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Abstract
Agents interacting in a multiagent environment not only
have to be wary of interfering with each other when carry-
ing out their tasks, but also should capitalize on opportuni-
ties for synergy. Finding overlapping effects between
agents’ plans can allow some agents to drop tasks made un-
necessary by others’ actions, to reduce the cost of execution
and improve the overall efficiency of the multiagent system,
thus creating synergy. In this paper we define criteria for
finding synergy and develop algorithms for discovering
synergy between planning agents that exploit hierarchical
plan representations. Our results show that our approach not
only can dramatically reduce the costs of finding synergies
compared to non-hierarchical strategies, but can also find
synergies that might otherwise be missed.

Introduction

Agents interacting in a multiagent environment have the
ability to act in ways that are both felicitous and deleteri-
ous to the goals of other agents. For example, an agent
responsible for cleaning a kitchen in a house and an agent
responsible for cleaning the floors of the whole house can
help or hinder each other’s efforts. The floor-cleaning
agent could sweep the floor of the kitchen, thus allowing
the kitchen-cleaning agent to mop the floor without having
to sweep it first itself. On the other hand, the floor-cleaning
agent could take the shared broom off to other rooms first,
leaving the kitchen-cleaning agent waiting for the broom.

Various researchers have studied strategies for identify-
ing and resolving unintended conflicts between agents’
plans (see Related Work section). Recently, Clement has
shown that utilizing summary information in agents’ plan
hierarchies is an efficient and reliable means for conflict
detection and resolution between multiagent plans (Clem-
ent, 1999a). In this paper, we build on Clement’s approach
to also efficiently detect and exploit unexpected synergies
(overlapping objectives) to the benefit of the agents.

A synergy arises when a plan or subplan of an agent
happens to achieve effects that another agent also planned
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to achieve. For example, in the case of the cleaning agents,
both agents want to make the kitchen floor is clean, and
left to themselves would redundantly clean it. Rather than
both achieving the same results, the agent whose plan’s
effects (also called postconditions) are subsumed by those
of the other agent can drop that plan, and instead depend
on the other agent to establish those conditions. We say in
this case that the subsuming and subsumed plans are
“merged” to reduce the overall cost of execution.

Agents that are inherently benevolent might choose to
merge plans to minimize the aggregate effort among them,
even if one agent ends up doing most of the work. When
agents’ plans are mutually subsuming (have the same ef-
fects), however, the criteria for deciding which will drop
its plan could be based on some form of compensation for
agents who are self-interested. Alternatively, agents might
assign responsibilities to balance the costs accrued by the
agents, or to support parallelism among activities to mini-
mize the time-to-completion for the slowest of the agents.
Plan merging is not without its disadvantages, however. It
introduces dependencies among agents that decrease their
individual autonomy. It also can introduce delays as agents
wait for others to achieve results that might have been done
faster locally.

Finding and exploiting serendipitous synergies can also
be computationally and communicatively intensive, to the
point where the effort spent synergizing exceeds the sav-
ings accrued by the synergies! Agents operating in com-
plex environments might consider numerous alternative
plans, and the number of ways each of these plans could
interleave execution with others’ plans leads to exponential
computation. Our contributions in this paper are that we
use insights from hierarchical planning (Korf, 1987;
Knoblock, 1991) and hierarchical coordination (Clement,
1999b) to develop a top-down approach to multiagent plan
merging at abstract levels using agents’ hierarchical plan
representations. Our techniques help reduce the problem
complexity and permit the discovery of additional merging
opportunities to improve agents’ joint plan execution.

In the remainder of this paper, we begin by briefly
summarizing related prior work. We then present the spe-
cifics of our hierarchical plan representation, and review
Clement’s hierarchical plan summarization process, which
we rely on to discover and perform abstract merges. We
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then formalize the concept of plan merging, or synergy,
between plans in hierarchical plans, and describe a top-
down algorithm that we have implemented that is capable
of solving a restricted case of the synergy problem pre-
sented here. This is followed by an analysis of the benefits
of our techniques along with experimental evaluation. We
conclude the paper by outlining our future work.

