
Multiagent Planning with Internal Resource Constraints
Haksun Li, Edmund Durfee, Kang Shin

EECS Dept., University of Michigan, Ann Arbor MI 48109
{ haksunli, durfee, kgshin} @umich.edu

Abstract

This paper studies the causes of over-utilization of the
resource capacities of a group of cooperative resource-
limited agents and what they can do to reduce their
resource consumption. We view the problem of how an
agent decides what tasks to execute and what to ignore as a
type of multiagent planning problem. An agent in a
multiagent setting has to prepare for all states it may reach
as a result of its own actions, the environment transitions,
as well as the actions potentially executed by other agents.
Intuitively, the more information it knows about the plans
of the other agents, the better it can allocate its resources
for various tasks. Indeed, in our experiments over a
particular sample space, on average, 50% of the actions are
planned for the states it will never reach when an agent is
completely ignorant about the plans of others. We have
developed a protocol to allow agents to efficiently find out
the relevant information about the plans of others. As the
agent increases its level of awareness of the others’ plans, it
can better identify the unreachable states to avoid spending
resources on them.

1. Introduction
Most research on cooperative multiagent planning has
been focusing on generating compatible plans to avoid
negative interactions among agents. Techniques, such as
negotiation (Zhang, Podorozhny, Rodion & Lesser 2000,
Shintani, Ito & Sycara, 2000), plan merging (Georgeff
1983, Ephrati, Pollack & Rosenschein 1995), hierarchical
planning (Clement 1999), voting (Ephrati 1993),
multiagent Markov Decision Processes (Xuan, Ping,
Lesser, et al. 2000, Boutilier 1999) and Partial Global
Planning (Durfee 1991), have been developed to resolve
conflicts. These algorithms and protocols, while focusing
on generating compatible plans and resolving contentions
over shared resources, assume that each of the agents has
sufficient resources to carry out its plan once coordinated.

Our research is looking at the cooperative multiagent
planning problem from another angle. We are interested
in studying what a resource-limited agent in a multiagent
setting can do when its plan violates its own internal
resource constraints. For example, when an agent must
periodically execute a number of tasks with deadlines, the
utilization of each internal resource, e.g. computation time,
sensors, actuators, of these tasks must be less than 1
(Krishna & Shin 1997). We view the problem of how an
agent decides what to attend to and what to ignore as a
type of multiagent agent planning problem. The agent
must be ready to react to situations that arise due to the
combined influences of the actions it chooses to take, of
the dynamic changes to the world caused by the external
environment, and of the actions that other agents take that

further alter the state of the world. The agent clearly has
control over its own actions, but is to a large extent at the
mercy of how the environment and other agents impact
the state of the world. In this paper, we explore the
possibility that, even when an agent cannot change the
action choices that another agent might make, knowledge
about what those choices can serve to reduce uncertainty
and allow an agent to allocate its own limited resources
better.

Specifically, in a state-space planner like CIRCA
(Musliner 1995, Atkins 1999), an agent has to prepare for
all states it may reach as a result of its own actions, the
environment transitions, as well as any of the possible
actions that other agents are capable of taking. Just
because an agent is capable of taking an action, however,
does not mean that it will take that action, meaning that
anticipating all possible actions on the part of other agents
requires an agent to prepare for states that might never
arise. Indeed, in our experiments over a particular sample
space, on average, 50% of the states that an agent thinks it
may reach can in fact be unreachable. In other words, the
agent could waste 50% of its resources on watching out
for and being prepared to react to states it will never
encounter when it is completely unaware of the plans of
other agents. Intuitively, as the agent increases its level of
awareness of the others’ plans, it can better identify the
unreachable states to avoid spending resources on them.

Our strategy to solve this resource constraint problem is
therefore to have the agents find out the relevant
information about the plans of other agents. Based on this
additional knowledge, the agents can refine their tentative
plans to remove the unnecessary actions planned for the
unreachable states. They should continue doing so until
they satisfy their resource constraints or until they are
fully aware of all relevant planned actions of the other
agents. In other words, our principal contribution in this
paper is a protocol that allows agents, which start by
considering all possibilities, to incrementally exchange
enough information to “relax” the initially over-
constrained plans by removing those unnecessary tasks.

