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Abstract 

This paper studies the causes of over-utilization of the 
resource capacities of a group of cooperative resource-
limited agents and what they can do to reduce their 
resource consumption. We view the problem of how an 
agent decides what tasks to execute and what to ignore as a 
type of multiagent planning problem. An agent in a 
multiagent setting has to prepare for all states it may reach 
as a result of its own actions, the environment transitions, 
as well as the actions potentially executed by other agents. 
Intuitively, the more information it knows about the plans 
of the other agents, the better it can allocate its resources 
for various tasks. Indeed, in our experiments over a 
particular sample space, on average, 50% of the actions are 
planned for the states it will never reach when an agent is 
completely ignorant about the plans of others. We have 
developed a protocol to allow agents to efficiently find out 
the relevant information about the plans of others. As the 
agent increases its level of awareness of the others’  plans, it 
can better identify the unreachable states to avoid spending 
resources on them. 

 

1. Introduction 
Most research on cooperative multiagent planning has 
been focusing on generating compatible plans to avoid 
negative interactions among agents. Techniques, such as 
negotiation (Zhang, Podorozhny, Rodion & Lesser 2000, 
Shintani, Ito & Sycara, 2000), plan merging (Georgeff 
1983, Ephrati, Pollack & Rosenschein 1995), hierarchical 
planning (Clement 1999), voting (Ephrati 1993), 
multiagent Markov Decision Processes (Xuan, Ping, 
Lesser, et al. 2000, Boutilier 1999) and Partial Global 
Planning (Durfee 1991), have been developed to resolve 
conflicts. These algorithms and protocols, while focusing 
on generating compatible plans and resolving contentions 
over shared resources, assume that each of the agents has 
sufficient resources to carry out its plan once coordinated. 

Our research is looking at the cooperative multiagent 
planning problem from another angle. We are interested 
in studying what a resource-limited agent in a multiagent 
setting can do when its plan violates its own internal 
resource constraints. For example, when an agent must 
periodically execute a number of tasks with deadlines, the 
utilization of each internal resource, e.g. computation time, 
sensors, actuators, of these tasks must be less than 1 
(Krishna & Shin 1997). We view the problem of how an 
agent decides what to attend to and what to ignore as a 
type of multiagent agent planning problem. The agent 
must be ready to react to situations that arise due to the 
combined influences of the actions it chooses to take, of 
the dynamic changes to the world caused by the external 
environment, and of the actions that other agents take that 

further alter the state of the world. The agent clearly has 
control over its own actions, but is to a large extent at the 
mercy of how the environment and other agents impact 
the state of the world. In this paper, we explore the 
possibility that, even when an agent cannot change the 
action choices that another agent might make, knowledge 
about what those choices can serve to reduce uncertainty 
and allow an agent to allocate its own limited resources 
better. 

Specifically, in a state-space planner like CIRCA 
(Musliner 1995, Atkins 1999), an agent has to prepare for 
all states it may reach as a result of its own actions, the 
environment transitions, as well as any of the possible 
actions that other agents are capable of taking. Just 
because an agent is capable of taking an action, however, 
does not mean that it will take that action, meaning that 
anticipating all possible actions on the part of other agents 
requires an agent to prepare for states that might never 
arise. Indeed, in our experiments over a particular sample 
space, on average, 50% of the states that an agent thinks it 
may reach can in fact be unreachable. In other words, the 
agent could waste 50% of its resources on watching out 
for and being prepared to react to states it will never 
encounter when it is completely unaware of the plans of 
other agents. Intuitively, as the agent increases its level of 
awareness of the others’ plans, it can better identify the 
unreachable states to avoid spending resources on them. 

Our strategy to solve this resource constraint problem is 
therefore to have the agents find out the relevant 
information about the plans of other agents. Based on this 
additional knowledge, the agents can refine their tentative 
plans to remove the unnecessary actions planned for the 
unreachable states. They should continue doing so until 
they satisfy their resource constraints or until they are 
fully aware of all relevant planned actions of the other 
agents. In other words, our principal contribution in this 
paper is a protocol that allows agents, which start by 
considering all possibilities, to incrementally exchange 
enough information to “relax” the initially over-
constrained plans by removing those unnecessary tasks. 

