
Continual Coordination of Shared Activities

Bradley J. Clement and Anthony C. Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91109-8099
�bclement, barrett�@aig.jpl.nasa.gov

Abstract

Interacting agents that interleave planning and execu-
tion must reach consensus on their commitments to
each other. For domains with varying degrees of in-
teraction and different constraints on communication
and computation, agents will require different coordina-
tion protocols in order to efficiently achieve their goals.
ShAC (Shared Activity Coordination) is a framework
for designing coordination protocols and an algorithm
for continually coordinating agents using these proto-
cols during execution. We show how a variety of pro-
tocols can be constructed using this framework and de-
scribe how ShAC coordinates two rovers and an orbiter
in a simulated Mars scenario.

Introduction
Agents based on behavioral systems or social laws (Shoham
& Tennenholtz 1992) can make short-sighted coordination
decisions, leading to irreversible effects that prevent agents
from reaching their longer-term goals. Planning is com-
monly used to project and resolve conflicts with future ac-
tivities. When interleaving planning and execution, an agent
must be able to adjust its planned activities as it gathers in-
formation about the environment and encounters unexpected
events. Interacting agents must coordinate these adjustments
in the context of commitments with each other. The work
presented here addresses how these agents can interleave
coordination and execution. The ultimate goal of this re-
search is to enable interacting agents to autonomously ad-
just their coordination protocols with respect to unexpected
events and changes in constraints on communication and
computation so that the agents can most efficiently achieve
their goals. This paper presents a framework for designing
coordination protocols and an algorithm for continually co-
ordinating agents using these protocols during execution.

Our approach, called Shared Activity Coordination
(ShAC), provides a general algorithm for interleaving plan-
ning and the exchange of plan information as shared activ-
ities. Agents coordinate their plans by establishing consen-
sus on the parameters of shared activities. Figure 1 displays
this consensus on parameters as ������ constraints between
agents’ local views of the shared activity. The vertical box
over each planner’s schedule represents a commit window
that moves along with the current time. Activities in this
window must be passed on to the execution system, which
sends state updates to the planner. Consensus must be es-

execution execution execution

planner planner planner

shared activity
constraints

shared activity
constraint

agent agent agent

Figure 1: Activities shared among continual planners

tablished for shared activities before this window to avoid
violated commitments between agents. Consensus is hard to
establish if all agents sharing an activity modify its param-
eters at the same time. Thus, agents participate in different
coordination roles that specify which agent has control of
the activity.

ShAC’s ability to continually coordinate depends on in-
terleaved planning and execution. As a result, the planner
must be able to respond to execution failures and state up-
dates from the execution system. Our implementation inter-
faces with one such continual planning system, CASPER
(Continuous Activity Scheduling Planning Execution and
Replanning) (Chien et al. 2000a). Instead of batch-planning
in episodes, CASPER continually adapts near and long-
term activities while re-projecting state and resource profiles
based on updates from the execution system.

First we describe the shared activity model, the ShAC al-
gorithm, and its interface to the planner. Then we specify
some generic roles and protocols using the ShAC framework
that build on prior coordination mechanisms. These mech-
anisms include a mapping of distributed constraint satisfac-
tion and argumentation approaches to distributed planning.
Then we describe how our current implementation of ShAC
is used to coordinate the communication of two rovers and
an orbiter in a simulated Mars scenario. We follow with
future research needs revealed in this scenario and compar-
isons to related work.

ShAC
ShAC is implemented as a module that commands the plan-
ner of each agent and handles communication with other
agents. ShAC keeps track of shared activities and constraints
on these activities.

From: AAAI Technical Report WS-02-12. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



Shared Activities
Consider an example of a shared communication activity.
One agent serves the role of a sender and another the role of
a receiver. Shared parameters could specify the start time,
duration, transfer rate, and data size of the activity. The
data size is depleted from the sender’s memory resource but
added to the receiver’s memory. The agents could have sep-
arate power usages for transmitting and receiving. Planning
decisions affect shared activities by altering the values of pa-
rameters. For example, a planner can reschedule an activity
by changing its ����� ��	� parameter.

