
Formalizing Multi-Agent POMDP’s in the context of network routing

Bharaneedharan Rathnasabapathy and Piotr Gmytrasiewicz
Department of Computer Science
University of Illinois at Chicago

851 S Morgan St, Chicago, IL 60607
{brathnas,piotr}@cs.uic.edu

Abstract

This paper uses partially observable Markov decision
processes (POMDP’s) as a basic framework for Multi-
Agent planning. We distinguish three perspectives: first
one is that of an omniscient agent that has access to
the global state of the system, second one is the per-
spective of an individual agent that has access only to
its local state, and the third one is the perspective of
an agent that models the states of information of the
other agents. We detail how the first perspective dif-
fers from the other two due to the partial observabil-
ity. POMDP’s allow us to formally define the notion
of optimal actions in each perspective, and to quan-
tify the loss of performance due to partial observabil-
ity, and possible gain in performance due to intelli-
gent information exchange between the agents. As an
example we consider the domain of agents in a dis-
tributed information network. There, agents have to
decide how to route packets and how to share informa-
tion with other agents. Though almost all routing pro-
tocols have been formulated based on detailed study of
the functional parameters in the system, there has been
no clear formal representation for optimality. We ar-
gue that the various routing protocols should fall out as
different approximations to policies (optimal solutions)
in such a framework. Our approach also proves criti-
cal and useful for the computation of error bounds due
to approximations used in practical routing algorithms.
Each routing protocol is a conditional plan that involves
physical actions, which change the physical state of the
system, and actions that explicitly exchange informa-
tion.

Introduction
Decision making and planning using Markov decision
processes (MDP’s) is attracting attention in the re-
search community for modeling many real-world de-
cision problems. Researchers have used MDP’s and
POMDP’s to formalize call admission control in cellular
networks (Haas et al. 2000), management of ischemic
heart disease (Hauskrecht 1997) and robotics (Boutilier,
Dean, & Hanks November 1999; Littman, Cassandra, &
Kaelbling 1995). POMDP’s extend the MDP’s and of-
fer a very general formalism for representing real-world

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

stochastic control problems, with explicit representa-
tion of partial observability of the environment and in-
formation sharing.

A concrete example of multi-agent environments to
which POMDP framework is applicable is the domain
of network routing. Networks can be viewed as a dis-
tributed system in which coordinated and informed de-
cision making is crucial for optimal data routing. Net-
work routing involves sending, receiving and forwarding
data packets over a stationary or mobile network. The
objective of the routing mechanism is to efficiently use
the resources while performing the work of transporting
data packets. Existing techniques attempt to capture
the essential functional aspects of the system by the
designer’s pre-defining a set of rules through which in-
formation is exchanged and data is routed. As such,
these approaches are subject to limitations of human
intuition and insight. Having a formal model that fully
represents the system and that defines the value of each
course of action allows us to choose courses of action
that are optimal in each state of the system.

We argue that optimal routing protocols should arise
as solutions to POMDP’s that represent the network
routing problem. POMDP representation additionally
allows us to compute error bounds due to approximat-
ing the optimal solutions to POMDP’s (Lovejoy 1991).
The formal POMDP representation encompasses all
the possible physical and communicative actions of the
nodes in the network, the resources they have and the
optimality criteria (or reward parameters in utility the-
ory). This has a nice consequence that all complex in-
formation exchange and data exchange behaviors can
be defined as a sequence of atomic actions that are de-
fined within the POMDP.

Other formal approaches have been considered. Some
use game theory (Srikanth 2001), and other use utility-
theoretic heuristics (Mikler, Honavar, & Wong 1996),
MDP’s (Wu, Chong, & Givan 2001; Haas et al. 2000)
and Q-learning (Kumar & Miikkulainen July 1999).
Few, however, have approached the problem from the
context of POMDP’s and knowledge representation,
and they fail to properly account for the benefits of
actions that exchange information.