In this paper, we compare our approach with some 
related work in Section 2. We describe the context in 
which this work is done (Section 3) and the manner in 
which an agent identifies the potential reachable states for 
which it must be prepared (Section 4). We then present 
our protocol (Section 5) that allows agents to learn the 
relevant details of the plans of other agents by means of 
selective communications so that the agents can prune 
their state spaces to remove the unreachable states. The 
efficiency of this protocol will be dependent on the 
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choices that the agents make about what information to 
gather from others (Section 6). Through analysis, 
demonstration (Section 7), and empirical evaluation 
(Section 8), we show that our protocol is guaranteed to 
terminate and can dramatically improve the expected 
performance of the agents that employ it. We conclude 
with a summary of this work and outline directions for 
our further research (Section 9). 
 
2. Related Work 
Our resource constraint problem can be cast as a 
constraint satisfaction problem (CSP). The possible value 
assignments for an agent are its feasible local plans. The 
constraints for an agent come from two sides. The first 
one is its own resource capacity which it must not 
overflow. The other one is the actions executed by other 
agents. If those actions lead the agent to failure, the agent 
is bound to spend extra resources to ensure success. The 
goal is that each agent can find an effective local plan for 
which its local resource constraints are satisfied. 

There is already a large amount of work on CSP such as 
the asynchronous backtracking algorithm (Yokoo, Durfee, 
et al. 1992). What distinguishes our research from others 
is that our approach (Section 5) does not generate new 
constraints, i.e. nogoods, from the agents’ 
communications. On the contrary, our agent always starts 
with all possible constraints. It starts with an over-
constrained local plan, which factors in all possible 
constraints from other agents (their possible actions), with 
a very high utilization. The fact that our agents are trying 
to come up with plans rather than simple value 
assignments allows them take into consideration all 
possible constraints in the beginning. It is not always 
feasible for other traditional CSPs, e.g. 8-queen problem, 
to do so. The agent then communicates with the other 
agents to find out what demands, i.e. their actions, that 
lead to constraints are in fact void. It strips off these 
unnecessary constraints until it finds a plan that does not 
overflow its resource capacity. 

The agents perform this demand-driven information 
exchange to limit their searches for satisfying plans. 
Interesting enough, our work exhibits a duality with the 
work of (Conry, et al. 1990). Conry discusses how agents, 
among which information is distributed, may broaden 
their searches by requesting additional information from 
others when the agents are not making any progress. We 
are instead suggesting that additional information can be 
used to limit the scope of an agent’s search by discovering 
which part of the search space it does not need to consider. 
The heuristics in this paper and in Conry’s serve the same 
function to speed up the searches by trying to identify the 
“right”  information to ask for. 
 
3. Background 

We situate this research in a real-time environment where 
(1) external events are dynamic1; (2) it takes time for 
agents to gather and process sensory data to recognize the 
states they are in; (3) it takes time for agents to execute 
the corresponding (re)actions; (4) and more importantly, 
there are deadlines associated with actions that the agents 
cannot miss. When a real-time agent misses a deadline, it 
can mean catastrophe. The entire plan/mission is 
considered a failure. The Cooperative Intelligent Real-
time Control Architecture (CIRCA) has been developed 
to model the interactions between actions and external 
events explicitly, taking into account the real-time 
restrictions of execution (Musliner 1995). CIRCA selects, 
schedules and executes recognition-reactions assuming a 
resource-limited platform. Here, we concentrate only on 
the relevant features. More complete treatments of the 
overall CIRCA architecture are presented elsewhere 
(Atkins 1999). 

There are two main subsystems in CIRCA, the 
Artificial Intelligence Subsystem (AIS) and the Real-
Time Subsystem (RTS). The RTS executes the real-time 
control plans (see below) computed by the AIS. Inside the 
AIS are the probabilistic planner and the scheduler. The 
AIS constructs real-time control plans that are sets of 
recognition-reactions, called TAPs, 2  generated by the 
planner. The reactions are scheduled by the scheduler 
such that they will be executed before the deadlines 
whenever emerging system failures are detected. The RTS 
checks periodically whether the reactions should be 
executed by examining the corresponding recognition 
tests. CIRCA’s plan is therefore a cyclic (periodic) real-
time control plan of scheduled recognition-reaction pairs. 

