calendar-
Day-1 through Calendar-Day-31. Similarly for Calendar-
Week-Day-Type.

Three binary relations are defined on Time-Point:
Before, After, and Equal-Point, which correspond to “<”,
“>”, and “=” on the number line, respectively.

Three basic functions on domain Time-Interval are
Starting-Point (range Time-Point), Ending-Point (range
Time-Point), and Duration (range Time-Quantity).
Starting-Point is defined by:

(=> (and (Time-Point ?s) (Time-Interval ?i))
 (<=> (Starting-Point ?i ?s)
 (and
 (not (exists (?j)
 (and (Time-Point ?j)
 (Before ?j ?s)
 (Point-In-Interval
 ?j ?i))))
 (forall (?p)
 (=> (Time-Point ?p)
 (or
 (exists (?k)
 (and (Time-Point ?k)
 (Before ?k ?p)
 (Point-In-Interval
 ?k ?i)))
 (Equal-Point ?p ?s)
 (Before ?p ?s)))))))

That definition says that a time point S is the starting point
of a time interval I if and only if S is the greatest lower
bound of the points in I. Ending-Point is similarly defined
as the least upper bound of the points in the interval.

A duration is intended to represent an “amount of time”
such as a century, 25 minutes, or “as long as it takes for the
kettle to boil”. For Convex-Time-Interval, the function
value for Duration is the length of the time elapsed
between the two end time points, i.e., the difference
between the Location-Of function values of the two end
points. The value of Duration of a non-convex time
interval is the sum of durations of all convex time intervals
contained in the non-convex time interval. (Additional
functions on Time-Interval (i.e., In-Year, In-Month, In-
Day, In-Hour, In-Minute and In-Second) are inlcuded to
make it easier to conclude attributes associated with a time
interval.)

Point-In-Interval, as in the above axiom for Starting-
Point, is a primitive1 relation in our ontology, with domain
Time-Point and range Time-Interval.

We define the entire set of 13 Allen relations on Time-
Interval as well as the relations on Time-Interval defined in
the HPKB-Upper-Level-Kernel ontology for compatibility.
These definitions are based on comparisons of their
starting points and ending points. For example, Precedes is
defined by:
 (<=> (Precedes ?i ?j)
 (and (Time-Interval ?i)
 (Time-Interval ?j)
 (Before (Ending-Point ?i)
 (Starting-Point ?j))))

Binary relation Contains-Convex-Time-Interval is
defined with domain Non-Convex-Time-Interval and range
Convex-Time-Interval. It is defined by:

1 A primitive relation is one that is not defined by any
other relations.

4

 (<=> (Contains-Convex-Time-Interval ?i ?j)
 (and (Non-Convex-Time-Interval ?i)
 (Convex-Time-Interval ?j)
 (=> (and (Time-Point ?p)
 (Point-In-Interval
 ?p ?j))
 (Point-In-Interval ?p ?i))))

Binary relation Characteristic-Time-Interval-Of is
defined with domain Regular-Non-Convex-Time-Interval
and range Convex-Time-Interval-Type. All subclasses of
Convex-Time-Interval are instance of Convex-Time-
Interval-Type. For example, this relation holds for “every
Wednesday” and Calendar-Wednesday.

Two ternary relations Plus and Minus for Time-Point
and Time-Interval are analogous to ‘»’ and ‘–‘ in set
theory.

Consider an example of defining “a week in January”
using some of the classes and relations. This is a class
each of whose instances is a particular week in January of
a particular year. The definition would be as follows:
(and (subclass-of WiJ Convex-Time-Interval)
 (=> (WiJ ?w)
 (and
 (Duration ?w
 (The-Quantity Day 7))
 (exists (?j)
 (and (Calendar-January ?j)
 (or (During ?w ?j)
 (Costarts ?w ?j)
 (Cofinishes ?w
 ?j))))))

“During”, “Costarts” and “Cofinishes” are three Allen
relations. “The-Quantity” is the constructor for time
quantities. The definition says that each week in January
W is a convex time interval whose duration is 7 days and
for which there exists a “calendar January” J such that W is
during J or W costarts J or W cofinishes J.