A shared activity is a tuple ��
��������, 
���	�����,
����� �����, 
��������, 
���	
��������. The parameters
are the shared variables and current values over which the
agents must reach consensus. Our implementation defines
boolean, integer, floating point, and string types. Agent
roles are the local activities assigned to each agent that cor-
respond to the shared activity. These roles can have differ-
ent conditions and effects as specified by the local planning
model. The shared parameters map to local parameters in
the role activity. Protocols are the mechanisms assigned to
each agent (or role) that allow the agents to

� change constraints on the shared activity,

� change the set of agents assigned to the activity, and

� change roles and protocols for each agent.

Multiple protocols can be defined for a shared activity to
combine their capabilities. Constraints will be described in
the next section, and a variety of protocols will be defined in
the Protocols section.

The decomposition is the set of subactivities in the de-
composition of the agent’s local role activity that all agents
share. This is needed to establish consensus on shared sub-
activity choices that may be selected or eliminated from the
set of subactivities.

Constraints
Constraints are created by agents’ protocols to restrict sets
of values for parameters (parameter constraint) and permis-
sions for manipulating the parameters, changing constraints
on the parameters, and scheduling shared activities (permis-
sion constraint). These constraints restrict the privileges
(or responsibilities) of agents in making coordinated plan-
ning decisions. By communicating constraints, protocols
can come to agreement on the scheduling of an activity with-
out sharing all details of their local plans. By only permitting
one agent to have planning capabilities at a time, a protocol
can avoid thrashing among agents that try to resolve shared
activity conflicts in different ways.

A parameter constraint is a tuple ������, 
���	����,
����� ����. The ����� denotes who created the constraint.
Some protocols differentiate their treatment of constraints
based on the agent that created them. For example, the asyn-
chronous weak commitment algorithm prioritizes agents so
that lower-priority agents only conform to higher-priority
agent constraints (Yokoo & Hirayama 1998). Agents can
add to their constraints on a parameter, replace constraints,
or cancel them. A string parameter constraint, for exam-
ple, can restrict a parameter to a specific set of strings. An
integer or floating point variable constraint is a set of dis-
joint ranges of numbers. As mentioned before, scheduling

constraints can be represented as constraints on a start time
integer parameter.1

Permissions constraints determine how an agent’s planner
is allowed to manipulate shared activities. The following
permissions are currently defined for ShAC:

� parameters - change parameter values

– move - set start time
– duration - change duration of task
– delete - remove from plan
– choose decomposition - select shared subactivity of an
�� activity

� add - add to plan2

� constrain - send constraints to other agents

Parameter permissions can be specified for each param-
eter separately. The permissions categorized under the pa-
rameters permission are potentially special parameters that
all activities have. A protocol can change permissions of
shared activities for any agent during coordination.

Coordination Algorithm
Figure gives a general specification of the ShAC algorithm.
ShAC is implemented separate from the planner, so steps 1
through 3 are handled by the planner through an interface
to ShAC. Step 4 invokes the protocols that potentially make
changes to refocus coordination on resolving shared activity
conflicts and improving plan utility. ShAC sends modifica-
tions of shared activities and constraints to sharing agents in
step 5. In step 6, shared activities and constraints are up-
dated based on changes received from other agents.

Note that on each pass of this loop, there may be no con-
flicts to warrant altering the plan, no state updates to revise
the projection, no activities to release, or no messages or
other ShAC information to act upon. So, some steps could
execute several times before others execute once. This al-
gorithm could be interpreted to run all steps in parallel with
each other. Each separate parallel step could be looping at a
different rate, either naturally or as configured. The best way
to configure this will depend on the domain and the agents’
sensing and computation capabilities. Although a domain
designer can make guesses and experiment through simula-
tion, future work is needed to understand how this configu-
ration should be done in general.

Ignoring coordination, a continuous planner must deter-
mine when it is appropriate to release activities to the exe-
cution system. In some cases, an activity involved in a con-
flict may either be released (requiring the planner to recover
from potential failures) or postponed (to allow the planner
to recover before a failure occurs). CASPER keeps a com-
mit window (an interval between the current time and some
point in the near future) within which activities cannot be
modified and passes these activities to the execution system.