Since the scheduler is working with a RTS with limited 
resources, it could be the case that not all of the requested 
TAPs can be scheduled. When this occurs, CIRCA 
calculates the probabilities of the agent reaching different 
states, called state probabilities. It finds a subset of TAPs 
by removing those states with state probabilities below a 
threshold. It keeps increasing this threshold until a 
schedulable subset is found. The idea behind this 
probability threshold cutoff heuristic is to prioritize the 
states of the world in any-time manner by their 
probabilities, so that the agent can devote its resources to 
respond to events that are more likely to arise over less 
likely ones (Li, 2001). The failure probability increases 
whenever this heuristic is used because some TAPs 
necessary to preempt possible (though less likely) failures 
are removed. Consequently the utility decreases. 
CIRCA’s utility function is defined using the Cobb-

Douglas function, ( ) ( )( )αα −+− 111 GF , where F is the failure 
probability, G the probability of reaching the goals, and 

( ]1 ,0∈α . CIRCA attempts to minimize the probability of 
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failure and maximize the probability of success (reaching 
the goals). 

The CIRCA state-space representation of the world is 
constructed from a set of STRIPS-like state features and 
state transitions (with preconditions and postconditions) 
included as part of the planner knowledge base. A state in 
the world model is created dynamically by applying a 
transition to its parent state with state features matching 
the preconditions. There are two types of transitions. 
Action transitions are explicitly controlled by the plan 
executor in the RTS, and thus only occur when selected 
during planning. Events and natural processes outside the 
agent’s control are modeled as temporal transitions, either 
“ innocuous”  temporal transitions (labeled tt) or 
“deleterious”  temporal transitions leading to system 
failures (labeled ttf). When there is a ttf in a state, CIRCA 
selects an action to preempt the failure. The action is 
called a guaranteed action because it is so scheduled that 
it is guaranteed to be executed before the ttf. A typical 
state diagram for planning is shown in Figure 4-1. It is the 
state diagram for agent FIGHTER. Action SHOOT-
MISSILE-1 is a guaranteed action to preempt the ttf 
BEING-ATTACKED. Another type of action that is also 
scheduled with real-time deadlines is called a reliable 
action. Reliable actions, however, do not preempt any 
failures. Action HEAD-TO-LOC1 is a reliable action that 
requires scheduling resources. 

A CIRCA agent in a multiagent setting builds on the 
single agent architecture described above. In addition, the 
agent distinguishes between private/local features and 
public/shared features of the environment. Private 
features of an agent are those features that no other agents 
are interested in but the agent itself, such as current fuel 
level. They do not show up in the state diagrams of other 
agents. Public features are those features that more than 
one agent is concerned about. It is through manipulating 
the public features that agents impact each other. For 
example, in Figures 4-1 and 7-1, COMM and ENEMY 
are public features shared by both BOMBER and 
FIGHTER, while HEADINGF and LOCF are private 
features that are accessible only by FIGHTER. 3 

Furthermore, in a multiagent setting, a CIRCA agent 
includes in its planning the public temporal transitions 
and public actions of other agents (labeled ttac) that affect 
some public features. Those are the temporal transitions 
and actions that change the public features other agents 
care about. Private temporal transitions and actions of 
another agent do not include in their postconditions any 
public features but only private features. For example, 
B:BOMB-1 and B:BOMB-2 are public actions of 
BOMBER in Figure 4-1, while action HEAD-TO-LOC1 
is private for FIGHTER. Temporal transitions FLY-TO-
LOC0, FLY-TO-LOC1 and FLY-TO-LOC2 are private 
for FIGHTER in Figure 4-1. In Figure 7-1, there are 
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transitions of the same names but they are private for 
BOMBER. There are no public temporal transitions in 
this example. 

