
Privacy for DisCSP-based Modeling in Multi-Agent Planning

Marius-Călin Silaghi∗
Florida Institute of Technology (FIT)
Melbourne, Florida 32901-6988, USA

msilaghi@cs.fit.edu

Boi Faltings
Swiss Federal Institute of Technology (EPFL),

CH-1015 Lausanne, Switzerland
Boi.Faltings@epfl.ch

Abstract

Constraint Satisfaction and SAT can model planning prob-
lems (Kautz & Selman 1996) and this approach is quite suc-
cessful. There is an increasing interest in distributed and
asynchronous search algorithms for solving distributed con-
straint satisfaction problems (DisCSP). An important moti-
vation for distributed problem solving is the agents’ abil-
ity to keep their constraints private. Cryptographic tech-
niques (Goldwasser & Bellare 1996) offer a certain protec-
tion from several types of attacks. However, when an attack
succeeds, no agent can know how much privacy he has lost.
We assume that agents enforce their privacy by dropping out
of the search process whenever the estimated value of the in-
formation that they need to reveal in the future exceeds that
attached to a successful solution of the DisCSP. We compare
several distributed search algorithms as to how likely they are
to terminate prematurely for privacy reasons, and arrange the
algorithms in a hierarchy that reflects this relation.

Introduction
Constraint Satisfaction and SAT can model planning prob-
lems (Kautz & Selman 1996) and this approach is quite suc-
cessful. There is an increasing interest in distributed and
asynchronous search algorithms for solving distributed con-
straint satisfaction problems (DisCSP). In a DisCSP, vari-
ables and constraints (predicates) belong to different agents.
Agents exchange messages to find a single value assignment
to all variables such that all their constraints are satisfied.

An important motivation for distributed problem solving
is the agents’ ability to keep their constraints private. One
way of ensuring this is to anonymize constraints through
cryptographic techniques. They are equivalent to replacing
a trusted party by a set of agents that only together can act as
trusted party, but alone are unable to cheat. Cryptographic
techniques (Goldwasser & Bellare 1996) offer protection
from several types of attacks. However, when an attack suc-
ceeds, no agent can know how much privacy he has lost. An-
other problem is that most existing cryptographic protocols
add enormous complexity to asynchronous search, so they
are often impractical (Hirt, Maurer, & Przydatek 2000).

∗This work was performed while the first author was working at
EPFL, supported by the Swiss National Science Foundation project
number 21-52462.97.
Non-exclusive limited Copyright c© 2002, American Association
for Artificial Intelligence (www.aaai.org).

We assume that each agent attaches a numerical value to
information it is asked to reveal in a search process. For
example, revealing whether the company is able to deliver a
product by a certain date may have a very high value, while
revealing whether the product can be blue may have a low
value. A rational way for agents to ensure their privacy is
then to abandon the search whenever the estimated value of
the information that they must reveal in the future exceeds
the value that they can gain from the successful solution.

Execution of asynchronous search algorithms is always
nondeterministic because of the variable message delivery
time. Therefore, often there is no strict comparison that
guarantees that one algorithm is always better than another
on a given problem instance. However, there are cases where
for certain problem instances, one algorithm has the pos-
sibility of reaching a solution while the other will always
terminate prematurely. We say that algorithm A is better1

than algorithm B when there are cases when B always ter-
minates prematurely but A may find a solution, and no cases
where the opposite holds. In this paper, we show several
such relations for known distributed constraint satisfaction
algorithms and construct a hierarchy that reflects these rela-
tions.

Background
Cryptographic protocols are the most well known solutions
for enforcing privacy in distributed computations (Gold-
wasser & Bellare 1996). Any given function can be com-
piled unto secure cryptographic protocols. When a certain
function has to be computed on shared secrets, often, all its
steps can be performed using corresponding secure proto-
cols. This can be done in such a way that most attackers that
cannot find the initial secrets, cannot find anything else than
the official output of the protocol.