The rest of this paper concentrates on three differ-

From: AAAI Technical Report WS-02-12. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

ent perspectives in which a distributed system can be
viewed. First, we use MDP’s to formalize the view of
an omniscient agent, solution of which is objectively
optimal. Second, we use POMDP’s to represent the
points of views of individual, locally rational agents,
which have to make decisions based on their limited
sensing capabilities. Such agents can perform physi-
cal actions and can gather information, but are inca-
pable of efficient communication with other agents. We
provide an initial experimental comparison of perfor-
mance achieved by solving the above models of super-
agent and locally rational agents. Finally, we extend the
POMDP framework to model socially rational agents.
These agents are capable of modeling the information
available to other agents. The ability to model the other
agent’s knowledge allows the socially rational agents to
effectively exchange information and to perform bet-
ter than the locally rational agents. We expect that
in the limit, if the communication is costless, the per-
formance of the socially rational agents will reach the
performance of the omniscient super-agent.

Markov decision processes (MDP’s)
A MDP is a framework for representing a dynamic
stochastic system. The system is dynamic because it
can exist in any one of the several states at a partic-
ular point in time and it is stochastic because agents
are uncertain of how their actions and external events
change the state of the system. The Markov assump-
tion on which MDP’s are based states that the effects of
actions and events on states depend only on the current
system state. A Markov decision process is defined as
a quintuple (S,A,E,T,R), where:

• S is the state space – a finite or infinite set of all
physical states of the system.

• A is the set of actions that an agent can perform to
effect the system state.

• E is the set of external events that the agent has no
control over. These events can also change the state
of a system.

• T quantifies the nondeterministic results actions and
events have on the state of the system by specifying
the probability of state transitions due to actions and
events.
T: S × A × E × S −→ [0,1]

• R is the reward function describing the preference of
certain states over others. It assigns real values to
states.
R : S −→ �
Viewing a whole distributed system as a fully observ-

able Markov decision process corresponds to the per-
spective of the omniscient agent. We will go into the

details of the omniscient agent in the next section after
a small discussion about network routing.

Network Routing and Performance
Metrics

A network usually consists of various nodes (computers,
routers, etc.) interconnected by communication links.
Network routing at the very basic deals with sending or
forwarding data packets from source nodes to destina-
tion nodes. This seemingly simple task becomes more
and more complicated with increase in network size and
type. Data can be sent from one node to another along
the links, sometimes with reliability of less than 100%.
Each node has a limited buffer space used to temporar-
ily store the data packets before forwarding them. If
there is no space in a buffer, the incoming data packet
is discarded and can be considered lost (we will avoid
going into OSI layers that take care of transmission er-
rors and re-transmission to keep the discussion simple).

This leads to the question of what features a rout-
ing protocol should control and optimize. In order to
keep the model simple we consider data throughput and
data delivery delay (packet delay) as the performance
measure parameters. Several features defining the state
of the network are relevant to the above performance
parameters; they include network bandwidth, router
buffer space, physical dynamics in network (mobility,
power outages/switch offs) , incoming traffic volume,
traffic density etc.

Routing as Markov Decision Processes :
The Omniscient Agent
The omniscient agent observes the state information
perfectly and dictates the course of action to all the
nodes in the network. Modeling the routing problem
as a MDP creates several issues. Our initial objective
is to choose the variables that faithfully depict the sys-
tem state and result in a model that is computationally
solvable.1

The Physical State of the System
We assume that each data router or data routing entity
has a buffer for storing the packets before transmitting
them. The likelihood of a packet reaching the desti-
nation depends on the line quality and buffer space (if
the buffer at the next hop node is full then the packet
is dropped). Including buffer status as a part of the
system state description is needed to capture this in-
formation. The line quality we mentioned is actually
composed of various parameters. One of them is the

1These objectives are sometimes contradictory, and the
point is to strike a balance between model size and com-
plexity of finding solutions. Available computing power and
sensitivity analysis are the helpful in finding the right trade-
off.

distance between the nodes (in the case of a mobile net-
work). In a mobile/radio network the distance between
nodes directly influences the signal strength at receiver
(transmission path loss) and in wired networks distance
factor depends on signal attenuation. Thus distance is
a measure derived from the location of corresponding
nodes.