The mechanism of private and public features lets an 
agent model only the relevant features of the world. It 
does not need to know the entire plans of other agents, but 
only those affecting public features. Since a state 
represented by an agent does not include the private 
features of other agents, it may correspond to a group of 
states represented by others. Because the number of states 
is exponential in the number of features, this abstraction 
significantly reduces planning complexity and state 
diagram sizes. 

Figure 4-14: Reachable States for  FIGHTER 

4. Reachability Analysis 
In some cases, an agent in a multiagent setting may fail 
because of uncertainty about the actions of other agents. 
The other agents cannot be expected to know what 
constitutes failure for the agent (which could in part be 
based on private features), nor can they promise not to 
affect the public features that are relevant to it. The agent 
therefore has to consider all states that might arise due to 
the transitions of the environment as well as due to every 
possible action executed by another agent. The agent has 
to be prepared for all of the states it may reach as a result 
of these transitions and actions. Regardless of whether a 
state is reachable from a sequence of environment 
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transitions (tts) or a sequence of others’ actions (ttacs) or 
a combination of both, the agent has to expend resources 
to schedule an action for the state to preempt any 
imminent failure. We call such an analysis a “reachability 
analysis” . Figure 4-1 shows the state diagram for a fighter 
hovering to defend two locations for any potential 
bombing activities by BOMBER based on a reachability 
analysis. FIGHTER includes in its planning, hence the 
state diagram, all public actions by BOMBER. 

Forming control plans based on such a straightforward 
reachability analysis suffices only when an agent has 
enough resources to handle all contingencies. In this ideal 
case, it can simply disregard (be proudly ignorant about) 
the plans of other agents. Regardless of which of the 
known possible actions the other agents choose to do, and 
thus which potential states it may thus encounter, it has 
the resources to always execute the proper reactions fast 
enough to preempt failures. Unfortunately, it is possible 
that the agent cannot schedule all the needed actions for 
all states it thinks it may encounter based on the 
reachability analysis due to over-utilization of resources. 
In terms of CIRCA, the utilization of each planned action 
(or TAP) is u = sum of the testing and execution time of 
the action divided by the period of the action. When the 
sum of all utilizations of the actions exceeds 1, no 
schedule is possible5 . The agent will not be able to 
provide real-time guarantees to all TAPs. 
 
5. Convergence to Reduce Resource 

Requirements 
If an agent has sufficient resources to preempt all 
emergent failures resulting from every temporal transition 
(tt) and temporal-transition-that-is-an-action (labeled ttac) 
of other agents, as based on the reachability analysis 
described in Section 4, then the agent is done. Because it 
has more than enough resources relative to the worst-case 
demand it envisions, it can make all the guarantees it 
wants to make, even if it ends up devoting some resources 
to situations that cannot possibly arise. Otherwise, the 
agent must reduce the number of contingencies it wants to 
be ready for. It can do so by finding out more precisely 
which actions other agents are planning to take and, more 
importantly, which actions they are not planning to take. 

We have developed a protocol that allows agents to 
exchange information about the relevant parts of their 
plans to reduce resource consumption in cases of 
insufficient resources. The protocol lets agents identify 
branches in the state diagrams that cannot be reached 
during execution and then eliminate the associated actions 
from their tentative plans. We assume the protocol is run 
after all agents have locally formed their reachability 
graphs and planned the actions they would like to take 
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of TAPs can sti ll be unschedulable even if the util ization is less than 1. 

(resources permitting). The protocol is described using C-
like code in Protocol 5-1. 
Inquiring agent () {  

Choose the next branching point that may reduce the 
resource utilization most;   // *  
Ask the agent corresponding to the branching point 
which actions/branches it selects; 
Upon receiving an answer, update its state diagram 
and local plan; 
Loop back to * until either the resource constraints 
are satisfied or all states are examined; 

}  
 
Answering agent () {  

When (being asked by another agent about a 
branching point) {  

Identify the corresponding state(s); 
Reply to the agent with the action(s) (or none) 
planned for the state(s); 
Associate the agent with the state(s); 

}  
// * *  
If (an action/branch is pruned from its state diagram 
and local plan) {  

Inform all agents associated with the state that 
the state is no longer planned for; 

}  
}  

Protocol 5-1 

A branching point is a combination of a state and the 
set of mutually exclusive ttacs in that state corresponding 
to alternative choices of actions by an agent. Each ttac 
corresponds to a branch in the state diagram that takes up 
certain resources. In terms of CIRCA, the resource is the 
utilization of the schedule. Protocol 5-1 inquires about 
these states in descending order of how much the 
estimated resource consumption is expected to be reduced 
if the unplanned actions (ttacs) for an agent in the state 
are pruned. 