1This is an influence of interfacing ShAC to the CASPER plan-
ning system, which grounds the timing of all activities (Chien et al.
2000a). ShAC would need a new representation to handle partial
order constraints on activities.

2This permission applies to a class of shared activities (i.e. an
agent may be permitted to instantiate a shared activity of a particu-
lar class).



Given: a 
��� with multiple activities including a set of
�����
 ���������� with ����������� and a 
���������
of 
��� into the future.

1. Revise 
��������� using the currently perceived state
and any newly added goal activities.

2. Alter 
��� and 
��������� while honoring
�����������.

3. Release relevant near-term activities of 
��� to the
real-time execution system.

4. For each shared activity in �����
 ����������,

� if outside consensus window,
– apply each associated protocol to modify the

shared activity and �����������;
� else

– apply simple consensus protocol.

5. Communicate changes in �����
 ���������� and
�����������.

6. Update �����
 ���������� and ����������� based on
received communications.

7. Go to 1.

Figure 2: Shared activity coordination algorithm

This interaction with the execution system becomes more
complicated when agents share tasks. ShAC must make sure
that any shared activity is released by all agents with consen-
sus on the start time and other parameters of the task. Ide-
ally the agents should establish consensus before the commit
window. If they cannot, then there should be a simple pro-
tocol that allows them to quickly establish consensus (e.g.
use the task information of the highest priority agent that
shares the task and has modification permissions), and the
task must be modified within the commit window. ShAC
avoids changes in the commit window by keeping a consen-
sus window that extends from the commit window forward
by some period specific for the activity. As time moves
forward, the consensus window extends forward. When a
shared activity moves into the window, the agents switch to
the simple consensus protocol to try and reach consensus
before the activity moves into the commit window.

ShAC requires several capabilities from the planning sys-
tem to which it interfaces. If the system is not a continual
planner, and coordination is to be done in batch before exe-
cution, then steps 1 and 3 are not necessary in the algorithm
description. In this case, ShAC requires the following capa-
bilities of the planner:

� grounds start times and durations of activities3,

� add new activities received from other planners,

� update parameters of activities changed by other planners,

� enforce constraints during planning, and

� generate parameter constraints for activities it fails to
schedule.

3This is because ShAC has not yet been extended to handle flex-
ible or partial order time constraints.

For continual coordination during execution, the planner
must additionally be able to

� integrate state updates from the execution system,

� project changes in the current plan, and

� issue near-term activities to the execution system.

Probably the most stringent requirement is that the plan-
ner be able to alter its plan based on state updates and
changes made by other agents to shared activities. Being
able to handle unexpected events, however, is a necessary
property for interleaving planning and execution. Iterative
repair planners focus on this capability and make good can-
didates for this coordination architecture. CASPER is one
such planner and provides all of the capabilities we list
above (Chien et al. 2000a).

Protocols
In general, protocols determine when to communicate, what
to communicate, and how to process received communica-
tion. During each iteration of the loop of the coordination
algorithm (of the previous section), the protocol determines
what to communicate and how to process communication
as described in the algorithm and the Shared Activities sec-
tion. A protocol must specify the following procedures to be
called during step 4 of the ShAC coordination algorithm for
the shared activity to which it is assigned:

1. modify permissions of the sharing agents

2. modify locally generated parameter constraints

3. add/delete agents sharing the activity

4. change roles/protocols of sharing agents

We will define protocols according to these four methods.
Even if a protocol does nothing for these methods, the ShAC
algorithm still has several capabilities. An initial assignment
of agents and their permissions to shared activities can pro-
vide the following capabilities. A domain modeler uses a
language for defining shared activities to specify these ini-
tial assignments to provide a mix of capabilities resulting in
basic protocols upon which others can be built.4

joint intention A shared activity by itself represents a joint
intention among the agents that share it.

mutual belief Parameters or state assertions of shared ac-
tivities can be updated by sharing agents to establish con-
sensus over shared information.

resource sharing Sharing agents can have identical condi-
tions and effects on shared states or resources.

active/passive Some sharing agents can have active roles
with execution primitives while others have passive roles
without execution primitives.

master/slave A master agent can have permission to sched-
ule/modify an activity that a slave[s] (which has no per-
missions) must plan around.