In this paper, we compare our approach with some
related work in Section 2. We describe the context in
which this work is done (Section 3) and the manner in
which an agent identifies the potential reachable states for
which it must be prepared (Section 4). We then present
our protocol (Section 5) that allows agents to learn the
relevant details of the plans of other agents by means of
selective communications so that the agents can prune
their state spaces to remove the unreachable states. The
efficiency of this protocol will be dependent on the

From: AAAI Technical Report WS-02-12. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

choices that the agents make about what information to
gather from others (Section 6). Through analysis,
demonstration (Section 7), and empirical evaluation
(Section 8), we show that our protocol is guaranteed to
terminate and can dramatically improve the expected
performance of the agents that employ it. We conclude
with a summary of this work and outline directions for
our further research (Section 9).

2. Related Work
Our resource constraint problem can be cast as a
constraint satisfaction problem (CSP). The possible value
assignments for an agent are its feasible local plans. The
constraints for an agent come from two sides. The first
one is its own resource capacity which it must not
overflow. The other one is the actions executed by other
agents. If those actions lead the agent to failure, the agent
is bound to spend extra resources to ensure success. The
goal is that each agent can find an effective local plan for
which its local resource constraints are satisfied.

There is already a large amount of work on CSP such as
the asynchronous backtracking algorithm (Yokoo, Durfee,
et al. 1992). What distinguishes our research from others
is that our approach (Section 5) does not generate new
constraints, i.e. nogoods, from the agents’
communications. On the contrary, our agent always starts
with all possible constraints. It starts with an over-
constrained local plan, which factors in all possible
constraints from other agents (their possible actions), with
a very high utilization. The fact that our agents are trying
to come up with plans rather than simple value
assignments allows them take into consideration all
possible constraints in the beginning. It is not always
feasible for other traditional CSPs, e.g. 8-queen problem,
to do so. The agent then communicates with the other
agents to find out what demands, i.e. their actions, that
lead to constraints are in fact void. It strips off these
unnecessary constraints until it finds a plan that does not
overflow its resource capacity.

The agents perform this demand-driven information
exchange to limit their searches for satisfying plans.
Interesting enough, our work exhibits a duality with the
work of (Conry, et al. 1990). Conry discusses how agents,
among which information is distributed, may broaden
their searches by requesting additional information from
others when the agents are not making any progress. We
are instead suggesting that additional information can be
used to limit the scope of an agent’s search by discovering
which part of the search space it does not need to consider.
The heuristics in this paper and in Conry’s serve the same
function to speed up the searches by trying to identify the
“right” information to ask for.

3. Background

We situate this research in a real-time environment where
(1) external events are dynamic1; (2) it takes time for
agents to gather and process sensory data to recognize the
states they are in; (3) it takes time for agents to execute
the corresponding (re)actions; (4) and more importantly,
there are deadlines associated with actions that the agents
cannot miss. When a real-time agent misses a deadline, it
can mean catastrophe. The entire plan/mission is
considered a failure. The Cooperative Intelligent Real-
time Control Architecture (CIRCA) has been developed
to model the interactions between actions and external
events explicitly, taking into account the real-time
restrictions of execution (Musliner 1995). CIRCA selects,
schedules and executes recognition-reactions assuming a
resource-limited platform. Here, we concentrate only on
the relevant features. More complete treatments of the
overall CIRCA architecture are presented elsewhere
(Atkins 1999).

There are two main subsystems in CIRCA, the
Artificial Intelligence Subsystem (AIS) and the Real-
Time Subsystem (RTS). The RTS executes the real-time
control plans (see below) computed by the AIS. Inside the
AIS are the probabilistic planner and the scheduler. The
AIS constructs real-time control plans that are sets of
recognition-reactions, called TAPs, 2 generated by the
planner. The reactions are scheduled by the scheduler
such that they will be executed before the deadlines
whenever emerging system failures are detected. The RTS
checks periodically whether the reactions should be
executed by examining the corresponding recognition
tests. CIRCA’s plan is therefore a cyclic (periodic) real-
time control plan of scheduled recognition-reaction pairs.