If all features are public, i.e. there are no private 
features, then the answering agent can uniquely identify 
the state (if exists) that the inquiring agent is asking about. 
It will reply with the only action planned for that state. All 
but one ttacs in the state diagram of the inquiring agent 
are pruned. If there are public features, the inquiring agent 
sends a state description instead of all state features. A 
state description consists of public features and their 
values. The answering agent may have more than one 
state in its local state diagram that fits the state description. 
It must reply with all the actions planned for these states. 
In other words, the inquiring agent must prepare for more 
than one ttac in that state. 

It is important to note that an agent is asking what 
action another agent would execute if a state is reached. 
The answer can be found simply by looking up the TAPs 



in its tentative local plan based on the initial reachability 
analysis as described in Section 4. If the agent is asking 
whether another agent will execute an action, the other 
agent may not be able to answer at all because that will 
depend on its certainty about whether the state will be 
reached during run-time. 

Before running Protocol 5-1, each agent constructs its 
state diagram based solely on its own plan and its 
knowledge about how the world may evolve and what 
other agents may do. Each agent could have a quite 
different reachability graph from those of the others. In 
fact, agents typically do not even have the same set of 
state features. Therefore, some agents may think some 
states are reachable while others may think otherwise. For 
the example in Figure 4-1, FIGHTER thinks that enemies 
will appear at LOCF == LOC2, while BOMBER may not 
concur. In cases of insufficient resources to handle all 
states in their respective state spaces, Protocol 5-1 allows 
agents to gradually discover together which states are 
indeed reachable by exchanging only the relevant parts of 
their plans. They are able to refine their individual plans 
by converging toward a set of commonly agreed-upon 
reachable states (with public features) until their resource 
constraints are satisfied. Note that they do not have to 
agree completely on the set of reachable states, but only 
need to agree enough such that they can schedule all their 
required actions after pruning the unnecessary actions 
from their tentative plans. If an agent fails to schedule for 
all TAPs after performing the convergence protocol, it 
can resort to the state probability threshold cutoff 
heuristic as in the single agent case. 

Clearly, Protocol 5-1 terminates.6 In the worst case, it 
terminates after an agent examines all states in its initial 
reachability state diagram. As the protocol examines the 
states exhaustively, an agent will move toward satisfying 
its resource constraints by pruning away the unnecessary 
trajectories. If it starts with sufficient resources to prepare 
for all that are necessary, then it is guaranteed to find a 
plan that schedules all the needed actions. The agent’s 
utility is not compromised if it can schedule for all TAPs 
after running the protocol because the protocol always 
prunes away TAPs that are assured to be useless. Its 
utility decreases only when it has to drop some (necessary) 
TAPs by raising the probability threshold after examining 
all states in its local state diagram. Therefore, the order of 
inquiry about the choices made by other agents is 
irrelevant to its utility. Similarly, the order of 
communication among agents is also irrelevant to the 
utility. Regardless of when an agent asks about a state, it 
will always get the most updated information about that 
state (by ** ) before it has to raise the probability 
threshold. 
 
6. Choice Functions 
                                                        
6 This assumes a finite number of states for the domain. 

The part of the algorithm marked (* ) requires a heuristic 
to choose what the next best branching point is. We call 
such a heuristic a choice function. The more effective the 
choice function is, the sooner the protocol leads an agent 
into finding a satisfying plan, and the less computation 
and communication the agent needs to do. In general, the 
states that are closer to the initial states and that have 
more ttacs (alternative actions of one or more other agents) 
should be examined with priority. These states tend to 
have more downstream children, hence more planned 
actions relying on them. Therefore, they tend to free up 
more resources if they are pruned. 