4The modeling language is outside the scope of this paper but
is inspired by team-oriented programming for STEAM (Pynadath
et al. 1999; Tambe 1997).



So, a default protocol implements does nothing for each
of the protocol methods but retains the above listed capabil-
ities. In our implementation this default protocol is a base
class from which subclasses build on these capabilities by
defining one or more of the protocol methods. The follow-
ing sections describe some of these protocol subclasses.

Argumentation
Argumentation is a technique for negotiating joint beliefs or
intentions (Kraus, Sycara, & Evanchik 1998). Commonly,
one agent makes a proposal to others with justifications. The
others evaluate the argument and either accept it or counter-
propose with added justifications. This technique has been
applied to teamwork negotiation research to form teams, re-
organize teams, and resolve conflicts over members’ beliefs
(Tambe & Jung 1999). This technique can be used in coor-
dinated planning to establish consensus on shared activities.

A shared activity and associated parameter values are the
proposal or counterproposal. Justifications are given as pa-
rameter constraints (not necessarily on the same parameters
proposed). A proposal is a change to a shared activity that
does not violate any parameter constraints. A counterpro-
posal is a change that does violate another agent’s parame-
ter constraints. Protocol method 2 must be implemented to
provide the parameter constraint justifications for proposals
and counterproposals. This involves noting changes in the
shared activity and (if changed) generating constraints de-
scribing the parameter values consistent for the agent. The
parameters for which constraints are generated is domain de-
pendent since the argument for a proposal is domain depen-
dent. The protocol could be implemented as follows.

Argumentation method 1

� if this agent sent the most recent proposal/counterproposal
– if planner modified shared activity
� remove self’s modification permissions

� else
– give self modification permissions (e.g. move and

delete)

Argumentation method 2

� if planner modified shared activity
– generate parameter constraints describing locally con-

sistent values

As an example, one agent can propose an activity with
a particular start time and add justifications in the form of
all intervals within which the shared activity can be locally
scheduled. Other agents can replan to accomodate the pro-
posal and counterpropose with their own interval restrictions
if replanning cannot accomodate others’ constraints. If the
agents cannot establish consensus before the consensus win-
dow, a higher ranking agent can mandate a time that benefits
most of the agents. Of course, there are many variations
on this example. Agents may be restricted because they are
slaves or do not have constraint permissions to counterpro-
pose.

Delegation
Delegation is a mechanism where an agent in a passive dele-
gator role assigns and reassigns activities to different subsets

of agents in active subordinate roles. The delegator’s proto-
col only needs to implement protocol method 3 to choose the
subordinates that will perform the task. So, when delegating
a new activity or redelegating an existing activity, method 3
clears the list of agent roles and assigns the delegated agent
the subordinate role.

Criteria for determining when to delegate to a subordinate
and to which subordinate to delegate may vary among do-
mains. A simple method is to delegate whenever the shared
activity has not been assigned to an agent (no agent roles ex-
ist). Redelegation occurs when a subordinate fails to acco-
modate the shared activity in its plan and rejects it by remov-
ing itself from the activity’s agent roles (protocol method 3
for the subordinate role). If the delegator has information
about the agents’ plans (e.g. from other shared activities or
communicated constraints), it may be able to judge which
agent is best to delegate the activity according to its capa-
bility or estimated performance. This protocol can be sim-
ply varied by assigning delegators and subordinates different
master or slave roles, or having multiple subordinates with
subroles in the shared activity.

Delegator method 3

� if ����� ����� empty
– choose an ����� to whom to delegate the activity
– add (�����, subordinate) to ����� �����

Subordinate method 3

� if cannot resolve conflicts/threats involving activity
– remove self from ����� �����

Asynchronous Weak Commitment
Multi-asynchronous weak commitment is a distributed con-
straint satisfaction algorithm that enables agents, each with
a set of variables, to satisfy constraints between variables
across and within agents (Yokoo & Hirayama 1998). Agents
are prioritized, and their variables each initially have a zero
priority. The values of lower priority variables are modified
to satisfy constraints with values chosen for higher priority
variables (with agent priorities as a tie breaker). If there is no
value that satisfies the constraints, then the governing agent
selects a value that minimizes violations with lower prior-
ity variables and raises the priority of the variable to one
higher than the highest priority of the variables with which
it has constraints, making the variable the highest ranking
with its neighbors. The failing agent also sends a no-good
to its neighbors, communicating the values of the subset of
variables making the variable unassignable.