After the data is sent, the successful delivery of data
needs to be recorded as part of the system state and
reflected in the reward function, since the objective is
to deliver packets to their destinations efficiently. Like-
wise, a packet dropped should also be penalized. All
together, we use two variables for each node in the net-
work; first variable represents the data packet reaching
its destination at the node, and another variable regis-
tering that a data packet was dropped by the node.

We assume that the omniscient agent can direct
nodes in the network to take two actions, either send
a packet to a particular node or sit idle. If node ’a’ is
directed to send a packet it has for node ’c’ through
a node ’b’, it would execute an action called Send abc.
Given other combinations of sources and destinations
among N nodes, this results in (N-1)2 actions for each
node, and N × (N-1)2 send actions and N idle actions
in total.
Events also change the state of the system. These
changes are stochastic in nature and agents have no
control over them.

Transition probabilities describe the likelihood of a
system transitioning from an initial state to another
state after an action is performed or an event occurs.
In the above Send abc action, the transition probability
describes the likelihood of ’b’ successfully receiving the
packet from ’a’ en-route to ’c’. Events can be modeled
explicitly with separate transition probabilities or it can
folded into that of actions.2

State space

State space S in the omniscient agent model is com-
posed of the following variables.

• Location, L, of all nodes in the system: Describes
the location of each node in the grid (mapped over
the actual terrain, in case of a mobile network). A
network having physically stationary nodes will have
only one value of variable L.

Li = {1,2,...,C} describes the locations a node ’i’ can
be in, where C is the number of grid cells in the net-
work. The total set of combinations of locations all
nodes can be in is L = L1 × L2 × L3 × ... LN where
N is the number of nodes in the network.

• B, Set of states of buffers of all the nodes: Each node
has a buffer of size SB . To describe packets in these

2The latter is known as an implicit-event model.

buffers as well as the status of the buffers we asso-
ciate a count of the number of packets outbound for
each other node. The counts are restricted such that
the total number of packets outbound in the buffer
at a particular node equals the capacity of the buffer
at that node.

Bi is the set of permutations of { c1, c2, c3, ... ci−1,
ci+1, ... cN } such that

∑N
k=1 ck = SB and each

ci ∈ {0, . . . SB}. The total set of all buffer states in
all nodes B = B1 × B2 × B3 × ... BN where N is
the number of nodes in the network.

• Transmission Success Ts: This variable in a node de-
notes the successful delivery of a packet destined for
a node. It is denoted by a variable TSi for a node ’i’.
The maximum number of packets a node can receive
at any time step is limited by the number of nodes in
the network (leave alone the issue of having channel
availability in a wireless medium). We can imagine
each node maintaining a bucket into which packets
meant for it are stored at each time step. This allows
the node ’i’ to measure the number of packets that
were intended for and have reached node ’i’.

TSi = { 0, 1, .. N-1 }, total number of nodes in the
network being N.

The total set which includes all the nodes in the net-
work TS = TS1 × TS2 × ... TSN where N is the
number of nodes in the network.

• Transmission failure Td: This variable in a node ’i’
denotes the delivery failure of a packet destined for a
node from node ’i’. This might be due to:

– The node received a packet due to an event (ex. an
application requesting to send some data across)
but did not have any buffer space to hold the
packet.

– The node tried to send the packet to the next node
in the chosen route to destination, but failed to
send because of transmission errors that it imme-
diately sensed (implicit observation in transition
probabilities) during transmission.

TDi = { 0, 1, ... M }, the node can drop packets given
to it by an event (ex. an application running on the
node) or due to known transmission errors or both.
If Me is the maximum number of events that can oc-
cur in a time step and N-1 events can bring packets
from other nodes then M = Me + (N-1). The total
set which includes all the nodes in the network TD

= TD1 × TD2 × ... TDN where N is the number of
nodes in the network.