We have considered the following heuristics. They are 
listed in order of increasing complexity. 

1. Random Choice Function: The agent inquires 
about a random state. This heuristics also serves 
as a benchmark. 

2. Sequential Choice Function: The agent inquires 
about the states in the order of their expansions 
during planning. If the state expansion is a 
breadth-first search, then the states closer to the 
initial states tend to be examined before others. 

3. Distance Choice Function: The agent inquires 
about the states in descending order of their 
distances to the initial states. The distance of a 
state is the minimum number of transitions that 
take the agent from any of the initial states to the 
state. 

4. Load Choice Function: The agent inquires about 
the states in descending order of their numbers of 
actions per branch. The idea is to prune actions 
as fast as possible. However, not all actions have 
the same utilization. 

5. Utilization Choice Function: The agent inquires 
about the states in descending order of utilization 
per branch. 

A summary of their converging speeds for our sample 
domains is shown in Section 8. 
 
7. Demonstration 
We will now continue our story in Figure 4-1 and 
demonstrate that our approach is helpful when agents do 
not have enough resources to schedule for all recognition-
reactions. A bomber (BOMBER) is given a mission to 
destroy one of the two locations, whichever one it chooses. 
Whenever it bombs a location, the enemies will be alert 
and endanger the bomber. A fighter (FIGHTER) is 
assigned to hover around the locations to defend the 
bomber (Figure 4-1) whenever enemies show up. Also, if 
FIGHTER requests a response from the bomber, 
BOMBER has to report its status at LOC2. A complete 
state diagram for BOMBER, when planning individually 
is shown in Figure 7-1. 



Figure 7-1: Reachable States for  BOMBER 

Both FIGHTER and BOMBER have 5 actions to 
schedule if they do not know the plan of the other agent. 
Suppose the resource constraints are such that each agent 
can schedule only 4 actions. Both agents exceed their 
capacities. By running Protocol 5-1 with the sequential 
choice function, FIGHTER asks BOMBER what actions 
it plans when ((COMM == F) && (ENEMY == F)).7 
BOMBER replies that it is going to do only BOMB-1.8 
Then FIGHTER can safely remove the children of the ttac 
B1:BOMB-2, hence action SHOOT-MISSILE-2, from its 
state diagram and tentative plan. Likewise, BOMBER 
will discover that FIGHTER does not plan to signal 
BOMBER to respond at LOC2. So, BOMBER can safely 
remove RESPOND-COMM from its plan. As a result, 
after communicating using the protocol, both of them 
have only 4 actions or TAPs left for scheduling and can 
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8 BOMB-1, BOMB-2, RESPOND-COMM are the only public actions 
for BOMBER. 

satisfy their resource constraints. No agent needs to resort 
to using the probability threshold cutoff heuristic. Thus, 
no local/global utility is compromised. 
 
8. Evaluation and Experiments 
To evaluate the effectiveness of the convergence protocol 
and the efficiencies of the choice functions, we have 
generated a set of random domains within certain 
parameters. In total, there are 287 domains with 1626 
agents. Each domain has a random number, chosen 
uniformly, of agents from 2 up to a maximum of 10. Each 
agent has its own knowledge base. The knowledge base 
has 7 private and public binary features combined. The 
number of public features in a domain is random and 
measures how tightly coupled the agents are for that 
domain, i.e. how many features they share. Needless to 
say, all knowledge bases for any given domain have the 
same number of public features because any public 
feature is shared by all agents. There are also 15 private 
and public actions combined, and 7 private and public 
temporal transitions combined for each agent. The actions 
and temporal transitions are generated such that they flip 
a random number of features. In other words, a random 
number out of the 7 binary features will be inverted by 
those actions and temporal transitions. All knowledge 
bases for any domain contain the same set of public 
temporal transitions and public actions. 