This protocol can be adapted for planning agents. The
variables are shared activity parameters. The constraints are
������ relations among agents sharing the activities. An
agent’s protocol must keep track of a priority of the shared
activity and those of the other sharing agents (as well as the
agents’ priorities). These priorities can be parameters of the
shared activity. A no-good message is a set of parameter
constraints. Below are the protocol methods for updating
permission constraints and rank and generating no-good pa-
rameter constraints.

Asynchronous Weak Commitment method 1

� if have highest priority
– remove self’s modification permissions



� else
– give self modification permissions (e.g. move and

delete)

Asynchronous Weak Commitment method 2
� if cannot resolve conflicts/threats locally and with respect

to constraints of higher ranking agents
– set rank parameter of self to highest rank of sharing

agents plus one
– generate parameter constraints (no-good) describing

locally consistent values

So, the protocol only needs to handle the agent’s own
permission and parameter constraints. When an agent has
permissions to modify the shared activity, the planner is re-
sponsible for scheduling (choosing parameter values of) the
activity that satisfy the parameter constraints higher ranking
agents while trying to respect those of lower-ranking agents.
We do not mention this aspect of the planner interface as
part of ShAC, but our implementation subclasses planner
interfaces to correspond to protocols. The implentation has
special purpose heuristics for guiding CASPER’s planning
to handle these kinds of constraints. Heuristic capabilities
are discussed in detail in the ASPEN planner upon which
CASPER is built (Chien et al. 2000b).

The asynchronous weak commitment algorithm for DC-
SPs is shown to be sound and complete–the agents are guar-
anteed to converge to valid assignments of values to vari-
ables if they exist. In ShAC there is no guarantee of com-
pleteness (convergence). This is becasue we do not restrict
the planners to be complete. Since continual planning re-
quires reactivity to state changes and failures, completeness
is difficult to ensure in real-time. Future work is needed to
determine how AWC can be combined with complete plan-
ners to ensure convergence.

Constraint-Based Conflict Resolution
For this protocol, the agents initially have no permissions
to modify a proposed shared activity. They broadcast any
parameter constraints to the sharing agents as the planner
schedules other local or shared activities around the shared
activity while trying to meet others’ constraints as possible.
After some time period, or once the agents have converged
on a set of constraints (not guaranteed), the agents switch to
another protocol (e.g. argumentation) potentially reinstating
permissions and negotiate final parameter values or delete
the activity. Detecting convergence on parameter constraints
requires the agents to reach consensus on the current set of
constraints. Establishing consensus is described in (Mullen-
der 1995). We discuss the role of consensus in coordination
in the section on Discussion and Related Work. The proto-
col must implement method 2 for generating parameter con-
straints and method 4 to switch protocols.

Constraint-Based Conflict Resolution method 2
� if cannot resolve conflicts/threats involving shared activ-

ity
– update parameter constraints describing locally consis-

tent values

Constraint-Based Conflict Resolution method 4
� if reached consensus on constraints or ��	� ���
��
 �

threshold

– switch to protocol for resolving conflicts

Round-Robin

A round-robin approach to establishing consensus on a
shared activity involves rotating a master role by changing
permission constraints. Only one agent may modify the ac-
tivity at a time and once finished, the agent can turn off its
own permissions and turn them on for another agent (while
sending out the update). Only protocol method 1 needs to be
implemented to switch permissions—role switching is not
necessary.

Round-Robin method 1

� if have modification permissions

– update ��	� ���
��


– if finished planning or ��	� ���
��
 � threshold
� remove self’s modification permissions (e.g. move

and delete)
� add modification permissions for next agent
� set ��	� ���
��
 to 0

In this method, the agent may determine that it is “finished
planning” if there are no remaining local conflicts/threats or
if the plan is sufficiently optimized. ��	� ���
��
 can be a
parameter of the shared activity that is updated by the current
master agent. A simple adaptation of this protocol could
have agents generate parameter constraints in the innermost
if statement. These constraints would need to be updated
as the planner reschedules other activities based on changes
to the shared activity by subsequent agents.