Secure multi-party protocols for DisCSPs
As said, any given function can be compiled unto secure
cryptographic protocols. (Chaum, Crépeau, & Damgård
1988b; 1988a; Ben-Or, Goldwasser, & Widgerson 1988)
show general compiling techniques for cases where less than
n/3 players cheat and that are secure without intractability
assumptions. (Goldreich, Micali, & Wigderson 1987) gives
a technique for generating protocols robust to any minority

1Denoted ≺ or looser (not loser!) in the paper.

From: AAAI Technical Report WS-02-12. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

of colluders, and whose safety is based on intractability as-
sumptions. That technique is complete in the sense that “if
a majority of players is not honest, some protocol problems
have no efficient solution” (Goldreich, Micali, & Wigder-
son 1987). Other limits of the privacy based on Shamir’s
schema (Shamir 1979) are explained in Section 3 of (Chor
et al. 1985). At the end of a computation, no agent can know
whether anything of its privacy is saved.

Recently, researchers have been trying to apply secure
multi-party protocols to DisCSPs and related problems
(e.g. (Yokoo & Suzuki 2002), and newer cases (Yokoo,
Suzuki, & Hirayama 2002; Silaghi 2002)). (Silaghi 2002)
describes some custom ways of applying secure multi-party
protocols to discrete and numeric DisCSPs, based on in-
tractability assumptions. One of its main ingredients is Mer-
ritt’s election protocol (Merritt 1983) for shuffling, warp-
ing and reformulating the initial problem. Merritt’s election
protocol was initially meant for accounting the votes during
elections and ensures the privacy of the relation vote-elector
by shuffling the indexes of the votes. The shuffling is ob-
tained by a chain of permutations (each permutation being
the secret of an election center) on the encrypted votes.

In (Silaghi 2002), the Merritt’s technique is slightly ex-
tended to allow both: shuffling variables and shuffling dis-
crete values within discrete variables. The role of the elec-
tion centers is taken by the participating agents. A chain of
agents that compose their secret permutations is referred to
as a Merritt chain.

Numeric constraints are broken and the pieces are shuffled
separately through k distinct Merritt chains (Silaghi 2002).2

Each element of a chain can therefore split, warp and trans-
form the numeric constraints that they process.

The main feeble point of the technique described
in (Silaghi 2002) for discrete DisCSPs is that agents that are
able to get the shuffled DisCSP (e.g. by recording the trace
of the algorithm), may be able to detect the homomorphism
between some shuffled constraints and their own constraints.
As a result, these agents can (partially) detect the obtained
permutation and find the secrets of other agents. For nu-
meric constraints, the permutation can be detected even eas-
ier by k colluding agents found on the same level on Merritt
chains. Several techniques have been tried for increasing the
intractability of detecting the permutations and the associa-
tion constraint-agent.

Distributed search
While distributed resource allocation has been researched
for several decades, the first asynchronous complete algo-
rithm for DisCSPs appears in (Yokoo et al. 1992). The
framework introduced in (Yokoo et al. 1992) approaches
problems modeled with agents, variables and constraints, as-
suming that each variable has exactly one owner. The local
problem of an agent Ai is denoted by CSP(Ai), and the in-

2This can be done after a first round of classic Merritt shuffling
where pieces of numeric constraints are first dissociated from the
initial variables. At the second shuffling (with plain constraints),
the pieces of constraints can eventually be further split when these
chains split themselves further forming trees.

volved variables by vars(Ai). The variables in vars(Ai) that
are not owned by Ai are foreign to Ai. The domains can
be represented as unary predicates. The local problem of an
agent in a model with private domains is defined by:

• owned variables

• foreign variables

• predicates.