The state of the system in its entirety depends on all
the individual parameters representing the system’s

state. The state space is thus defined as, S={ L × B
× TS × TD }

Actions

In the physical network that takes care of routing, the
agent can be directed to perform two different action
sets ; Send packets and be idle. Since we have not
introduced variables capturing other resource states of
the nodes, we ignore the idle action for the time being.

Let ASi be the set of send actions ith node can per-
form.

ASi = N × N, such that for apq ∈ ASi, p �= i �= q.
The total number of actions each node can perform is
Ai = ASi

The total set of all actions (joint action set), A = {
A1 × A2 × ... AN }
To simplify the structure in the resulting global MDP,
we have initially assumed ordering of actions in the net-
work. When one node performs an action in the net-
work, other nodes perform a dummy idle action. Then
we extend the same design to perform joint actions.
The idea is to determine the globally optimal policy
mapping states to a set of joint actions.

Events

In the omniscient agent model, we can have one event
that changes the system state: The ’packet arrival’
event modifies the state of the buffer or the packet drop
variable (TD) at a node. Each node can receive packets
destined for every other node, this is due to applications
on the nodes themselves generating requests (note that
this is a global model, packets from other nodes arrive
as a part of the send action). Therefore ’N’ nodes can
get ’N-1’ types of requests each, leading to a total of
N x (N -1) event types in the system. An arrival event
is assumed to bring one data packet (one arrival with
’p’ packets can be split as ’p’ separate events). This
event will update the buffer variable by incrementing
the corresponding count, if there is space in the buffer.
Otherwise the TD variable for that node is set.

If Ei is the set of events that influences node i, then
the total set of all events in the system E = { E1 × E2

× ... EN }

Transition Probabilities

Transition probabilities describe the system dynamics
resulting from actions and events. Send actions can be
nondeterministic. A send action can fail if there is not
enough buffer space in the next hop node. It may also
fail due to transmission problems which are part of the
environment over which the agents don’t have control.

Without going into the details of how transition prob-
abilities are computed, we will defined it as a function of

Ptransmission(s,s’) and Pposition(s,s’); the likelihood of
the transmission leading to state s from s’ and physical
movement resulting in change of state to s.

Ptransmission : Probability of packet reaching next
hop node based on distance between transmitting and
receiving node. This is based on power loss factor in
transmitting medium (near linear relationship) and the
availability of buffer space in the receiving node.

Pposition : The locations of the nodes are a part of the
system state. If the nodes are mobile then Pposition(s,s’)
describes how likely each of the nodes will end up in the
locations described by state s’ given that they are in
the locations described by state s. This is the mobility
model describing the movement behavior of the nodes.

Rewards

Rewards are defined based on the values of the vari-
ables defining the state space. Every state with TD

(packet drop) variable set will incur a penalty and ev-
ery state with TS (delivery) set will be rewarded. At
every stage, the total reward for the system would be
∑N

i=0 (TSi - TDi) , where TSi denotes the transmission
success variable at node i and TDi denotes a drop.

Policy

The solution for an MDP maps the set of states of the
system to actions. Policy π : S −→ A associates an
action with any given state. The omniscient agent uses
the policy to dictate actions to all nodes in the network.
The omniscient agent can use the policy since we de-
fined it as being able to sense the state of the system
perfectly.

Simulation

We used the problem solver written by Anthony Cas-
sandra 3 for solving POMDP’s but allowing complete
observability to solve for MDP’s. To measure the per-
formance we calculate the average number of packets
dropped in a 20-stage routing simulation over 10 trials
with a constant traffic generator.

Environment

We modeled a 3-node network, each with buffer space
enough to hold only one packet. The nodes can move
inside an area divided into four cells and no two nodes
at diagonally opposite ends can communicate. In order
to keep the number of transition matrices small, the ac-
tion space comprises of individual actions of each node
(rather than a joint action set). At each time step one
agent performs an action dictated by the policy and

3http://www.cs.brown.edu/research/ai/pomdp/code/
index.html

other two agents remain idle. A joint action can thus
be broken down into 3-step action sequence.