Centralized Conflict Delegator

Here, a single agent serves in a passive delegator role for
a set of shared activities. The delegator models all shared
resources and, thus, keeps track of all conflicts for a group
of active subordinates. Subordinates do not share activities
with each other. The delegator assigns conflicts to differ-
ent agents by delegating tasks involved in conflicts to differ-
ent subordinates and also sending the subordinates the corre-
sponding parameter constraints it generates indirectly from
the activities it shares with other subordinates. This proto-
col can subclass from the basic delegation protocol. The
difference is in how it chooses the agent to whom to del-
egate the activity. Below we define this procedure, which
is called from Delegator method 3 in the Delegator section.
This function ensures that agents are not modifying the same
activities or working on the same conflicts (in order to avoid
race conditions).

ChooseSubordinate method

� sort agents in increasing order of times this activity was
delegated to them

� for each agent

– if not delegated any activities involved in conflicts with
this one

� return agent
� return first agent



Application to Mars Scenario
Now we describe how ShAC is applied to a simulated sce-
nario involving two Mars Exploration Rovers (MERs) and
a Mars Odyssey orbiter. Different master/slave and ac-
tive/passive roles are defined using permission constraints
for the shared activities to implement a basic protocol for co-
ordinating communication to and from Earth. We will apply
some of the previously defined, more sophisticated protocols
to this domain in our future work.

The MERs (MER A and MER B) and Odyssey can com-
municate with Earth directly, but the MERs can option-
ally route data through Odyssey, which communicates with
Earth at a higher bandwidth. The rovers need daily commu-
nication with ground operations to receive new goals. The
rovers will often fail to traverse to a new target location and
cannot proceed until new instructions come from ground op-
erations. In this scenario both MERs must negotiate with
Odyssey to determine how to most quickly get a response
from ground after sending an image of the surrounding area.

Each MER has a communication state shared with
Odyssey that tracks when the image is generated, when it
gets to Earth, and when the response from ground opera-
tions arrives to the rover. Shared activities for changing the
state are shown for different routing options in Figure 3. The
rover’s activity for generating an image from its panoramic
camera changes the state to request to communicate its
need to downlink and receive an uplink. Activities for send-
ing the image to Earth (either directly or through Odyssey),
change the state to a wait for uplink state to indicate
that the rover will then be waiting for the uplink. Ground op-
erations needs a period of time to generate new commands
for the uplink, so if the uplink is received by Odyssey, the
state changes to received to indicate that now the rover
can get the uplink from Odyssey. Once the rover receives
the uplink, the state changes back to the normal no pend-
ing request state. Rover tasks (such as a traverse) need
the uplinked data before executing, so it places a local con-
straint that shared state be no pending request dur-
ing its scheduled interval. There are no shared resources
although communication requests from a MER have effects
on many local resources of both the MER and Odyssey. All
of the shared activities have active master and passive slave
roles. MER and Odyssey both take the master role for activ-
ities labeled for them in Figure 3.

CASPER planners for each of the MERs and Odyssey
first build their three-day plans separately to optimize sci-
ence data return, resolving any local constraints on memory,
power, battery energy, etc. The three-day schedules consti-
tute over 600 tasks for each MER and over 1400 for Odyssey
with 30 state/resource variables for each MER and 22 for
Odyssey.