Since the scheduler is working with a RTS with limited
resources, it could be the case that not all of the requested
TAPs can be scheduled. When this occurs, CIRCA
calculates the probabilities of the agent reaching different
states, called state probabilities. It finds a subset of TAPs
by removing those states with state probabilities below a
threshold. It keeps increasing this threshold until a
schedulable subset is found. The idea behind this
probability threshold cutoff heuristic is to prioritize the
states of the world in any-time manner by their
probabilities, so that the agent can devote its resources to
respond to events that are more likely to arise over less
likely ones (Li, 2001). The failure probability increases
whenever this heuristic is used because some TAPs
necessary to preempt possible (though less likely) failures
are removed. Consequently the utility decreases.
CIRCA’s utility function is defined using the Cobb-

Douglas function, () ()()αα −+− 111 GF , where F is the failure
probability, G the probability of reaching the goals, and

(]1 ,0∈α . CIRCA attempts to minimize the probability of

1 Events can change while agents are deliberating.
2 An action with a precondition test for state recognition is called a Test-
Action-Pair (TAP).

failure and maximize the probability of success (reaching
the goals).

The CIRCA state-space representation of the world is
constructed from a set of STRIPS-like state features and
state transitions (with preconditions and postconditions)
included as part of the planner knowledge base. A state in
the world model is created dynamically by applying a
transition to its parent state with state features matching
the preconditions. There are two types of transitions.
Action transitions are explicitly controlled by the plan
executor in the RTS, and thus only occur when selected
during planning. Events and natural processes outside the
agent’s control are modeled as temporal transitions, either
“ innocuous” temporal transitions (labeled tt) or
“deleterious” temporal transitions leading to system
failures (labeled ttf). When there is a ttf in a state, CIRCA
selects an action to preempt the failure. The action is
called a guaranteed action because it is so scheduled that
it is guaranteed to be executed before the ttf. A typical
state diagram for planning is shown in Figure 4-1. It is the
state diagram for agent FIGHTER. Action SHOOT-
MISSILE-1 is a guaranteed action to preempt the ttf
BEING-ATTACKED. Another type of action that is also
scheduled with real-time deadlines is called a reliable
action. Reliable actions, however, do not preempt any
failures. Action HEAD-TO-LOC1 is a reliable action that
requires scheduling resources.

A CIRCA agent in a multiagent setting builds on the
single agent architecture described above. In addition, the
agent distinguishes between private/local features and
public/shared features of the environment. Private
features of an agent are those features that no other agents
are interested in but the agent itself, such as current fuel
level. They do not show up in the state diagrams of other
agents. Public features are those features that more than
one agent is concerned about. It is through manipulating
the public features that agents impact each other. For
example, in Figures 4-1 and 7-1, COMM and ENEMY
are public features shared by both BOMBER and
FIGHTER, while HEADINGF and LOCF are private
features that are accessible only by FIGHTER. 3

Furthermore, in a multiagent setting, a CIRCA agent
includes in its planning the public temporal transitions
and public actions of other agents (labeled ttac) that affect
some public features. Those are the temporal transitions
and actions that change the public features other agents
care about. Private temporal transitions and actions of
another agent do not include in their postconditions any
public features but only private features. For example,
B:BOMB-1 and B:BOMB-2 are public actions of
BOMBER in Figure 4-1, while action HEAD-TO-LOC1
is private for FIGHTER. Temporal transitions FLY-TO-
LOC0, FLY-TO-LOC1 and FLY-TO-LOC2 are private
for FIGHTER in Figure 4-1. In Figure 7-1, there are

3 FAILURE is always a private feature.

transitions of the same names but they are private for
BOMBER. There are no public temporal transitions in
this example.