Results

A segment of the computed policy is shown below

1.State : (0, 1, 0)(10, 00, 00)([X, 1, 0][0, X, 1][0, 0, X])
Action : {1, 3, 2}
2.State : (0, 1, 1)(00, 00, 00)([X, 0, 0][0, X, 1][0, 0, X])
Action : {2, 3, 3}
3.State : (1, 2, 3)(00, 00, 00)([X, 0, 0][0, X, 0][0, 1, X])
Action : {3, 2, 2}
4.State : (1, 2, 3)(00, 00, 00)([X, 0, 1][0, X, 0][1, 0, X])
Action : {3, 2, 1}
The ’X’ in the buffer state above denotes that each

node cannot buffer a packet meant for itself. Each state-
action pair above describes a course of action taken at
a given state. The state description is a structure com-
posed of

(location of node1, node2, node3)
(Ts Td flags in node1,node2,node3)
(Buffer states in node1,node2,node3)

The action picks the node to perform an action and
the type of action. {Node performing the action, Send
to node, Destination node}

We can see that if a node is close by then the packet
travels in one hop as in rule 2. But if the destination
is queued and full (only one space is available at each
node), then the packet is juggled and sent to destination
via another node, as in rule 1. Intuitively we can see
that this is the ideal way to perform the tasks. The
solution to this network with joint actions would, in
fact, result in optimal routing performance under our
design (since it is the optimal solution to the MDP).

The solution describes how an omniscient agent
would work to achieve optimum results. Such an all-
observing oracle would direct all the nodes to preform
actions optimal in each physical state. Of course reality
is different. In the next few sections we will explore how
to model uncertainty in a node’s perspective about the
system state, giving locally rational agents.

Locally Rational Agents Model
Assuming each node knows the underlying physical
model (such as number of nodes in the network, their
buffer space etc), we can model each node’s view of the
system as its belief about (or probability distribution
over) the possible states of the system at a given time.

The set of ’belief states’ an agent can be in is the set
of all probability distributions over S, ∆(S). A belief
state s ∈ ∆(S) is in-fact a point in the |S | dimensional
probability space.

Partially observable Markov decision
processes (POMDP’s)

There are a few differences between the MDP and
POMDP formalisms. POMDP’s offer more general
view than MDP’s that helps us model the uncertain
nature of sensing actions of the agents. We introduce
two new parameters, observation set and observation
probability. POMDP captures uncertainty in both ac-
tions and the state (the agent now does not know what
the system state exactly is). The POMDP is formally
defined as the tuple < S, A, E, T, R, θ, O > where
• T defines the transition probabilities or the uncer-

tainty associated with the outcomes when actions are
taken or events happen.
T: S × A × E × S −→ [0,1]

• θ is the finite set of observations an agent(or node)
can make.

• O defines the observation probabilities that models
the likelihood of making an observation when the sys-
tem is in a given state, O : θ × S −→ [0, 1].

The solution to the POMDP maps the set of all prob-
ability distributions over the state space to the set of
agent’s possible actions.
Policy π : ∆(S) −→ Ai

Observations and Actions in the network
Nodes in network can make observations that give in-
formation about the environment. They can perfectly
observe their buffer state, their current location, if they
have dropped a data packet, etc. In addition to this,
the nodes can observe the actions of other agents us-
ing which they can extract the non-local system state
information with some uncertainty. Every other node’s
actions are external, hence they are modeled as events.
These events provide information though not explicitly.
For example in the 3-node network with a single buffer
space, if a node ’b’ sends a data packet to node ’a’ then
node ’a’ knows with some uncertainty that node ’b’ has
a free buffer space. These are the kinds of actions that
have implicit information content. Each node has one
unique observation for each of its own physical state and
one for each type of event. If Os is the set of observa-
tions due to the agents own state (perfectly observable)
and OE be the set of observations due to all external
events then θ = Os × OE . The set of actions in each
of the N POMDP models (for each node) is the set of
actions each agent can perform.