Such a local problem for an agent Ai can be denoted as:

CSP(Ai)={owned variables|foreign variables|predicates}.
Issues on openness in incomplete search algorithms are

discussed in (Modi et al. 2001; Denzinger 2001). Asyn-
chronous backtracking (ABT), as presented in (Yokoo et al.
1992), is able to solve problems where proposals on vari-
ables can be made only by the owner of the variable. This
peculiarity opens the door for the first approach to privacy:
privacy of domains. Since only the owner, A, of a variable,
x, can make proposals on the assignment of x, the domain
of x can remain private to A. Parts of the domain of x may
have to be revealed during search, but chances are that some
values remain private:

• either by stopping when a solution is found, or

• by discovering that some proposals are already ruled out
by constraints provided by other agents.

Slightly different frameworks have been mentioned in
the literature (Zhang & Mackworth 1991; Khedro & Gene-
sereth 1994; Solotorevsky, Gudes, & Meisels 1996), where
an agent owns problems rather than variables. This removes
the distinction between foreign and owned variables:

CSP (Ai) = {variables|predicates}.
In the following, we denote the kth element of a tuple t by
t|k. It is interesting to mention the next proposition which
actually already belongs to the folklore of DisCSPs:

Proposition 1 Any distributed problem modeled with pri-
vate variables can be modeled with private local problems.
Any distributed problem modeled with private local prob-
lems can be modeled with private variables.

Proof. This proposition is related to the equivalence between pri-
mal and dual CSP representations (Bacchus & Van Beek 1998).

Any DisCSP with private domains P1 =
{CSP (A1)={ov1|fv1|p1}, ...} is equivalent to the DisCSP
with private problems P2 = {CSP (A1)={ov1∪fv1|p1}, ...}
where all public variables can take any value, but their owners
know the unary constraints restricting them and that have the
function of the corresponding private domains.

Any DisCSP with private problems P2 =
{CSP (A1)={v1|p1}, ...} is equivalent to the DisCSP with
private domains P1 = {CSP (A1)={x1|v′1|p′1}, ...} defined as
follows.

• xk are new variables introduced in P1 such that each agent Ai
owns the variable xi. The domain of xi is the Cartesian product
with domains of variables in vi.

• Let agents(vi) be the set of agents enforcing in P2 predicates
involving variables in vi. When {A} is a set of agents, let
owned-vars({A}) be the set of variables owned in P1 by agents
in {A}. Then:
v′i =owned-vars(agents(vi)) \ {xi},

• Let idx(x, xk) denote the index corresponding to valuations of
the variable x in the tuples of xk. p′i consists of a set of pred-
icates {xi|idx(x,xi)=xj |idx(x,xj)

|xj∈v′i, x∈vi}, and of a unary
constraint restricting xi to take values among tuples that are so-
lutions for pi.

Example 1 Let us choose a problem modeled with private
variables, consisting of two agents: A1 and A2.
CSP(A1)={x, y||x, y∈{0, 1}, x+y=1}, and
CSP(A2)={z, t|x, y|z, t∈{0, 1, 2}, z+t=2, x+z−y−t=2}.
The corresponding problem modeled with private local
problems is:
CSP(A1)={x, y|x, y∈{0, 1}, x+y=1}, and
CSP(A2)={z, tx, y|z, t∈{0, 1, 2}, z+t=2, x+z−y−t=2}.

Example 2 Given a problem with three agents:
CSP(A1)={x, y|x, y∈{0, 1, 2}, x+y=2},
CSP(A2)={x, z|x, z∈{0, 1, 2}, x+z=2}, and
CSP(A3)={y, z|y∈{0, 1}, z ∈ IR, y+z=2}.

An equivalent model with private variables is:
CSP(A1)={a||a∈{(0, 2), (1, 1), (2, 0)}},
CSP(A2)={b|a|b∈{(0, 2), (1, 1), (2, 0)}, b|1=a|1}, and
CSP(A3)={c|a, b|c∈{(0, 2), (1, 1)}, c|1=a|2, c|2=b|2}.