The mechanism of private and public features lets an
agent model only the relevant features of the world. It
does not need to know the entire plans of other agents, but
only those affecting public features. Since a state
represented by an agent does not include the private
features of other agents, it may correspond to a group of
states represented by others. Because the number of states
is exponential in the number of features, this abstraction
significantly reduces planning complexity and state
diagram sizes.

Figure 4-14: Reachable States for FIGHTER

4. Reachability Analysis
In some cases, an agent in a multiagent setting may fail
because of uncertainty about the actions of other agents.
The other agents cannot be expected to know what
constitutes failure for the agent (which could in part be
based on private features), nor can they promise not to
affect the public features that are relevant to it. The agent
therefore has to consider all states that might arise due to
the transitions of the environment as well as due to every
possible action executed by another agent. The agent has
to be prepared for all of the states it may reach as a result
of these transitions and actions. Regardless of whether a
state is reachable from a sequence of environment

4 All actions are either guaranteed (e.g. SHOOT-MISSILE-1) or reliable
actions (e.g. HEAD-TO-LOC1). This holds true also for Figure 7-1.

transitions (tts) or a sequence of others’ actions (ttacs) or
a combination of both, the agent has to expend resources
to schedule an action for the state to preempt any
imminent failure. We call such an analysis a “reachability
analysis” . Figure 4-1 shows the state diagram for a fighter
hovering to defend two locations for any potential
bombing activities by BOMBER based on a reachability
analysis. FIGHTER includes in its planning, hence the
state diagram, all public actions by BOMBER.

Forming control plans based on such a straightforward
reachability analysis suffices only when an agent has
enough resources to handle all contingencies. In this ideal
case, it can simply disregard (be proudly ignorant about)
the plans of other agents. Regardless of which of the
known possible actions the other agents choose to do, and
thus which potential states it may thus encounter, it has
the resources to always execute the proper reactions fast
enough to preempt failures. Unfortunately, it is possible
that the agent cannot schedule all the needed actions for
all states it thinks it may encounter based on the
reachability analysis due to over-utilization of resources.
In terms of CIRCA, the utilization of each planned action
(or TAP) is u = sum of the testing and execution time of
the action divided by the period of the action. When the
sum of all utilizations of the actions exceeds 1, no
schedule is possible5 . The agent will not be able to
provide real-time guarantees to all TAPs.

5. Convergence to Reduce Resource

Requirements
If an agent has sufficient resources to preempt all
emergent failures resulting from every temporal transition
(tt) and temporal-transition-that-is-an-action (labeled ttac)
of other agents, as based on the reachability analysis
described in Section 4, then the agent is done. Because it
has more than enough resources relative to the worst-case
demand it envisions, it can make all the guarantees it
wants to make, even if it ends up devoting some resources
to situations that cannot possibly arise. Otherwise, the
agent must reduce the number of contingencies it wants to
be ready for. It can do so by finding out more precisely
which actions other agents are planning to take and, more
importantly, which actions they are not planning to take.

We have developed a protocol that allows agents to
exchange information about the relevant parts of their
plans to reduce resource consumption in cases of
insufficient resources. The protocol lets agents identify
branches in the state diagrams that cannot be reached
during execution and then eliminate the associated actions
from their tentative plans. We assume the protocol is run
after all agents have locally formed their reachability
graphs and planned the actions they would like to take

5 A total utilization of less than 1 is only a necessary condition. The set
of TAPs can sti ll be unschedulable even if the util ization is less than 1.