Discussion of the solution to the POMDP
We used the same network topology with a symmetric
model (solving for one would solve for all the 3 agents)
that is partially observable.

We will not go into details of how the POMDP’s are
solved as it would constitute a detailed discussion by it-
self (Hauskrecht 1997; Cassandra 1998). The POMDP
here describes the network model of each node hav-
ing knowledge about the underlying physical structure

Figure 1: Comparison of MDP and POMDP based
routing

and its own physical conditions but having imperfect
information about other nodes. Solving this model for
every node in the network, we would have an action pre-
scribed by the policy computed for every system state
or exactly belief state (or state of information of each
node). Given that the nodes start with arbitrary be-
lief states, new belief states are computed based on the
observation they receive, the actions they perform and
the current belief state. The ’value function’ resulting
from the POMDP model would dictate the actions cho-
sen at a given belief state. The value function describes
the expected value of choosing an action given the cur-
rent belief state. The solution actually defines the value
of a set of conditional plans, each starting with some
action. These conditional plans dictate the choice of
action given the current observation. Why have many
plans in the solution if we are talking about the optimal
plan ? Well, each of these conditional plans is optimal
at some particular information state of the node, i.e.
the information state at which the agent starts using
the plan.

Looking at the simulation results in Figure 1., we see
that the POMDP based locally rational agent model
without explicit information exchange starts dropping
more and more packets as time goes on. This is ex-
pected as agents cannot effectively exchange informa-
tion about other nodes. This shows the need to cap-
ture more information content at each agent level for
efficient routing.

Multi-Agent POMDP : Socially
Rational Agents

Let us consider a network that has three nodes a,b and
c. If node ’a’ did not know where node ’c’ is or how to
reach ’c’, it could ask the nodes adjacent to it(node b).

In the worst case if it didn’t know about any other node
it can broadcast a query (similar to what humans do,
asking people you know about the information you are
seeking. If you are a complete stranger then post your
question on a public location,like a bulletin board etc.).
Whoever receives the query and knows the answer to
the question will find it beneficial to reply.

If nobody responds then it gives us two kinds of infor-
mation; either the node that broadcast the query was
isolated from other nodes or all nodes that know the in-
formation are isolated, as in the case of network parti-
tioning. There could also be several other reasons, such
as the query data being lost during transmission but
we will limit the possibilities to keep the model simple
for discussion. If the node does receive the information
it has asked for it can update its belief about the net-
work and proceed with performing the most rewarding
action.

To choose the most rewarding plan, each agent would
need to know how other agents would react to their own
beliefs about the system state. This model assumes
that all agents have the same utility function and each
of them knows the observation function of the other
agents in the system. In this discussion we limit the
model to actions that implicitly exchange information
in the same time interval and those that exchange in-
formation in one time-step alone. Information query
actions involving multiple time-steps opens the issue
of observation delays which is a complication best not
handled here. Given this scenario, we will look at the
formal representation of the multi-agent POMDP.

Definition of Multi-agent POMDP’s
This model is similar to the one in previous subsection.
Each agent has a POMDP model that is described by
the tuple Mi=< Si, Ai, Ei, Ti, θi, Oi, Ri, M−i >.

Let ∆(S) be the set of all probability distributions
over S, the set of physical states. We define ∆(S ×N−1

∆(S)) as the set of states defining an agents belief’s
about the physical states and the beliefs of other agents
about the physical states. Along the same lines, Si =
S×N−1 ∆(S) ×N−1 ∆(S×N−1 ∆(s)), where ∆(Si) is
the set of states of an agent’s beliefs of the systems
states, beliefs of other agents and their beliefs about it.
This enables the agent ’i’ to monitor its beliefs based on
the physical state of the system and the belief states of
other agents in the system. (Aumann 1999) discusses
knowledge hierarchies in detail. The belief hierarchies
extend to infinite depth with decreasing information
content at each level. For reasons obvious, we restrict
ourselves to second-level beliefs that capture an agents
belief about other agent’s belief about its physical state.