Infinity and Density
In order to address time infinity, we defined two instances
of Time-Point: Infinite-Past and Infinite-Future. For
example Infinite-Past is defined by:
 (and (Time-Point Infinite-Past)
 (=> (Time-Point ?p)
 (not (Before ?p Infinite-Past))))

For time density, we have the following axiom:
 (=> (and (Time-Point ?i)
 (Time-Point ?j)
 (Before ?i ?j))
 (exists ?k (and (Before ?i ?k)
 (Before ?k ?j))))

Some Design Issues

Closed interval or Open interval?
The time ontology from Cycorp [4] and the previous time
ontologies from Ontolingua [3] do not specify whether
Time-Interval is open or closed. In many knowledge
domains, one does not care about single points in an
interval, so open or closed intervals do not matter. But
there are domains in which people do care about end
points, E.g., describing a ball tossed straight upwards. We
want to express the interval in which the ball has a positive
velocity. Any time ontology with only closed intervals is
insufficient. However, if we want to express the interval in
which the ball has nonnegative velocity, then any ontology
with only open intervals does not work. Though we can
say the ball has non-zero acceleration in the open interval
and on the point when the ball has zero velocity, this
representation is of course cumbersome.

So, in our ontology, we have subclasses of Time-
Interval: Time-Interval-Left-Open, Time-Interval-Left-
Closed, Time-Interval-Right-Open, and Time-Interval-
Right-Closed. Then, Time-Interval-Open is a subclass of
both Time-Interval-Left-Open and Time-Interval-Right-
Open, and Time-Interval-Closed is a subclass of both
Time-Interval-Left-Closed and Time-Interval-Right-
Closed. We then defined finer grained relations for these
subclasses. E.g., relation Meets is defined by
 (<=> (Meets ?i ?j)
 (and (Time-Interval ?i)
 (Time-Interval ?j)
 (Equal-Point
 (Ending-Point ?i)
 (Starting-Point ?j))))

Meets has three subrelations, Meets-2Open, Meets-
2Closed and Meets-OpenClosed. E.g., Meets-OpenClosed
is defined by
 (<=> (Meets-OpenClosed ?i ?j)
 (and
 (or (and
 (Time-Interval-Right-Open ?i)
 (Time-Interval-Left-Open ?j))
 (and
 (Time-Interval-Right-Open ?i)
 (Time-Interval-Left-Open ?j)))
 (Meets ?i ?j)))

Differentiating the three cases of “meets” allows users to
give them different properties. For example, users might
want “meets” in Meets-2Closed to mean “overlaps” in
some knowledge domains. Having both the parent relation
and subrelations gives users much flexibility. Users in
domains where it is not necessary to distinguish open and
closed intervals will not use the open/closed subclasses of
Time-Interval, and they will choose to use relation Meets.
Users working with domains of physics experiment will
use the subclasses and thus the subrelations of Meets to
represent motions of a metal ball.

5

Time Granularity
In section “Functions and Relations” above, we said that
the Location-Of function value of a time point locates this
time point on the time line as a real number locates a point
on a number line. However, we cannot always identify this
real number, i.e. we cannot measure time with indefinite
accuracy. So, one must address the issue of time
granularity in a time ontology. When we are describing
some ideal physics experiment, time can be specified with
perfect accuracy. At other times, “day” would be an
appropriate primitive time unit for an American history
book, “minute” works for a daily class schedule,
“microsecond” is used in measuring CPU time, etc. Since
our ontology is intended to be multi-use, it must be able to
handle different levels of granularity.

In our ontology, granularity is specified for time points,
not for time intervals. A time point with a certain level of
granularity is a single time point with the uncertainty that it
may be anywhere in a certain time interval. For example,
time point “Jan 1st, 2002” with day granularity is a single
time point that can be any point within the convex time
interval starting midnight of Dec 31st, 2001, and ending
midnight of Jan 1st, 2002. For time points with day
granularity, the time line, in both directions and starting
from “point zero”, is evenly divided into time slots of
duration one day. The Location-Of function value for a
time point only determines the slot in which the time point
locates, in much the same way as truncating real numbers
to integers, 1.56 to 1, -5.99 to –5, etc.