(resources permitting). The protocol is described using C-
like code in Protocol 5-1.
Inquiring agent () {

Choose the next branching point that may reduce the
resource utilization most; // *
Ask the agent corresponding to the branching point
which actions/branches it selects;
Upon receiving an answer, update its state diagram
and local plan;
Loop back to * until either the resource constraints
are satisfied or all states are examined;

}

Answering agent () {

When (being asked by another agent about a
branching point) {

Identify the corresponding state(s);
Reply to the agent with the action(s) (or none)
planned for the state(s);
Associate the agent with the state(s);

}
// * *
If (an action/branch is pruned from its state diagram
and local plan) {

Inform all agents associated with the state that
the state is no longer planned for;

}
}

Protocol 5-1

A branching point is a combination of a state and the
set of mutually exclusive ttacs in that state corresponding
to alternative choices of actions by an agent. Each ttac
corresponds to a branch in the state diagram that takes up
certain resources. In terms of CIRCA, the resource is the
utilization of the schedule. Protocol 5-1 inquires about
these states in descending order of how much the
estimated resource consumption is expected to be reduced
if the unplanned actions (ttacs) for an agent in the state
are pruned.

If all features are public, i.e. there are no private
features, then the answering agent can uniquely identify
the state (if exists) that the inquiring agent is asking about.
It will reply with the only action planned for that state. All
but one ttacs in the state diagram of the inquiring agent
are pruned. If there are public features, the inquiring agent
sends a state description instead of all state features. A
state description consists of public features and their
values. The answering agent may have more than one
state in its local state diagram that fits the state description.
It must reply with all the actions planned for these states.
In other words, the inquiring agent must prepare for more
than one ttac in that state.

It is important to note that an agent is asking what
action another agent would execute if a state is reached.
The answer can be found simply by looking up the TAPs

in its tentative local plan based on the initial reachability
analysis as described in Section 4. If the agent is asking
whether another agent will execute an action, the other
agent may not be able to answer at all because that will
depend on its certainty about whether the state will be
reached during run-time.

Before running Protocol 5-1, each agent constructs its
state diagram based solely on its own plan and its
knowledge about how the world may evolve and what
other agents may do. Each agent could have a quite
different reachability graph from those of the others. In
fact, agents typically do not even have the same set of
state features. Therefore, some agents may think some
states are reachable while others may think otherwise. For
the example in Figure 4-1, FIGHTER thinks that enemies
will appear at LOCF == LOC2, while BOMBER may not
concur. In cases of insufficient resources to handle all
states in their respective state spaces, Protocol 5-1 allows
agents to gradually discover together which states are
indeed reachable by exchanging only the relevant parts of
their plans. They are able to refine their individual plans
by converging toward a set of commonly agreed-upon
reachable states (with public features) until their resource
constraints are satisfied. Note that they do not have to
agree completely on the set of reachable states, but only
need to agree enough such that they can schedule all their
required actions after pruning the unnecessary actions
from their tentative plans. If an agent fails to schedule for
all TAPs after performing the convergence protocol, it
can resort to the state probability threshold cutoff
heuristic as in the single agent case.

Clearly, Protocol 5-1 terminates.6 In the worst case, it
terminates after an agent examines all states in its initial
reachability state diagram. As the protocol examines the
states exhaustively, an agent will move toward satisfying
its resource constraints by pruning away the unnecessary
trajectories. If it starts with sufficient resources to prepare
for all that are necessary, then it is guaranteed to find a
plan that schedules all the needed actions. The agent’s
utility is not compromised if it can schedule for all TAPs
after running the protocol because the protocol always
prunes away TAPs that are assured to be useless. Its
utility decreases only when it has to drop some (necessary)
TAPs by raising the probability threshold after examining
all states in its local state diagram. Therefore, the order of
inquiry about the choices made by other agents is
irrelevant to its utility. Similarly, the order of
communication among agents is also irrelevant to the
utility. Regardless of when an agent asks about a state, it
will always get the most updated information about that
state (by **) before it has to raise the probability
threshold.

6. Choice Functions

6 This assumes a finite number of states for the domain.

The part of the algorithm marked (*) requires a heuristic
to choose what the next best branching point is. We call
such a heuristic a choice function. The more effective the
choice function is, the sooner the protocol leads an agent
into finding a satisfying plan, and the less computation
and communication the agent needs to do. In general, the
states that are closer to the initial states and that have
more ttacs (alternative actions of one or more other agents)
should be examined with priority. These states tend to
have more downstream children, hence more planned
actions relying on them. Therefore, they tend to free up
more resources if they are pruned.