Related Work

The idea of merging plans to increase efficiency is not a
new one. Yang has done work on plan step merging for a
single agent with conjunctive goals with the idea of remov-
ing redundancy between solutions to individual conjuncts
of the larger goal (Yang, 1997). The rationale, based on
work first done by Korf (Korf, 1987), was that dividing a
larger, more complex problem into several separate (and
simpler) subproblems and then merging the resultant plans
into a single plan for a single agent to execute could be
more efficient than simply solving the complex problem.

Yang gives a formal definition for what it means for a
set of plan steps to merge with another set: a set of grouped
plan steps ∑ can be merged with a plan step µ (meaning µ
replaces ∑ in the plan) if the preconditions of ∑ subsume
those of µ, the postconditions of µ subsume those of ∑, and
the cost of µ is less than the cost of ∑. In other words, µ
achieves more effects and needs fewer preconditions when
executed, and is cheaper to carry out as well. More recent
work by Horty and Pollack (Horty et. al., 2000) on evaluat-
ing new goal options given an existing plan context relies
on Yang’s definition of plan step merging, as does our own
work (though currently we ignore the precondition re-
quirement). When we refer in this paper to two plan steps
merging, what we mean is that one plan step will replace
the other in the resultant multiagent plan.

Wilkins’ SIPE system (Wilkins, 1988) is capable of goal
phantomization, where existing operators are grounded or
constrained so as to achieve new goals (preventing redun-
dant operator instantiation). This process is analogous to
our work, though we operate in a multiagent context and
remove redundant steps from plans rather than not adding
them in the first place. We also (as yet) do not handle op-
erators with variables. Ephrati has extended Yang’s work
on plan merging to the multiagent context by farming out
subgoals of a single goal to different agents to solve and
then integrate (Ephrati et. al., 1994). Ephrati’s system was
able to handle both positive and negative interactions be-
tween plans, but did not deal with agents with their own,
independent goals. Georgeff did early work on resolving
conflicts and potential clobbering actions between non-
hierarchical plans of different agents with different goals
by grouping plan steps and inserting synchronization ac-
tions, but did not handle positive interactions (Georgeff,
1983).

Most recently, Clement has examined ways of coordi-
nating hierarchical plans between multiple agents and us-
ing summary information to speed his process, but his
work also avoided handling positive interactions (Clement,

1999a). Goldman and Rosenschein have researched the
benefit of implementing general rules of cooperative be-
havior in multiagent systems that, because they are coop-
erative, has more in common with Yang’s plan merging
efforts than multiagent coordination (Goldman et. al,
1994). Unlike Goldman and Rosenschein’s work on coop-
erative behavior, we discover explicit opportunities for
synergy that are specific to the plans of the executing
agents rather than simply general environmental rules. Von
Martial (Von Martial, 1990) presents a relationship taxon-
omy of both positive and negative interactions between
autonomous planning agents that is relevant to our own
plan step merging criteria. The system we present here
handles both Von Martial’s equality relationships and con-
sequence relationships, but not favor relationships.

Hierarchical Planning and Computing Plan
Summary Information

For individual agents, hierarchical plans offer several
advantages over traditional, STRIPS style “flat” plans.
Hierarchical planning has been recognized as an efficient
form of planning that focuses the search through plan
space for an agent carrying out the planning problem
(Knoblock, 1991). Instead of having to try out a large
number of possible plan orderings, plan hierarchies limit
the ways in which an agent can select and order its primi-
tive operators, and thus reduce the size of the search space.
In multiagent systems, agents need to worry not only about
the internal flexibility of their own plan representations,
but also need flexible ways in which to interact with other
agents as well. We have built a system capable of taking
advantage of positive interactions between abstract plans
within different agents’ plan hierarchies that require less
specific commitments between agents to carry out, and
thus still take advantage of the innate flexibility offered by
the hierarchical plan representation.