While the initial version of asynchronous backtracking
(ABT) requested that A3 owns at least one variable, we in-
troduced the variable c.

The difference between privacy on variables and privacy
on problems is only algorithmic: With privacy on problems,
several agents may cooperate for defining an assignment of
a variable, allowing for abstractions which can have an im-
pact on the amount of revelations (Silaghi, Sam-Haroud, &
Faltings 2000a). With privacy on domains, the discussion
about a variable can only be initiated by its owner. An es-
timation of privacy loss function of agent intelligence, de-
scribed in (Freuder, Minca, & Wallace 2001), is based on
the number of revealed tuples. The next sections introduce
a framework for modeling agent behavior regarding privacy
loss. It is then shown how features in protocols add new
opportunities for privacy maintenance.

Distributed Private CSPs
Arguments referring to privacy have been often used in re-
lation with algorithms for DisCSPs (Yokoo et al. 1998;
Silaghi, Sam-Haroud, & Faltings 2000b), but the first quan-
titative experiments are detailed only in (Freuder, Minca, &
Wallace 2001). It counts the number of revealed values dur-
ing a synchronous protocol for meeting scheduling. That
work was meant for assessing agent intelligence (by using
or not using consistency in their local reasoning). Here we
want to evaluate the capacity of distributed protocols to al-
low the search to proceed toward less private search space
regions. In the following, when we speak about the feasibil-
ity of a tuple, we actually refer to the answer to the question:
“Is the tuple feasible or not?”

Definition 1 A Distributed Unitary Private CSP (Dis-
UPrivCSP) is a DisCSP where each valuation of the local
problem of an agent has associated a privacy value repre-
senting the loss suffered whenever the feasibility of that tuple
is revealed: privAi : Dki → IR+.

Example 3 A simple measure can be modeled in Dis-
UPrivCSPs with privAi(t) = f1(feasible(t)) where
f1(false) = 0 and f1(true) = 1. This is related to one
of the measures used in (Freuder, Minca, & Wallace 2001).

We need protocols that allow for selectively using less im-
portant tuples in solving the problems. In the following, we
define a more complex version of DisUPrivCSP. Given a set
S, usually one denotes with P(S) the set of subsets of S.

Definition 2 A Distributed Private CSP (DisPrivCSP) is a
DisCSP where:

• Each search subspace of the local problem of an agent
has associated a privacy value representing the loss that
appears whenever only the feasibility of that subspace is
revealed: privAi :P(Dki)→IR+.

• Each agent, Ai, prefers to minimize its privacy loss and
abandons rather than accepting to incrementally lose a
privacy with a value higher than VAi , the value that it
can gain from a successful solution.

The local problem of an agent in a model with private
domains is defined by:

• owned variables,

• foreign variables,

• predicates, privacy function, and privacy threshold (ex-
pected gain).

For simplifying notations in descriptions of this paper, we
use the following conventions. Constraint tuples for which
no privacy value are specified are considered to have privacy
value 0. When the privacy is specified for tuples formed only
of owned variables, it will be considered that that privacy
corresponds to the set of tuples whose projections on the
owned variables is the given one. Lack of privacy thresh-
old is considered to mean that its value is ∞. Such a local
problem for an agent Ai can be denoted as:

CSP(Ai)={owned variables|foreign variables|predicates ...}.
Even if the privacy loss in general is not an additive func-

tion (as illustrated by the next example), for convenience,
this is the default in the rest of the examples described in
this work.

Example 4 Let us analyze local problem CSP(A1) with
one variable x having a domain of three values {a, b, c} and
a publicly known unary constraint leaving exactly one value
feasible. Revealing the feasibility of two values automati-
cally reveals the feasibility of the third value. This implies
that privAi({a, b, c})=privAi({a, b}).

In this conditions, additivity,

privAi({a, b, c})=privAi({a, b})+privAi(c)
can only be true when privAi(c) = 0, which cannot hold in
general for each c.