When coordination begins, the planners send their com-
munication requests to the other planners. Before these up-
dates are received, the initial views of the shared uplink sta-
tus are shown in Figure 4. The MERs begin with conflicts
with their traverse tasks because the uplink has not yet been
received from Earth. The coordination algorithm commands
the planners to repetitively process shared task updates, re-
plan to resolve conflicts by recomputing the shared state and
modifying scientific measurement operations to adjust for
the increased power and memory needs, and send task up-
dates. After a minute and a half, MER A, B, and Odyssey

no pending
request

odyssey
received

request
no pending

request
wait for
uplink

critical
pancam

comm
earth

comm
odyssey

MER activities
Odyssey activities

no pending
request

request
no pending

request
wait for
uplink

comm
earth

comm
odyssey

critical
pancam

comm
earth

comm
earth

through
Odyssey

direct

must-be wait

must-be wait

wait for
uplink

wait for
uplink

downlink critical data uplink from Earth

Figure 3: Downlink/uplink states for a rover

no pending
request

Odyssey

MER A

must wait

comm earth

MER activities Odyssey activities

critical
pancam

comm
earth

comm
earth

comm odyssey

traverse
comm
earth

no pending
request

request no pending
request

wait for
uplink

critical
pancam

comm
earth

comm
earth

C
oo

rd
in

at
ed

must wait

comm odyssey

traverse

no pending
request

odyssey
receivedrequest

no pending
request

wait for
uplink

comm earth

comm
earth

Figure 4: Downlink/uplink shared state for MER A. From
top to bottom, Odyssey’s initial view, MER A’s initial view,
and the common view after coordination.

agree on routing the downlink and uplink through Odyssey
to get the uplinked commands in time for the traversal on
different days.5 The resulting shared state is shown at the
bottom of Figure 4. The ASPENs reach consensus that co-
ordination is complete and sleep while waiting for task up-
dates.

Then we triggered an anomaly in MER A’s plan causing
it to cancel its first day’s tasks and shift the entire sched-
ule forward a day. Before sending the updated shared tasks,
replanning was issued to resolve local constraints to avoid
propagating inconsistent state information to Odyssey. All
conflicts were resolved in a few seconds except the traverse
conflicts with a wait state. Then MER A sends a task up-
date to restart coordination. Coordination completes in less
than a minute with data again being routed through Odyssey.

While we have only experimented with simple protocols,
this application of ShAC to the Mars scenario shows how
planners can coordinate during execution while making min-

5Odyssey’s planner ran on a SunBlade 1000, and the MERs ran
on a Sparc Ultra 60 and 80.



imal concessions to ideal plans and responding to unex-
pected events. In the next section, we discuss how ShAC
builds on related work and discuss new research challenges
for decentralized, coordinated planning.

Discussion and Related Work
Conflicts among a group of agents can be avoided by re-
ducing or eliminating interactions by localizing plan effects
to particular agents (Lansky 1990), and by merging the in-
dividual plans of agents by introducing synchronization ac-
tions (Georgeff 1983). In fact, planning and merging can
be interleaved (Ephrati & Rosenschein 1994). Earlier work
studied interleaved planning and merging and decomposi-
tion in a distributed version of the NOAH planner (Corkill
1979) that focused on distributed problem solving. More
recent research builds on these techniques by formalizing
and reasoning about the plans of multiple agents at multi-
ple levels of abstraction to localize interactions and prune
unfruitful spaces during the search for coordinated global
plans (Clement & Durfee 2000). While this is a central-
ized approach, work is needed to apply these techniques that
leverage abstraction in a decentralized framework to reduce
communication and computation during coordination. Ab-
stract plan information can even automate the discovery of
agent relationships that our approach pushes off on the do-
main modeler.

DSIPE (desJardins & Wolverton 1999) employs a central-
ized plan merging strategy for distributed planners for col-
laborative problem solving using human decision support.
Like our approach, local and global views of planning prob-
lem help the planners coordinate the elaboration and repair
of their plans. DSIPE provides insight into human involve-
ment in the planning process as well as automatic informa-
tion filtering for isolating necessary information to share.
While our approach relies on the domain modeler to spec-
ify up front what information will be shared, ShAC supports
a fully decentralized framework and focuses on interleaved
coordination and execution.

In many ways this work is following the Generalized Par-
tial Global Planning approach to using a mix of coordina-
tion protocols tailored for the domain (Decker 1995). ShAC
offers an alternative framework for separating implementa-
tion of these mechanisms from the planning algorithms em-
ployed by specific agents. Unlike GPGP, ShAC provides a
modular framework for combining lower-level mechanisms
to create higher-level roles and protocols. Our future work
will build on GPGP’s evaluations of mechanism variations to
better understand how agents should coordinate for classes
of domains varying in agent interaction, communication
constraints, and computation limitations.