Before exploring our multiagent plan synergy system,
we should outline our definition and representation of hier-
archical plans that our constructed system is capable of
merging. A plan hierarchy is a hierarchy comprised of
plans; at the higher (more abstract) levels of the hierarchy,
each plan achieves more effects than a plan at a lower lev-
el, and the bottom of the hierarchy is composed of primi-
tive plans that are the operators that an agent can directly
execute. In essence, a plan hierarchy represents a set of
possible plans that all achieve the same overall goal. Each
possible complete refinement of a hierarchical plan repre-
sents one possible non-hierarchical set of primitive plans
capable of achieving the goal of the hierarchical plan. A
partial refinement is still an abstract plan, just with some
expansion decisions already made (and thus representing a
smaller set of possible complete refinements).

Formally, we define a plan p (an element of a plan hier-
archy) as a tuple {pre, in, post, type, subplans, order,
cost}. Pre, in, and post are sets of conditions correspond-
ing to the preconditions, inconditions, and postconditions
of the plan. Preconditions are conditions that must hold



prior to the plan’s execution, inconditions are conditions
that must or may hold during execution, and postconditions
are conditions that will hold after execution (also known as
the effects of the plan). The type of plan p, type(p), has
one of three values: primitive, and, or or. An and plan is a
non-primitive plan that is accomplished by carrying out all
of its subplans, and an or plan is a non-primitive plan that
is accomplished by carrying out any one of its subplans.
An or plan is one in which the agent executing the plan has
a choice as to how it will accomplish the goal of the plan.
A primitive plan has no subplans. Subplans is a set of
pointers to the subplans of the plan. Order is a set of tem-
poral ordering constraints represented using precedence

relations between time-points, where each plan is an inter-
val represented by both a start and an end point (Vilain, et.
al., 1986). All ordering constraints in Order are between
time points of plan p’s Subplans. Constraints can be of
forms before(a, x, b, y), after(a, x, b, y), and same(a, x, b,
y) where a and b are plan steps in Subplans, and x and y are
either start or end (indicating whether the constraint is be-
tween the start point or the end point of the plan step).
Finally, cost is a real number representing the cost of exe-
cuting the plan. For a non-primitive plan p, pre, in, post,
and cost are implicitly encoded in the conditions and costs
of p’s primitive subplans. The summarization process we
describe next makes this implicit information explicit.

Figure 1 shows a partial plan hierarchy for the Kitchen-
cleaning agent (K) and the Floor-cleaning agent (F) de-
scribed earlier. For the sake of simplicity, only the post-
conditions are shown. A horizontal line connecting the
edges going to a plan’s children indicates the plan is of
type and, else it is of type or. The directional arrows be-
tween plans indicate temporal ordering constraints. k3 in
the kitchen agent’s hierarchy is an example of an or plan,
where the agent can either clean the kitchen with a mop or
a sponge. k2, on the other hand, is an and plan because
both of its subplans (k4 and k5) need to be taken. The ar-
row between k2 and k3 shows an ordering constraint, be-
fore(k2, end, k3, start), where the kitchen agent must clean
the floor before using a sponge or a mop to make the floor
shiny.

Reasoning about potential plan merges between abstract
plan steps across different agents’ hierarchies can be diffi-
cult because often information about the preconditions and
effects of an abstract plan are only represented in the
primitives of the plan, and not in the abstract plans them-
selves. Fortunately, Clement has designed a mechanism for
propagating such information up the plan hierarchy. This
enables reasoning about interactions between abstract plan
steps of different agents (Clement, 1999b). Clement’s Mul-
tilevel Coordination Agent (MCA) is capable of resolving
negative interactions between the hierarchical plans of
multiple agents by building up this plan summary informa-
tion to allow coordination between hierarchical plans at
any of the abstract or primitive levels of expansion.