E.g. When:
privAi(a)=privAi(b)=privAi(c)=1, and
privAi({a, b, c})=3, then
privAi({a, b})=privAi({a, c})=privAi({b, c})=3.

Here privAi({a, b}) 6= privAi(a) + privAi(b).

The behaviors in DisPrivCSPs are related to behaviors in
auctions where all bidders pay their last bid. Namely, even
if the privacy loss undergone so far by Ai is higher than
VAi , it is rational for Ai to continue to cooperate in search
whenever it believes it can find a solution without increasing
its privacy loss with VAi .

The simplifying assumptions made here are:

• environment invariant privacy: the value of the privacy
loss is invariant with completely external events.

• peer invariant privacy: the value of the privacy loss is in-
variant with the set of agents learning the divulged in-
formation (everybody discloses everything known about
third parties).3

Definition 3 (looser4) A problem solving algorithm P1 is
strictly looser than another algorithm P2, denoted P1≺P2,
if there exists a DisPrivCSP that can be solved by some in-
stance of P1 but cannot be solved by any instance of P2 for
the same initial order on values and agents. It is also re-
quired that any problem solvable with P2 can be solved with
some instance of P1.

Proposition 2 The relation ≺ is transitive.

Proof. If P1≺P2≺P3, it means that ∃ a problem solvable with
P1 but not solvable with P2, therefore not solvable with P3. Also,
all problems solvable by P3 are solvable with P2 and therefore
solvable with P1.

Note that only the initial order is considered for compar-
ing algorithms with reordering. For DisCSPs, (Yokoo 1995)
and (Meisels & Razgon 2001) present algorithms with value
reordering. Several protocols for solving DisCSPs are com-
pared for DisPrivCSPs in next section.

Comparison of Protocols
The simplest complete distributed algorithm that we
can imagine now is the Synchronous Backtracking
(SyncBT) (Yokoo et al. 1992). SyncBT is the distributed
counterpart of centralized backtracking.

(Collin, Dechter, & Katz 2000) presents an algorithm we
refer to as Distributed Depth-First-Search Branches (Dis-
DFSB). DisDFSB improves on SyncBT by allowing stati-
cally detected independent subproblems on branches of the
search to be scanned in parallel. When one of these sub-
problems generates a failure, the whole search branch can
be abandoned.

Proposition 3 DisDFSB ≺ SyncBT.

Proof. Let P be a DisPrivCSP with three agents and privacy func-
tions on unary constraints:
CSP(A1)={a||a∈{0..3}, a6∈{2}, a=b=c, privA1(2)=4, VA1=3}
CSP(A2)={b|a|b∈{0..3}, b>1, a=b, privA2(1)=1,

privA2(0)=4, VA2=3}
CSP(A3)={c|a|c∈{0..3}, c>1, a=c, privA3(1)=4,

privA3(0)=1, VA3=3}.
3This assumption is the inverse of the one behind most crypto-

graphic protocols.
4For the non-English readers, please note that looser is not the

same as loser.

BB

AA

DDCC

Figure 1: DisDFSB DFS branches: A,C,D are sets of agents.
B is an agent.

For simplification, here as overall in the paper, privA2(1) is a
short notation for privA2(b = 1), where the missing variable in
the unary constraint is the owned one. As previously mentioned,
privA2(b = 1) means privA2(b = 1, ∀a), where the added uni-
versal quantifier precedes all the foreign variables.

With DisDFSB, A1 starts proposing a = 0 then A2 waits for
a while, hoping that A3 can detect infeasibility, since A2 prefers
to abandon the search rather than admitting that it does not accept
b = 0. Infeasibility is fortunately found by A3 and A1 proposes
a = 1. For a = 1 it is A2 that accepts to reveal infeasibility. A1

avoids mentioning about a = 2 and a solution is found for a = 3.
Given this order on values, SyncBT cannot find any solution for

this order on agents, and neither SyncBT nor DisDFSB can find
any solution with other DFS orders on agents.