Function Granularity-Of is defined on domain Time-
Point, with range Time-Granularity. Class Time-
Granularity is defined in our ontology. There can be an
arbitrary number of levels of granularity since every time
quantity can correspond to a level of granularity. But in
practice, we only have granularities for commonly used
time units. Year-Granularity, Month-Granularity, Day-
Granularity, Hour-Granularity, Minute-Granularity and
Second-Granularity are defined as instances of Time-
Granularity in our ontology. But in our ontology, other
levels of granularity can be added when we need finer
granularity than second or a granularity for Day-On-
Planet-X of, say, 12.3456 hours. Function Time-Unit-Of is
defined on domain Time-Granularity with range Time-
Unit, a subclass of Unit-Of-Measure in ontology “Physical-
Quantities”[20]. The function Time-Unit-Of maps Year-
Granularity into Year, etc. Then there is a special instance
of Granularity, Infinitely-Fine-Granularity, that does not
have a Time-Unit-Of function value. When users do not
care to use granularity, as when describing an ideal physics
experiment, all time points are assumed to have infinitely
fine granularity.

The three basic binary relations on Time-Points (i.e.,
Before, After, and Equal-Point) are fundamental to
defining any relation on Time-Interval on different levels
of granularity. For example, relation Equal-Point is
defined as follows. Two time points are equal either when
they both have infinitely fine granularity and exactly
coincide with each other on the time line, or when they

have the same granularity and fall in the same time slot.
That definition is as follows:
 (=> (and (Time-Point ?i) (Time-Point ?j))
 (<=> (Equal-Point ?i ?j)
 (or
 (and
 (Granularity-Of
 ?i
 Infinitely-Fine-Granularity)
 (Granularity-Of
 ?j
 Infinitely-Fine-Granularity)
 (= (Location-Of ?i)
 (Location-Of ?j)))
 (and
 (Granularity-Of ?i ?gran)
 (Granularity-Of ?j ?gran)
 (= (LINLT
 (Magnitude
 (Location-Of ?i)
 (Time-Unit-Of ?gran)))
 (LINLT
 (Magnitude
 (Location-Of ?j)
 (Time-Unit-Of
 ?gran))))))))

LINLT is the “largest integer not larger than” relation.
Two time points on two different levels of granularity

cannot be said to be equal to each other. However, we
define Before or After to hold for two time points on
different levels of granularity when the two time slots
containing the time points don’t overlap. For example,
time point “Year 1970” is before time point “Jan 1st,
1999”.

In previous ontologies, e.g. Simple Time [3], there were
no axioms dealing with the granularity problem. When
comparing “today” and “today at 10 a.m.”, the result would
depend on the default value that specifies the hour of
“today”. If the default value is zero, it would be inferred
that “today” is before “today at 10 a.m.”, which is not a
desirable result.

Class Calendar-Month
The need to associate attributes with each calendar month
leads to using Calendar-January instead of 1 and Calendar-
February instead of 2, etc. for the months of the year.
These classes in the ontology store many calendar facts
about each month, for example its number of days. In
previous ontologies, relation Month-Length was defined on
domain Integer (e.g., “(Month-Length 1 31)”). Here, we
define the relation on the 12 subclasses of Calendar-Month
and thus make Calendar-Month-Type the domain. We use
a similar design for Calendar-Day and their subclasses.

As an example of the use of these classes, consider
representing the holidays during the year. We could do
that by making Holiday a subclass of Regular-Non-
Convex-Time-Interval, and define functions In-Month and
In-Day on domain Holiday with range Calendar-Month-
Type and Calendar-Day-Type, respectively. “New Year’s

6

Day” would have In-Month function value Calendar-
January and In-Day function value Calendar-Day-1. We
could define a ternary relation In-Week-Day with its three
arguments being an instance of Holiday, an instance of
Calendar-Week-Day-Type, and an integer, respectively.
“Father’s Day”, which is the second Sunday in June, could
then be defined by:
(and (Holiday FsD)
 (In-Month FsD Calendar-June)
 (In-Week-Day FsD Calendar-Sunday 2))

At the same time, we could define relation Has-Holiday
with range Holiday on domain Calendar-Month-Type,
Calendar-Day-Type and Calendar-Week-Day-Type. For
example, Has-Holiday would hold for Calendar-January
and “New Year’s Day”. Holiday information can be well
integrated into the calendar in this representation.