Ai = The set of all actions that agent ’i’ can perform.
These actions could be physical actions that change the
physical state of the system (and could also the change
information state of other agents). We include an action
NULL in which case the agent remains idle.

Ei = {×A−i} is the set of all actions that can be
performed by agents other than ’i’.

0

1

2

3

4

5

0 5 10 15 20

C
um

m
ul

at
iv

e
pa

ck
et

 d
ro

p

Time steps

pomdp

mdp

0

1

2

3

4

5

0 5 10 15 20

C
um

m
ul

at
iv

e
pa

ck
et

 d
ro

p

Time steps

pomdp

mdp

0

1

2

3

4

5

0 5 10 15 20

C
um

m
ul

at
iv

e
pa

ck
et

 d
ro

p

Time steps

pomdp

mdp

Ti : Si × Ai × Ei × Si −→ [0, 1], describes how each
action and events changes the state (with respect to
the agent ’i’). This is the crucial part of the model,
given that each agent knows the observation functions
of other agents and their utility functions. The com-
puted policy for every other agent gives the agent infor-
mation about the likely actions chosen by other agents
in different belief states.

θi is the set of observations perceived by agent ’i’.
Oi : Si × θi × Ai × Ei −→ [0, 1] describes how likely

each agent ’i’ can perceive observations at a given state
and action or event. Note that observations can be a
result of external events in a more general framework.
For example touch is the only way of perceiving, then
the agent can feel if it touches something or something
touches him. A more simpler way of defining this would
be to enrich the state space, which we will avoid doing
here.

Ri : Si −→ �, is the utility function of agent ’i’
describing the value of each state.

M−i = {Mj �=i}is the set of models (the states, ob-
servation functions, observations, utility functions, ac-
tions, events and transition probabilities of all agents
other than ’i’) of other agents.

Since the system state depends on the effect of the
joint actions of all the agents, each agent has to know
what every other agent will most likely do. Intuitively
this can be phrased as “A believes that B,C,D,. . . be-
lieve something about the system and every other agent.
Based on A’s beliefs, A knows that B,C,D,. . . would per-
form actions with some probability each. This allows A
to choose an action such that the resulting joint action
(from A’s perspective) has the highest expected util-
ity”.

The policy in this model is a mapping from the set
of probability distributions over Si to the set of actions
Ai, π : ∆(S) −→ Ai.

Solution approximation over finite state
space
Computing optimal policies for POMDP’s has been the
bottleneck in modeling real-world decision problems us-
ing the framework. (Papadimitriou & Tsitsiklis 1987)
show that for a finite horizon decision problem in the
framework is PSPACE-hard. For detailed discussion
on complexity issues we refer the reader to (Burago, de
Rougemont, & Slissenko 1996) and (Papadimitriou &
Tsitsiklis 1987). However polynomial time approxima-
tion algorithms exist, one of which is the grid based
approximation. Refer to (Lovejoy 1991) and (Zhou
& Hansen 2001) for discussion about grid based tech-
niques which can approximate solutions to the problem
for finite Si. Instead of computing the value for the
whole belief state as in exact algorithms, we compute
the values of a set of belief states in the belief space and
approximate the values of the other belief states. This
is done by determining a convex combination of belief

points that surround the belief state of interest and us-
ing their values to compute the value of the belief state.
If the set of belief states were to be visualized as a N-
dimensional grid in N-dimensional space, all we have to
do is to determine the smallest sub-simplex that con-
tains the belief point for which we have to compute the
value. The problem is therefore reduced to computing
the values of those selected set of belief points using the
regular gauss-seidel value iteration algorithm.

Additionally, (Lovejoy 1991) shows that the error
bounds for the value function can be found by com-
puting the lower bound and upper bound of the value
function. Once we know the upper and lower bounds,
the difference gives us an idea of how tight the error
bound is.