We have considered the following heuristics. They are
listed in order of increasing complexity.

1. Random Choice Function: The agent inquires
about a random state. This heuristics also serves
as a benchmark.

2. Sequential Choice Function: The agent inquires
about the states in the order of their expansions
during planning. If the state expansion is a
breadth-first search, then the states closer to the
initial states tend to be examined before others.

3. Distance Choice Function: The agent inquires
about the states in descending order of their
distances to the initial states. The distance of a
state is the minimum number of transitions that
take the agent from any of the initial states to the
state.

4. Load Choice Function: The agent inquires about
the states in descending order of their numbers of
actions per branch. The idea is to prune actions
as fast as possible. However, not all actions have
the same utilization.

5. Utilization Choice Function: The agent inquires
about the states in descending order of utilization
per branch.

A summary of their converging speeds for our sample
domains is shown in Section 8.

7. Demonstration
We will now continue our story in Figure 4-1 and
demonstrate that our approach is helpful when agents do
not have enough resources to schedule for all recognition-
reactions. A bomber (BOMBER) is given a mission to
destroy one of the two locations, whichever one it chooses.
Whenever it bombs a location, the enemies will be alert
and endanger the bomber. A fighter (FIGHTER) is
assigned to hover around the locations to defend the
bomber (Figure 4-1) whenever enemies show up. Also, if
FIGHTER requests a response from the bomber,
BOMBER has to report its status at LOC2. A complete
state diagram for BOMBER, when planning individually
is shown in Figure 7-1.

Figure 7-1: Reachable States for BOMBER

Both FIGHTER and BOMBER have 5 actions to
schedule if they do not know the plan of the other agent.
Suppose the resource constraints are such that each agent
can schedule only 4 actions. Both agents exceed their
capacities. By running Protocol 5-1 with the sequential
choice function, FIGHTER asks BOMBER what actions
it plans when ((COMM == F) && (ENEMY == F)).7
BOMBER replies that it is going to do only BOMB-1.8
Then FIGHTER can safely remove the children of the ttac
B1:BOMB-2, hence action SHOOT-MISSILE-2, from its
state diagram and tentative plan. Likewise, BOMBER
will discover that FIGHTER does not plan to signal
BOMBER to respond at LOC2. So, BOMBER can safely
remove RESPOND-COMM from its plan. As a result,
after communicating using the protocol, both of them
have only 4 actions or TAPs left for scheduling and can

7 Agents communicate only the public features and actions.
8 BOMB-1, BOMB-2, RESPOND-COMM are the only public actions
for BOMBER.

satisfy their resource constraints. No agent needs to resort
to using the probability threshold cutoff heuristic. Thus,
no local/global utility is compromised.

8. Evaluation and Experiments
To evaluate the effectiveness of the convergence protocol
and the efficiencies of the choice functions, we have
generated a set of random domains within certain
parameters. In total, there are 287 domains with 1626
agents. Each domain has a random number, chosen
uniformly, of agents from 2 up to a maximum of 10. Each
agent has its own knowledge base. The knowledge base
has 7 private and public binary features combined. The
number of public features in a domain is random and
measures how tightly coupled the agents are for that
domain, i.e. how many features they share. Needless to
say, all knowledge bases for any given domain have the
same number of public features because any public
feature is shared by all agents. There are also 15 private
and public actions combined, and 7 private and public
temporal transitions combined for each agent. The actions
and temporal transitions are generated such that they flip
a random number of features. In other words, a random
number out of the 7 binary features will be inverted by
those actions and temporal transitions. All knowledge
bases for any domain contain the same set of public
temporal transitions and public actions.