Obviously, whenever SyncBT finds a solution for some order on
agents, DisDFSB will also find a solution for a compatible DFS
order on agents.

The Synchronous (arc-) consistency maintenance proto-
col (SyncMC) mentioned in (Collin, Dechter, & Katz 2000),
and detailed in (Tel 1999) consists of a sequence of propos-
als/backtracking interleaved with consistency maintenance.
In addition, for DisPrivCSPs, the strength of the achieved
consistency can be optional and agents can be allowed to di-
vulge only the labels/value eliminations that they want. With
this amendment:

Proposition 4 SyncMC ≺ SyncBT.

Proof. For the problem discussed in the proof of Proposition 3,
SyncMC finds a solution in the same conditions as DisDFSB.
Whenever SyncBT finds a solution, an instance of SyncMC where
agents prefer not to reveal any label behaves like SyncBT and finds
the same solution.

Proposition 5 SyncMC and DisDFSB are incomparable
with the relation ≺.

Proof. Any DisCSP can be extended with constraints between all
variables, such that DisDFSB behaves like SyncBT. According to
Proposition 4, SyncMC can avoid inconsistency and finds solutions
when DisDFSB must abort.

One can also construct problems where DisDFSB finds solutions
and SyncMC aborts. Here we do not present a complete example
since it would be lengthy and redundant, but explain how it can be
built:

In Figure 1, both sets of agents: C and D, defining DFS
branches under the agent B are infeasible for two different search
tree branches b1 and b2, but the privacy loss leads to abortion once
for C on b1 and then for D on b2.

When the full search on D can reach failure on b1 but the main-
tained degree of consistency of SyncMC fails to find inconsistency
(such situations are known to exist), then SyncMC forces C to find

the inconsistency. If the order on agents is lucky and the failing
subset of D comes first, then SyncMC aborts when it expands the
search tree on b2.

Asynchronous Protocols
During distributed search, agents exchange information on
current proposals via messages, and the set of proposals
known by an agent is referred to as its view. Protocols are
asynchronous when at no moment an agent can make as-
sumptions about the current view of another agent (except
A1 with static order).

Most distributed algorithms consist of several asyn-
chronous epochs, meaning that there exist some uncer-
tainty when messages are on their ways, but at some mo-
ments one agent can make safe assumptions about the view
of the other agents. These moments delimit epochs. In
SyncMC, each start and termination of a distributed consis-
tency round delimits consistency epochs from backtracking
epochs. In (Meisels & Razgon 2001), the search consists
of a series of: consistency, ordering, backtracking epochs.
(Armstrong & Durfee 1997) describes an algorithm consist-
ing of asynchronous backtracking epochs interleaved with
reordering epochs. In SyncBT, each epoch consists of ex-
actly one message.

Definition 4 We say that a protocol is asynchronous when
it consists of a single asynchronous epoch.

Asynchronous Backtracking (ABT) (Yokoo et al. 1992)
is an asynchronous protocol for solving DisCSPs. In ABT,
agents can make concurrently and in parallel proposals on
distinct variables.

Proposition 6 ABT ≺ SyncDFSB.

Proof. We take a DisPrivCSP with agents A1, A2, A3, A4, A5

enforcing a CSP with a fully connected graph. Given this order
on agents we consider that the agents A3, A4, A5 compose an in-
feasible problem for the first proposal of the first agent. Let A2

also want to refuse this proposal but the privacy loss for this refusal
would oblige him to abandon the search. ABT is able to detect the
infeasibility of this value and solutions with subsequent values can
be found. SyncDFSB instead obliges A2 to divulge infeasibility of
this same proposal and the search is aborted.

Whenever SyncDFSB solves a problem, the same problem can
be solved by ABT, since a certain timing in ABT yields SyncDFSB.