To represent this summary information in the plan hier-
archy once it is calculated, Clement relies on the existing
plan tuple we have presented, with two modifications.
First, a plan condition c (c ∈ pre, in or post) is now repre-
sented as a tuple, {l, existence}. l is the condition literal,
the actual condition that will hold, and l(c) refers to the
literal of condition c. The existence of c can be must or
may. If it is must, then c is called a must condition because
l holds for every successful plan execution. If c is may,
it is called a may condition because it may hold, but is not
guaranteed to hold for every successful plan execution.
This introduction of must and may conditions is necessary
as, unlike a primitive plan step whose conditions are al-
ways necessary (i.e., always musts) an abstract plan step
with or plan step descendents will have different condi-
tions depending on how it is decomposed. In Figure 1,
must conditions are underlined, such as ChairsMoved for
k1, as it will be accomplished no matter how the plan is
decomposed. May conditions are not underlined, such as
MopDirty for k1, as the mop will only be dirty if the agent
uses the mop (and not the sponge).

Clement’s second change is to replace cost with mincost
and maxcost, thus specifying a range of possible costs of
the plan step. This is done for reasons similar to the ones
outlined above. maxcost of an or plan is the largest max-
cost of its subplans, while mincost of an or plan is the
smallest mincost of its subplans. maxcost and mincost of
an and plan are the sum of the maxcosts or mincosts of the
members of its subplans¸ respectively. Summary informa-
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tion is calculated by recursively propagating information
from the leaves of the hierarchy to the root plan.

Discovering Multiagent Plan Step Merges

To discover possible merges of plans between different
agents, we have constructed a Synergy Agent (SA) capable
of finding and implementing plan step merges between
different agent plans. Agents wishing to have their plans
synergized send their plan hierarchies to the SA (which
itself could be one of the synergizing agents) via messages
passed over the CoABS grid (CoABS, 2002). The SA
identifies and implements sets of merges by removing re-
dundant plan steps and sending to the other agents addi-
tional constraints on how or when they should execute the
plan steps in their plan hierarchies to take advantage of the
discovered synergy (the following section will explore this
in more detail.)

The SA currently finds only pairwise merges; if three or
more agents can merge plans such that only one of them
needs to execute a plan step to satisfy them all, the SA can
find such a merge through repeated discovery and adoption
of pairwise merges. The SA can determine if any two plans
in two different plan hierarchies can merge by first calcu-
lating the summary information for each of the two hierar-
chical plans using Clement’s techniques. Then the SA ex-
amines the summarized postconditions of the two plans. If
one of the two plans has a set of summarized must post-
conditions that subsumes the summarized must postcondi-
tions of the other plan, then they can be merged (this is half
of Yang’s original definition). More formally, we say that
plan step pi can merge with plan step pj (meaning pj re-
places pi in the new plan) if and only if

Intuitively, the SA should be able to merge on may con-
ditions as well. Since may conditions at a higher level of
abstraction are must conditions at a lower level, to take
advantage of possible merges between may conditions the
SA must further decompose the hierarchy to the point that
the may conditions become must. In Figure 1, one possible
merge would be between k2 and f2, as they share the same
must postconditions (ChairsMoved, DustpanFull, Floor-
Clean). Other merges include k1 and f2, and k1 and f1. The
best merge(s) to perform will depend on the comparative
cost reduction(s) achieved by the merge(s), and the time
required to discover the merge(s) in the hierarchies.

Performing Plan Merging between Different
Agent Hierarchies

Once the SA has identified a pair of plan steps within dif-
ferent agent hierarchies that can merge, it must perform a

series of operations to implement the merge. First, the plan
step whose postconditions are subsumed must be removed
from the agent’s hierarchy. If the subsuming plan step is a
descendant of a plan of type or, then the SA must request
that the executing agent constrain its plan hierarchy so that
it is guaranteed to execute the subsuming plan. The same
follows for the agent with the plan step being subsumed
(though this agent doesn’t actually execute the subsumed
plan). The SA requests this by partially expanding the plan
hierarchy to the point that this selection has been made
(thus limiting the possible executions of the hierarchical
plan) and returning this partial expansion to the waiting
agents. In addition, if the plan step being removed is part
of a larger partial order of plans in the plan hierarchy, the
SA also requests that the requisite inter-agent temporal
ordering constraints be implemented so that the subsuming
plan step of the two being merged is substituted in the par-
tial order for the one being removed and the agent having
its plan removed is constrained to wait for the agent with
the subsuming plan step to execute it. Previous work has
shown that it is possible to map from this solution repre-
sentation to an agent executable representation, such as one
used by UM-PRS (Cox, 2001), where all inter-agent plan-
ordering constraints are represented as wait conditions and
synchronization messages in the agent’s internal plan rep-
resentation.