We measure the effectiveness of the convergence
protocol by what we called “Action Effectiveness” and
“State Effectiveness” . Action effectiveness is the
percentage of unnecessary but planned actions discovered
by the convergence protocol. Likewise, state effectiveness
is the percentage of states, which cannot be reached given
agents’ plans, included in an agent’s state diagram but
removed by the convergence protocol. For our
experiments, action effectiveness has an average of
51.74% and standard deviation 35.84. State effectiveness
has an average of 66.22% and standard deviation 33.79.
The data suggest that more than 50% of the resources, at
least in our sample domains, are often wasted when an
agent is ignorant about the plans of other agents. When
the agents include in their planning all conceivable
interactions based on all public actions of other agents,
very often more than 50% of the states they think they
may encounter are in fact not reachable. Communication
is therefore very important for resource-tight agents. Our
protocol allows the agents to remove all these states from
their state diagrams.

Effectiveness in general depends on many factors, such
as the number of agents, the degree of coupling, the
number of states, the topologies of state diagrams, and the
resource requirements of the recognition-reactions. We
have run an Ordinary Least Square regression on state
effectiveness against the number of agents and the degree
of coupling to determine their empirical relations. The
coefficient for the number of agents is 0.86 and that for

Table 8-1

Table 8-2

the degree of coupling is 10.86. The regression suggests
that state effectiveness depends strongly on the degree of
coupling. When the degree of coupling increases by 1,
state effectiveness increases by 10.86. In other words, on
average, 10.86% more states in the state diagrams are
unreachable before the convergence protocol for our
samples.

We have also measured the efficiencies of the different
choice functions. Choice Function Efficiency is measured
by the number of actions (states) removed per inquiry.
Table 8-1 shows the summary. The data confirm our
hypothesis that the states closer to the initial states should
be inquired about with higher priority (Distance is the
best among all). They are the states that have more
actions (total actions; not actions per branch) and
utilization. The ancestor of a node has at least as many
actions as the node itself.

Although choice function efficiency tells us how
efficient a choice function is at pruning unnecessary
actions (states), it does not tell us how costly
communication is using the convergence protocol. Not
only does an agent have to send one message per inquiry,
it also has to send messages to answer all inquiries from
other agents and update them of any pruned actions. Even
if the agent itself has sufficient resources so that it never
needs to ask other agents, it may have to answer a lot of
inquiries. We would like to measure how efficient it is for
an agent to communicate using the convergence protocol
as a member of a group. We call the number of actions
(states) pruned per message sent “Communication
Efficiency” . The communication efficiencies for different
choice functions are shown in Table 8-2.

Although our experimental random domains suggest
that a lot of (~50%) the states or actions are removed after
the agents perform the convergence protocol, the reader
should be wary of using these statistics to predict the
performance of using the protocol in problem domains
whose characteristics are very different from our
experimental settings.

9. Conclusions

We see from Section 7 that our approach helps agents
finalize their tentative plans by reducing the resource
consumption iteratively until no resource constraint is
violated. Our framework allows agents to collaboratively
generate plans that satisfy their individual resource
constraints in a distributed manner. Our experiments
suggest that it is quite worth the effort for agents to
communicate if they do not have sufficient resources,
because more than 50% of the resources are wasted when
they are ignorant about the plans of others. The larger the
number of agents and the higher the degree of coupling
among agents, the better justified is the cost to run the
convergence protocol. Different choice functions allow us
to trade computation time with communication overheads.

Although our problem is along the lines of CSPs, the
very fact that we are finding plans rather than simple
value assignments allows us to exploit this idea: our
agents start with over-constrained plans and then
gradually “relax” the constraints from the other agents
until they find the solutions.

We do not yet allow agents to change their actions after
the reachability analysis phase. Intuitively, if the agents
are allowed to change their actions after they know more
about the plans of other agents, rather than merely
pruning mutually exclusive trajectories, they can search a
larger space of potential plans before they have to raise
probability thresholds. Our future research will therefore
incorporate negotiation techniques to let agents make
mutually beneficial agreements to reduce their resource
consumption further.

10. Acknowledgements

The authors thank the reviewers’ careful and
constructive comments. This research was supported in
part by DARPA/AFRL Contract F30602-00-C-0017.

11. References
Atkins, E. M., Plan Generation and Hard Real-Time
Execution with Application to Safe, Autonomous Flight.
Ph.D. Thesis, the University Of Michigan, 1999.