Summary and Future Work
To summarize, we developed a formal time ontology upon
which other knowledge engineers can build larger
ontologies that utilize the notion of time. Knowledge
engineers can choose to use the portion of our ontology
that fits their needs, whether they need open or closed
intervals, or they need granularity of a second or a year, or
they need to specify calendar weekdays.

Future work includes building special purpose reasoners
for this time ontology, so that it can be used more
efficiently in large-scale systems. Other tasks include
building a more complete set of relations across different
time granularities, and adding branching time to support
hypothetical reasoning when needed.

References
[1] P. Hayes; A Catalog of Temporal Theories; Tech report
UIUC-BI-AI-96-01, University of Illinois; 1995.
[2] J. Allen; Maintaining Knowledge about Temporal
Intervals; in Communications of the ACM, 26(11), pp.832-
843, November 1983
[3] Ontology Simple Time. Available through
http://ontolingua.stanford.edu
[4] Time ontology as part of HPKB-Upper-Level-Kernel.
Available at http://ontolingua.stanford.edu and at
http://www.cyc.com/products2.html#kb
[5] D. McDermott; A Temporal Logic for Reasoning about
Processes and Plans; in Cognitive Science, 6:101-155,
1982
[6] Y. Shoham; Temporal Logics in AI: Semantical and
Ontological considerations; in Artificial Intelligence,
33:89-104, 1987.
[7] F. Bacchus, J. Tenenberg, and J. Koomen; A Non-
reified Temporal Logic; in Proc. KR’89, pages 2-10, 1989.

[8] A. Galton; A Critical Examination of Allen’s Theory of
Action and Time; in Artificial Intelligence, 42:159-188,
1990.
[9] A. Bochman; Concerted Instance-Interval Temporal
Semantics: Temporal Ontologies; in Notre Dame Journal
of Formal Logic, 31(3):403-414, 1990.
[10] L. Vila, E. Schwalb; A Theory of Time and Temporal
Incidence Based on Instants and Periods.
[11] P. Terenziani; Reasoning about Periodic Events.
[12] D. Cukierman, J. Delgrande; A Language to Express
Time Intervals and Repetition.
[13] M. Soo; Multiple Calendar Support for Conventional
Database Management Systems; Proc. Int. Workshop on an
Infrastructure for Temporal Databases, 1993.
[14] A. Montanari; Metric and Layered Temporal Logic
for Time Granularity; 1996.
[15] C. Bettini, X. S. Wang, S. Jajodia; A General
Framework for Time Granularity and its Application to
Temporal Reasoning; Annals of Mathematics and Artificial
Intelligence, 1(22):29-58, 1998.
[16] J. Euzenat; Granularity in Relational Formalisms;
1998.
[17] M. R. Genesereth, R. Fikes; Knowledge Interchange
Format, Version 3.0 Reference Manual; KSL Technical
Report KSL-92-86, 1992.
[18] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, &
J. P. Rice; OKBC: A Programmatic Foundation for
Knowledge Base Interoperability; Proceedings of the
Fifteenth National Conference on Artificial Intelligence;
Madison, Wisconsin; July 26-30, 1998. Also, KSL
T e c h n i c a l R e p o r t K S L - 9 8 - 0 8
(http://www.ksl.stanford.edu/KSL_Abstracts/KSL-98-
08.html).
[19] P. Cohen, R. Schrag, E. Jones, A. Pease, A. Lin, B.
Starr, D. Gunning, M. Burke; The DARPA High-
Performance Knowledge Bases Project; AI Magazine,
19(4): Winter 1998, 25-50
[20] Ontology Physical-Quantities. Available through
http://ontolingua.stanford.edu