Synergy Algorithm

Given the formalization of merging plan steps from differ-
ent agents’ plan hierarchies (presented earlier) and the ap-
proach to implementing individual merges (outlined in the
previous section), the challenge is to find effective sets of
plan step merges that reduce the cost of their execution. To
do this, the SA uses a top-down search algorithm. The
search is called a top-down search because the first plan
step merges that are discovered are ones between plan
steps at an abstract level within the agents’ hierarchies.
Our current implementation assumes that there are no re-
maining conflicts between agents’ plans (that is, any con-
flicts have been resolved prior to coordination with Clem-
ent’s techniques). We assume that the goal of the SA is to
find merges that help minimize the total cost expended by
all agents, and thus the SA values solutions based on the
total cost of the plan hierarchies.

Figure 2 shows a series of top-down expansions of the
agents’ plan hierarchies that gives a sense of how the SA
uses this top-down search to discover plan step merges.
The SA starts at the root of the hierarchies and expands
downwards until it finds plan steps that can be merged. In
the figure, the merge it has discovered is between k2 and
f2, where f2 replaces k2, (though in the actual algorithm it
would have found other merges along the way as well).
The merge requires the floor-cleaning agent to commit to
an execution of its plan hierarchy in which it guarantees to
select f2 (and thus sweep the floor) when expanding f1. In
addition, to ensure temporal consistency, the SA has added
an ordering constraint between the endpoint of f2 and the

( )




























=

=∈∃
→=∈

∀
)()(&

)(&)(,

)(&)(

ji

jjjj

iii

i

clcl

mustpexistenceppostcc

mustcexistenceppostc

c



starting point of k3 in place of the ordering constraint be-
tween the endpoint of k2 and the starting point of k3 (as
the kitchen-cleaning agent still has to wait until the floor is
swept to mop it). In our algorithm, we refer to the most
abstract plan steps of a partially expanded plan hierarchy
as a frontier (similar to the frontier of a search process
through a search tree). A frontier is only valid if the total
set of summary postconditions of all plan steps on the fron-
tier is equivalent to the set of summary postconditions in
the original root plan step of the hierarchy. In Figure 2,
each set of plan steps divided by the solid lines depicts the
two current plan frontiers of the two cleaning agents.

The inputs to the algorithm are the top-level plans of
each of the two agents being merged. In the example
above, these were k0 and f0. (Note that our algorithm sup-
ports the merging of any number of agent plans, but with-
out loss of generality, we present how it functions with
only two agents being merged.) A state in our algorithm is
a tuple {frontA, frontB, orderings}. frontA and frontB are
the current plan frontiers of the coordinating agents. Fi-
nally, Orderings is the set of inter-agent and intra-agent
causal relations added by merging and expanding plans.
An example state from Figure 2 (and one that represents
the bottom-most set of plan steps in the figure) has frontA
= {kx, k3}, frontB = {fx, f2} and orderings = {before(f2,
end, k3, start)}.

Figure 3 shows our synergy search algorithm, the heart
of the SA. The algorithm begins by de-queuing the first

search state from the search queue. If the de-queued state
is not already on the closed list of states, it is inserted onto-
the closed list and the loop proceeds. Otherwise, the state is
discarded and a new state is de-queued. The algorithm
then generates successor states created by merging plans.
In the MergePlans function, states are tested to determine
if plans on one agent’s frontier (frontA) could merge with
plans on the other agent’s frontier (frontB). For each pair
of plans that are found to be able to merge between the two
frontiers (based on the criterion described earlier), the SA
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Search Algorithm

s = newSearchState();
s.frontA = top-level plan of agent A
s.frontB = top-level plan of agent B
s.orderings = NULL;
Push(SearchQueue, s)

Begin Loop
If SearchQueue empty, exit

s := Pop(SearchQueue)