Grosz’s shared plans model of collaboration presents a
theory for modeling multiagent belief and intention (Grosz
& Kraus 1996). ShAC’s model and manipulation of shared
activities provides basic mechanisms for agents to commu-
nicate and establish beliefs, intentions, and goals for itself
or a group. Using ShAC to reason about the mental states
of agents, the shared plans model and work based on BDI
(belief-intention-desire) models of agents (Rao & Georgeff
1995) can be exploited in ShAC.

Finally, TEAMCORE provides a robust framework for
developing and executing team plans (Tambe 1997; Pyna-
dath et al. 1999). This work also offers a decision-theoretic

approach to reducing communication within a collaborative
framework. Research is needed to investigate the integration
of coordinated planning with robust coordinated execution.

An assumption commonly made in multiagent research is
that agents will be able to communicate at all times reliably.
In the Mars scenario, the spacecraft communicate with each
other in varying time windows and frequencies, and the two
MERs can never directly talk to each other. Establishing
consensus on beliefs and intentions is impossible without
certain communication guarantees (Mullender 1995). Un-
derstanding the communication patterns that make consen-
sus possible and the overhead for establishing consensus is
critical for multiagent research.

Conclusion
We have introduced shared activity coordination as an ap-
proach to designing role-based coordination mechanisms for
planning agents. ShAC provides several coordination capa-
bilities upon which we have specified several higher-level
coordination protocols, including a mapping of a distributed
constraint satisfaction algorithm into distributed planning.
We have also described an algorithm for continually coordi-
nating planning agents during execution using these proto-
cols. While our future work is aimed at evaluating the bene-
fits of these protocols for different classes of multiagent do-
mains, we validate our approach in coordinating three simu-
lated spacecraft in the presence of an unexpected event.

Acknowledgments
The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

References
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000a. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. ECP,
300–307.
Chien, S.; Rabideu, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett,
T.; Stebbins, G.; and Tran, D. 2000b. Automating space
mission operations using automated planning and schedul-
ing. In Proc. SpaceOps.
Clement, B., and Durfee, E. 2000. Performance of coordi-
nating concurrent hierarchical planning agents using sum-
mary information. In Proc. ATAL, 213–227.
Corkill, D. 1979. Hierarchical planning in a distributed
environment. In Proc. IJCAI, 168–175.
Decker, K. 1995. Environment centered analysis and de-
sign of coordination mechanisms. Ph.D. Dissertation, Uni-
versity of Massachusetts.
desJardins, M., and Wolverton, M. 1999. Coordinating a
distributed planning system. AI Magazine 20(4):45–53.
Ephrati, E., and Rosenschein, J. 1994. Divide and conquer
in multi-agent planning. In Proc. AAAI, 375–380.
Georgeff, M. P. 1983. Communication and interaction in
multiagent planning. In Proc. AAAI, 125–129.



Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86:269–358.
Kraus, S.; Sycara, K.; and Evanchik, A. 1998. Reaching
agreements through argumentation: a logical model and
implementation. Artificial Intelligence 104:1–70.
Lansky, A. 1990. Localized search for controlling auto-
mated reasoning. In Proc. DARPA Workshop on Innov. Ap-
proaches to Planning, Scheduling and Control, 115–125.
Mullender, S. 1995. Distributed Systems. Addison-Wesley
New York.
Pynadath, D.; Tambe, M.; Cauvat, N.; and Cavedon, L.
1999. Toward team-oriented programming. In Proc. ATAL.
Rao, A. S., and Georgeff, M. P. 1995. BDI-agents: From
theory to practice. In Proc. ICMAS.
Shoham, Y., and Tennenholtz, M. 1992. On the synthesis
of useful social laws for artificial societies. In Proc. AAAI,
276–281.
Tambe, M., and Jung, H. 1999. The benefits of arguing in
a team. AI Magazine 20(4).
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83–124.
Yokoo, M., and Hirayama, K. 1998. The distributed con-
straint satisfaction problem: Formalization and algorithms.
IEEE Trans. on KDE 10(5):673–685.