(Silaghi, Sam-Haroud, & Faltings 2000a) proposes an
asynchronous algorithm, Asynchronous Aggregation Search
(AAS), for a model with privacy on constraints. We discuss
here the version of AAS described in (Silaghi 2002). AAS
allows agents to aggregate several proposals in one message.
While the order on values is difficult to define when aggrega-
tion is used (AAS), we assume in this report that each new
proposal contains the first available tuple in lexicographic
order.

Proposition 7 AAS ≺ ABT.

Proof. AAS can emulate ABT by not performing aggregations,
therefore when ABT finds a solution, AAS can also find it. Instead,
by the fact that AAS can aggregate two proposals a and b, lower

priority agents may be able to find a solution with b, avoiding to
abort on a.

Proposition 8 ABT is incomparable versus SyncMC using
the relation ≺.

Proof. Arc consistency achievement can remove a branch of the
search defined by a proposal of the first agent, by propagating the
removal of the last proposal of the second agent. ABT cannot do
this, especially since nogoods involving that last value can only be
computed after that value is proposed. Since the propagation of
such a value can rule out proposals leading to abortion, SyncMC
may find solutions when ABT does not.

SyncMC may not itself find solutions when search with ABT in
lower priority agents can detect infeasibility of challenging propos-
als.

An example where the previous argument can be analyzed can
be easily built. Consider the next DisPrivCSP:
CSP(A1)={x1||x1∈{1, 2}, |x2−x1|≤1}
CSP(A2)={x2|x1|x2∈{1, 2, 3}, |x2−x1|≤1, x2>1,

privA2(1)=4, VA2=3}
When CSP(A3), CSP(A4), CSP(A5),... define a problem such

that x1=1 leads to failure by search but x1=1, x2∈{1, 2} does not
fail with consistency, then a solution for x1=2 can be found with
ABT but not with SyncMC.

Instead, when CSP(A3), CSP(A4), CSP(A5),... define a prob-
lem such that x1=1 does not lead to failure by search (due to
the existence of a solution for x1=1, x2=3) but consistency with
x1=1, x2∈{1, 2} can prove infeasibility, then a solution for x1=2
can be found with SyncMC but not with ABT.

To avoid lengthy redundant description, we do not give fully
described cases. However, these two types of problems obviously
exist, therefore the claim is proven.

A method called Distributed Maintaining Asyn-
chronously Consistency (DMAC-ABT), for maintaining
consistency in ABT, is introduced in (Silaghi, Sam-Haroud,
& Faltings 2001b). DMAC-ABT allows to exchange a type
of nogoods called consistency-nogoods, corresponding to
labels in SyncMC.

Corollary 8.1 DMAC-ABT ≺ ABT.

Proof. Any of the problems that can be solved with ABT can
be solved with DMAC-ABT for DisPrivCSPs, since DMAC-ABT
emulates ABT when no agent sends labels due to privacy enforce-
ment policies. According to Proposition 8, there exist problems
that can be solved with SyncMC but cannot be solved with ABT.
Those problems can be solved with DMAC-ABT, which can also
emulate SyncMC.

Corollary 8.2 DMAC-ABT ≺ SyncMC.

Proof. Any of the problems that can be solved with SyncMC can
be solved with DMAC-ABT for DisPrivCSPs, since DMAC-ABT
emulates SyncMC for certain timing policies. The problems that
can be solved with ABT but cannot be solved with SyncMC (see
Proposition 8), can be solved with DMAC-ABT, which can also
emulate ABT when no agent sends labels due to privacy enforce-
ment policies.

The following two statements may be proved similarly to
the previous propositions.

Proposition 9 AAS is incomparable versus SyncMC using
the relation ≺.

Proof outline. Note that in contrast to the proof for Proposition 8,
for proving the previous statement one has to design examples that
work for all possible aggregations containing the first values that
can be proposed by A1. For simplicity, the designed examples can
letA1 manage at least two variables where the set of feasible tuples
forA1 cannot be represented by a single Cartesian product (e.g. an
equality constraint for two variables with identical domains with
two values each.