If s ∈ ClosedList, skip state and continue

Insert(s, ClosedList)

PruneFrontiers(s);

;;merge all possible plans
∀ x, y (x ∈ s.frontA, y ∈ s.frontB){
if postcondSubsume(x, y)

s2 = MergePlans(x, y, s)

else if poscondSubsume(y, x)
s2 = MergePlans(x, y, s)

if(!CycleDetect(n2)){
Push(s2, SearchQueue)
Insert(s2, SearchQueue)
}

};;end for all x, y

;;generate all possible frontier expansions
∀ x (x ∈ s.frontA x OR x∈ s.frontB,
x.type ≠ primitive, x.pruned = false)
{

s2 = ExpandPlan(x, s)
Insert(s2, SearchQueue)

} ;;end for all x
End Loop

MergePlans(a,b,n){
s2 = Copy(s)
Remove(b, s)
UpdatePartialOrderings(a, b, s)
Return s2
}

ExpandPlan(a, n){

s2 = Copy(s)
Remove(a, s)
Insert(a.subplans, s)
SubstPartialOrderings(a, a.subplans, s)
Return s2
}
End Algorithm

Figure 2



generates a new search state in which the plan that was
subsumed is removed from its corresponding frontier.

The algorithm also generates successor states by ex-
panding existing plan steps. For each plan of type and on
each frontier, it generates an additional search state in
which the plan step has been replaced on the frontier by its
subplans. For each plan of type or on either frontier, the
algorithm enqueues a new state for each subplan of the
plan step where the or plan step has been replaced by a
subplan. This expansion of or plan steps allows for poten-
tial merging of children of an or plan by committing the
executing agent to a particular subplan. Newly generated
states are pushed on to the end of the queue, making the
search breadth-first. After all successor states are enqueued
on the queue, the loop repeats.

When the algorithm generates a successor state in which
a merge has been performed, it marks it as a potential solu-
tion. Marked states are converted to solution candidates if
the total cost of the state is less than all previously seen
solution candidates. Though the SA could conceivably just
ship back to the waiting agents the required modifications
to be made to implement a set of discovered merges, al-
lowing the waiting agents to make the changes themselves,
it currently creates modified plan hierarchies for each solu-
tion candidate and returns them in whole to the waiting
agents. To do this, it first implements the inter-agent order-
ing constraints in Orderings as wait conditions and signal
messages to be passed between agents. To convert the
frontiers and intra-agent ordering constraints in Orderings
to plan hierarchies the SA creates a new root plan for each
agent, assigns its frontier to the new root plan’s subplans
list, and adds all the agent’s intra-agent ordering con-
straints stored in the search state’s orderings to the root
plan’s orderings.

Plan Frontier Pruning
To avoid the unnecessary generation of search states, be-

fore a de-queued state generates its successor states based
on the contents of its frontiers, the SA checks each plan on
one frontier against the plans on the other agent’s frontier
to determine if the plan has postconditions that overlap
with those of any plan on the other frontier. Plans that the
SA identifies as having no overlapping postconditions are
marked as “pruned,” meaning that the plans are not ex-
panded to generate new search states, since a plan with no
overlapping postconditions will not have any children with
postconditions that overlap either. More generally, differ-
ent agents’ hierarchies that predominantly affect different
aspects of the world will have many pruned plan steps,
allowing the SA to find the few actual merges much more
quickly than it could otherwise. This feature can signifi-
cantly reduce the search space in problems where there is
little potential for synergy, as it eliminates a large number
of plan comparisons and possible search states. It is im-
plemented as the PruneFrontiers function in Figure 3.