Choice
Function
Efficiency

Random
(Action)

Random
(State)

Sequential
(Action)

Sequential
(State)

Distance
(Action)

Distance
(State)

Load
(Action)

Load
(State)

Utilization
(Action)

Utilization
(State)

average 0.26 1.72 2.14 12.19 2.40 13.88 0.59 3.39 0.76 4.45
standard
derivation

0.48 2.78 4.30 23.86 4.40 24.66 1.65 8.22 2.22 12.23

Communication
Efficiency

Random
(Action)

Random
(State)

Sequential
(Action)

Sequential
(State)

Distance
(Action)

Distance
(State)

Load
(Action)

Load
(State)

Utilization
(Action)

Utilization
(State)

average 0.09 0.61 0.15 0.98 0.17 1.13 0.13 0.75 0.11 0.73
standard
derivation

0.09 0.48 0.19 1.06 0.22 1.22 0.98 1.58 0.12 0.68

Boutilier. C. Sequential Optimality and Coordination in
Multiagent Systems. IJCAI-99, 1999.

Clement. B. J. and Durfee, E. H. Theory for Coordinating
Concurrent Hierarchical Planning Agents Using Summary
Information. Proceedings of the Sixteenth National
Conference on Artificial Intelligence, 495-502, 1999.

Conry, S. E., MacIntosh, D. J., and Meyer, R.A. DARES:
A Distributed Automated Reasoning System. Proceedings
of AAAI-90, pp. 78-85, 1990.

Durfee, E. H. and Lesser, V. R. Partial Global Planning:
A Coordination Framework for Distributed Hypothesis
Formation. IEEE Transactions on Systems, Man, and
Cybernetics, Special Issue on Distributed Sensor
Networks, SMC-21(5):1167-1183, September 1991.

Ephrati, E. and Rosenschein, J. S.. Multi-Agent Planning
as a Dynamic Search for Social Consensus. The
Thirteenth International Joint Conference on Artificial
Intelligence, Chambery, France, August 1993, pages 423-
429.

Ephrati, E., Pollack, M. E. and Rosenchein, J. S. A
Tractable Heuristic that Maximizes Global Utility through
Local Plan Combination. The First International
Conference on Multi-Agent Systems, 1995.

Georgeff. M. Communication and Interaction in multi-
agent planning. Proceedings of the Third National
Conference on Artificial Intelligence (AAAI-83), pp. 123
– 129, 1983.

Krishna, C. M. and Shin, K. G. Real-time Systems.
McGraw-Hill. 1997.

Li, H, Atkins, E., Durfee, E. H. and Shin, K. G. Practical
State Probability Approximation for a Resource-Limited
Real-Time Agent. Proceedings of the IJCAI-01 Workshop
on Planning with Resources, August 2001.

Musliner, D. J., Durfee, E. H., and Shin, K. G. World
Modeling for the Dynamic Construction of Real-Time
Control Plans. Artificial Intelligence, vol. 74, pp. 83-127,
1995.

Shintani, T, Ito, T., and Sycara, K. Multiple Negotiations
among Agents for a Distributed Meeting Scheduler. In
Proceedings of the Fourth International Conference on
Multi-Agent Systems (ICMAS'2000), 2000.

Xuan, P., Lesser, V., and Zilberstein, S. Communication
in Multi-agent Markov Decision Processes. In

Proceedings of the Fourth International Conference on
MultiAgent Systems (ICMAS-00), Poster Session, 2000.

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K.
Distributed constraint satisfaction for formalizing
distributed problem solving. Proceedings of the 12th IEEE
International Conference on Distributed Computing
Systems, pp. 614-621, 1992.

Zhang, Podorozhny, Rodion, and Lesser. Cooperative,
MultiStep Negotiation Over a Multi-Dimensional Utility
Function. In Proceeding of the IASTED International
Conference, Artificial Intelligence and Soft Computing
(ASC 2000), 136-142, Banff, Canada, July, 2000,
IASTED/ACTA Press.