We measure the effectiveness of the convergence 
protocol by what we called “Action Effectiveness”  and 
“State Effectiveness” . Action effectiveness is the 
percentage of unnecessary but planned actions discovered 
by the convergence protocol. Likewise, state effectiveness 
is the percentage of states, which cannot be reached given 
agents’  plans, included in an agent’s state diagram but 
removed by the convergence protocol. For our 
experiments, action effectiveness has an average of 
51.74% and standard deviation 35.84. State effectiveness 
has an average of 66.22% and standard deviation 33.79. 
The data suggest that more than 50% of the resources, at 
least in our sample domains, are often wasted when an 
agent is ignorant about the plans of other agents. When 
the agents include in their planning all conceivable 
interactions based on all public actions of other agents, 
very often more than 50% of the states they think they 
may encounter are in fact not reachable. Communication 
is therefore very important for resource-tight agents. Our 
protocol allows the agents to remove all these states from 
their state diagrams. 

Effectiveness in general depends on many factors, such 
as the number of agents, the degree of coupling, the 
number of states, the topologies of state diagrams, and the 
resource requirements of the recognition-reactions. We 
have run an Ordinary Least Square regression on state 
effectiveness against the number of agents and the degree 
of coupling to determine their empirical relations. The 
coefficient for the number of agents is 0.86 and that for



Table 8-1 

 

Table 8-2 

the degree of coupling is 10.86. The regression suggests 
that state effectiveness depends strongly on the degree of 
coupling. When the degree of coupling increases by 1, 
state effectiveness increases by 10.86. In other words, on 
average, 10.86% more states in the state diagrams are 
unreachable before the convergence protocol for our 
samples. 

We have also measured the efficiencies of the different 
choice functions. Choice Function Efficiency is measured 
by the number of actions (states) removed per inquiry. 
Table 8-1 shows the summary. The data confirm our 
hypothesis that the states closer to the initial states should 
be inquired about with higher priority (Distance is the 
best among all). They are the states that have more 
actions (total actions; not actions per branch) and 
utilization. The ancestor of a node has at least as many 
actions as the node itself. 

Although choice function efficiency tells us how 
efficient a choice function is at pruning unnecessary 
actions (states), it does not tell us how costly 
communication is using the convergence protocol. Not 
only does an agent have to send one message per inquiry, 
it also has to send messages to answer all inquiries from 
other agents and update them of any pruned actions. Even 
if the agent itself has sufficient resources so that it never 
needs to ask other agents, it may have to answer a lot of 
inquiries. We would like to measure how efficient it is for 
an agent to communicate using the convergence protocol 
as a member of a group. We call the number of actions 
(states) pruned per message sent “Communication 
Efficiency” . The communication efficiencies for different 
choice functions are shown in Table 8-2. 

Although our experimental random domains suggest 
that a lot of (~50%) the states or actions are removed after 
the agents perform the convergence protocol, the reader 
should be wary of using these statistics to predict the 
performance of using the protocol in problem domains 
whose characteristics are very different from our 
experimental settings. 
 
9. Conclusions 

We see from Section 7 that our approach helps agents 
finalize their tentative plans by reducing the resource 
consumption iteratively until no resource constraint is 
violated. Our framework allows agents to collaboratively 
generate plans that satisfy their individual resource 
constraints in a distributed manner. Our experiments 
suggest that it is quite worth the effort for agents to 
communicate if they do not have sufficient resources, 
because more than 50% of the resources are wasted when 
they are ignorant about the plans of others. The larger the 
number of agents and the higher the degree of coupling 
among agents, the better justified is the cost to run the 
convergence protocol. Different choice functions allow us 
to trade computation time with communication overheads. 

Although our problem is along the lines of CSPs, the 
very fact that we are finding plans rather than simple 
value assignments allows us to exploit this idea: our 
agents start with over-constrained plans and then 
gradually “relax” the constraints from the other agents 
until they find the solutions. 

We do not yet allow agents to change their actions after 
the reachability analysis phase. Intuitively, if the agents 
are allowed to change their actions after they know more 
about the plans of other agents, rather than merely 
pruning mutually exclusive trajectories, they can search a 
larger space of potential plans before they have to raise 
probability thresholds. Our future research will therefore 
incorporate negotiation techniques to let agents make 
mutually beneficial agreements to reduce their resource 
consumption further. 
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