Maintaining Partial Orders and Detecting Cycles
Each time the SA generates a new search state from a

merge, it must modify the partial orderings over agents’
plans in the search state to implement this merge and en-
sure that dependencies on the plan being removed are re-
placed with dependencies on the plan replacing it. To mod-
ify the ordering constraints the SA must carry out carry out
three steps: First, the SA removes all ordering constraints
between either the start point or end point of the plan step a
being removed and the start or end point of some other
plan b of form before(a, x, b, y) (or after(b, y, a, x)) from
the constraints list. Second, for each of the previously re-
moved constraints, a new constraint is added between b
and the equivalent point of the plan step c replacing the
removed plan of form before(c, x, b, y). Finally, for all
points d of plans in constraints of form before(d, z, a, x)
(or after(a, x, d, z)) and points b (defined above), we add a
constraint of form before(d, z, b, y). This ensures that all
existing orderings are preserved. This merging is accom-
plished by the UpdatePartialOrderings function in the
MergePlans function in Figure 3. Once the SA has im-
plemented these ordering constraint changes, the CycleDe-
tect function in Figure 3 determines if the transitive closure
of the partial orderings between the plans in both frontiers
contains any cycles and thus must not be added to the solu-
tions list or the search queue. The final step of Figure 2
shows an example of how the ordering constraints would
be modified if f2 were merged with k2.

To maintain temporal consistency, the SA also modifies
partial orderings when it expands plan steps in search
states as well. When a child or the children of a plan re-
place it on a frontier, all constraints between it and other
plans on either frontier are removed by the SA, and it cre-
ates new constraints between these other plans and its chil-
dren, such that the existing temporal orderings are ensured.
To do this, for each constraint between the expanded plan
step p and another plan step q, the same constraint is added
between q and all of p’s children (if p is an and plan step)
or the selected child (if the p is an or step). This functional-
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ity is implemented in the SubstPartialOrderings function
in the ExpandPlan function in Figure 3. Figure 4 shows
how the ordering constraints would be modified if the al-
gorithm expanded k2. For example, before being ex-
panded, kx is ordered before k3, so after the expansion, kx
must also be ordered before k3.

Evaluation

Our top-down approach to merging between hierarchi-
cal plans of multiple agents has several advantages over
more traditional, primitive-level approaches. One of the
key advantages of a hierarchical approach arises when
agents have different primitives for accomplishing actions,
but their abstract plans accomplish the same (or subsumed)
effects. For example, as a modification to Figure 1, let us
say that agent K cleans floors using a two-step process
where the first step accomplishes (ChairsMoved and
DogMoved) and the second step achieves (FloorClean and
CupboardsShut). That is, K clears out the room and then
shuts cupboards while moving around sweeping. On the
other hand, agent F gets the room set first by achieving
(ChairsMoved and CupboardsShut) and then chases the
dog out while cleaning for the effects (FloorCleaned and
DogMoved). In this case, none of the primitive steps can
be merged, but the abstract steps that combine each of the
pairs of primitives can.
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A bottom-up approach where primitives were collected
into groups and then groups were in turn merged could
identify larger merges. This approach, while able to iden-
tify abstract merges akin to the ones the top-down ap-
proach does (and potentially others that the top-down ap-
proach would not), suffers from the problem of not know-
ing what sets of primitives to group together. Given n
primitives at the bottom of a tree, the number of possible

subsets of primitive plans is∑ =
−n

k
kknn

1
!)!/(! = O( n2 ).

Yang’s complexity analysis of this method reveals the
same exponential result (Yang, 1997). Yang presents an
O(nlog(n)) approximation algorithm to merging, although
this algorithm relies on a total order over the individual
plans, which is an assumption not made of the plans han-
dled by our algorithm. So, just computing all possible sub-
sets of primitives leads to an exponential time complexity,
let alone having to compare one exponential set of primi-
tive subsets to the set of subsets of another agent’s plan.
The top-down approach relies on the pre-existing structure
and organization of primitives into more abstract tasks (just
one of many possible subsets), and thus avoids such com-
plexity issues. That is, the hierarchy represents a single
possible grouping of primitives, and thus limits the possi-
ble comparisons between subsets of primitives.