Conclusions and future work
In this paper we have presented a preliminary frame-
work to formalize network routing as a multi-agent de-
cision problem using POMDP’s. We include all possible
atomic physical actions that agents/nodes can perform
and describe how they influence the state of the system
thereby allowing a functional protocol (rules suggesting
courses of actions based on system state) to fall out as
an optimal policy of the POMDP. The ability to de-
termine the error of our approximation in POMDP’s
helps us in computing near-optimal solutions. A de-
tailed study of solution techniques for POMDP’s show
us the tractability issues in huge models. Grid-based
approximation schemes are again limited by memory
complexity introduced by the state space. Computa-
tion of error resulting from approximation of both state
space and belief space in POMDP’s needs to be stud-
ied. Promising directions for future work are to use in-
terpolation algorithms in infinite dimensional space for
approximating value functions of POMDP’s and using
finite histories(with known priors) instead of handling
the entire belief space.

In a related research work, (Pynadath & Tambe
2002) have recently developed a communicative multi-
agent team decision problem framework that is very
similar to multi-agent POMDP. A COM-MTDT from
a multi-agent POMDP perspective is a model with sin-
gle level of knowledge hierarchy. A model in which
agents only maintain the physical state space informa-
tion, not information about other agents state of knowl-
edge and messages (actions that explicitly exchange in-
formation about the states) only update each agent’s
belief about the physical state space. An empirical
comparison between multi-agent POMDP’s and COM-
MTDP’s should give interesting insights into both ap-
proaches. This will be pursued in our future work.

References

Aumann, R. J. (1999). Interactive epistemology :
Knowledge. In International Journal of Game The-
ory, volume 28, 263–300.

Boutilier, C.; Dean, T.; and Hanks, S. November 1999.
Decision theoretic planning: Structural assumptions
and computational leverage. In Journal of Artificial
Intelligence Research, 11:1–94.
Burago, D.; de Rougemont, M.; and Slissenko, A.
1996. On the complexity of partially observed markov
decision processes. In Theoretical Computer Science,
157(2), 161–183.
Cassandra, A. R. 1998. Exact and approximate al-
gorithms for partially observable markov decision pro-
cesses. In Ph.D. Thesis. Brown University, Depart-
ment of Computer Science, Providence, RI.
Haas, Z.; Halpern, J. Y.; Li, L.; and Wicker, S. B.
2000. A decision-theoretic approach to resource allo-
cation in wireless multimedia networks. In Proceedings
of Dial M for Mobility, 86–95.
Hauskrecht, M. 1997. Planning and control in stochas-
tic domains with imperfect information. phd disserta-
tion. In MIT-LCS-TR-738.
Kumar, S., and Miikkulainen, R. July 1999. Confi-
dence based dual reinforcement q-routing: An adap-
tive online network routing algorithm. In International
Joint Conference on Artificial Intelligence, Stockholm,
Sweden.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P.
1995. Learning policies for partially observable envi-
ronments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning.
Lovejoy, W. S. 1991. Computationally feasible bounds
for partially observed markov decision processes. In
Operations research, volume 39, No. 1.
Mikler, A. R.; Honavar, V.; and Wong, J. S.
1996. Utility-theoretic heuristics for intelligent adap-
tive routing in large communication networks. In Pro-
ceedings of the Thirteenth National Conference on Ar-
tificial Intelligence.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The
complexity of markov decision processes. In Mathe-
matics of Operations Research, 12:3, 441–450.
Pynadath, D. V., and Tambe, M. 2002. Multiagent
teamwork: Analyzing the optimality and complexity
of key theories and models. In Joint Conference on
Autonomous Agents and Multi-Agent Systems.
Srikanth, K. 2001. Network routing problems using
game theory. In Technical report , Indian Institute of
Technology.
Wu, G.; Chong, E. K.; and Givan, R. 2001. Con-
gestion control via online sampling. In Proceedings of
INFOCOM.
Zhou, R., and Hansen, E. A. 2001. An improved
grid-based approximation algorithm for pomdps. In
Proceedings of International Joint Conference in Ar-
tificial Intelligence.