Empirical evidence also shows that using a top-down
approach to find merges is potentially faster than finding
the set of possible merges at the primitive level. Figure 5
presents an experiment showing the number of plan com-
parisons performed (checking postconditions against post-
conditions) to arrive at a merged solution. We ran both our
top-down system and a baseline system (that simply checks
the primitives of the two different agent plan hierarchies
against each other for merges) on a set of hierarchies with
a uniform-depth of five, a branching factor of two, and a
total ordering over the primitives, where the two hierar-
chies had varying numbers of possible merges between
plans (both abstract and primitive). We performed experi-
ments on an 850 MHz Pentium III with 400 megabytes of
RAM. The data points are averages of thirty independent
runs, all with standard deviations less than 0.1 seconds.
The Abstract Average line represents the average CPU
time needed to arrive at the cheapest solution possible
given the set of possible plan-step merges, while the Primi-
tive Average line shows the time required to find this
merge at the primitive level. As is clear from the graph, as
the number of potential merges increases, the time to find
an abstract solution using our top-down method stays rela-
tively constant, while computing the solution at the primi-
tive level increases linearly. This is because as the primi-
tive-only algorithm merges more plan steps, the algorithm
must spend more time integrating the partial orderings of
the plans and checking for potential cycles. When there
are more possible merges, our top-down approach tends to
identify merges at higher levels of abstraction, requiring
less time to integrate partial orderings of the two hierar-
chies because of the fewer plan steps on the frontiers.

Though the graph in Figure 5 does show some benefit
to utilizing a top-down approach to finding synergy, the
actual speedup is not as significant as it could potentially
be, because the time to perform individual plan compari-
sons at the abstract level can be significantly longer due to
the larger number of summarized conditions at the abstract



level. We still see some improvement at the abstract level
because not all summarized must conditions at the primi-
tive level are must conditions at the abstract level (some
are mays and thus are not compared by the top-down ap-
proach), and some conditions appear more than once at
lower levels and are not duplicated at higher levels. Fur-
thermore, by extending our algorithm to handle merges
between hierarchies with both positive and negative inter-
actions (rather than only positive ones), we expect to see
even faster performance gains from finding solutions at the
abstract level, because of the time required to integrate the
additional ordering constraints required to resolve the
negative interactions. Clement has presented a similar
conclusion with regard threat resolution (Clement, 2001).

Another advantage of the top-down approach versus
simply merging plan steps at the primitive level hinges on
the increased flexibility abstract merges provide agents
when they go to execute their plans. To merge at the
primitive level, an agent is required to fully decompose its
plan hierarchy, committing to a set of choices of how to
decompose its plan (at or branches) prior to execution.
Performing merges at abstract levels leaves an agent with
options as to how it will choose to decompose its plan at
runtime, leading to more robust behavior. For example, if
plan step k3 (figure 2) were to replace another plan step in
another agent’s hierarchy, the kitchen-cleaning agent
would still have the option to either use a sponge or a mop
to clean the floor, whereas merging at the primitive level
will require a complete decomposition and selection of
primitives, forcing the kitchen-cleaning agent to commit to
either using the sponge or the mop prior to execution.

Finally, our top-down approach suffers from its own
thoroughness, since it effectively generates all possible
pairs of frontiers to check for synergy. This completeness
results in a large branching factor in the search, causing
significant slowdown. We hope to address this issue by
adding heuristics to guide the search to solutions faster in
future versions of the algorithm.

Conclusions and Future Work
We have presented a top-down methodology for discov-

ering and implementing synergy between agents’ hierar-
chical plans in order to reduce redundant execution. To
improve the efficiency of the algorithm, we hope to de-
velop better state space pruning mechanisms or to integrate
branch-and-bound techniques limiting the number of
search states explored. We currently support partially or-
dered plans, but would like to support explicit causal links
between pre- and post-conditions of plans. Our most re-
cent work has involved the integration of this merging
mechanism with Clement’s plan conflict resolution mecha-
nism (Clement, 1999b), allowing hierarchical plans to be
coordinated and merged in a single process, though this
work has yet to be evaluated. We look forward to re-
searching the possibility of merging the incomplete plans
of agents, where individually agents would be unable to

accomplish their plans, but with the help of others it would
be possible. Ultimately, our research goal is to construct a
mechanism for determining when it is worthwhile for
agents to engage in plan merging (and at what level of ab-
straction) given the tradeoffs between computation time
and execution time.
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