One can argue that such an example is not convincing since it
can be reformulated by clustering the variables of the first agent
and aggregating the resulting feasible values. To stand against this
criticism, the designed example has to deal with branches defined
by the proposals of A2 which cannot all be aggregated with the
proposal of A1. A3 is therefore the agent risking to abort and
the agents A4, ... respectively A3, ... are the agents that can/cannot
refuse the proposal of A2 with AAS respectively SyncMC.

(Silaghi, Sam-Haroud, & Faltings 2001b) mentions a
protocol called DMAC, combining AAS and DMAC-ABT.
Similarly with the previous propositions it can be shown that
based on the last proposition:

Corollary 9.1 DMAC is looser than both AAS and SyncMC.

A recent general protocol is the replica-based DMAC (R-
DMAC)5, a.k.a. Asynchronous Dichotomous Maintaining
Bound-consistency (ADMB) (Silaghi et al. 2001). While
none of the previously mentioned protocols can be≺ than R-
DMAC that is a generalization, the superiority of R-DMAC
remains to be proven.

Comparison for reordering
Now we discuss several algorithms allowing for reorder-
ing. ABT with reordering (ABTR) is a protocol described
in (Silaghi, Sam-Haroud, & Faltings 2001a) and allowing
agents to propose new orders based on heuristic information
obtained from other agents.

Proposition 10 ABTR ≺ ABT.

Proof. In ABTR, an agent owning private tuples that must be
revealed for proving infeasibility of a branch may be allowed to
generate a heuristic message and can be placed on the first position.
This way it can launch another proposal and escapes the need to
abort. ABTR can always emulate ABT when agents do not use
heuristics.

Asynchronous Weak Commitment (AWC) (Yokoo 1995)
is an algorithm for reordering values and agents during
asynchronous search. Its ability to reorder values allows it
to solve problems that algorithms with static order cannot
solve. In AWC, agents can propose new reordering when-
ever a new nogood is multicast. The standard reordering
policy in AWC is to position each agent discovering a new
nogood before all the agents that have generated proposals
found in that nogood, but in practice, other positions can be
selected.

Proposition 11 AWC ≺ ABT.

Proof. Since, as mentioned above, agents can choose not to mod-
ify their priority on the discovery of new nogoods, at extreme AWC
emulates ABT, and any problem solved with ABT can be solved

5R-MAS without reordering.

with some variant of AWC. However, due to its reordering ability,
AWC can solve the next DisPrivCSP that is abandoned in ABT.
CSP(A1)={a|b|a∈{1, 2, 3}, a=b}
CSP(A2)={b|a|b∈{1, 2, 3}, a=b,a6∈{1, 2},privA2(2)=4,V=3}

When A2 receives the first proposal for a = 1, it generates a
nogood and gets higher priority. It can then propose b = 3 and
a solution is found. With ABT, A1 proposes first a = 1, then on
refusal it proposes a = 2 and A2 must abort.

However, in case of a series of unlucky reordering events,
ABTR and AWC may have to abandon a DisPrivCSP that
can be solved with ABT.

Example 5 For the DisPrivCSP:
CSP(A1)={a|b|a∈{1, 2, 3},a=b,a6=2,privA1

(2)=4,V=3}
CSP(A2)={b|a|b∈{1, 2, 3}, a=b, a6=1}

AWC with the reordering strategy advised for efficiency
on DisCSPs in (Yokoo 1993), A1 aborts when after the first
nogood detected byA2,A2 gets the highest priority and pro-
poses b = 2.

Proposition 12 AWC and ABTR cannot be compared with
the relation ≺.

Proof. AWC cannot change an order before nogoods are discov-
ered. Given the DisPrivCSP:
CSP(A1)={a|b|a∈{1, 2}, a=b}
CSP(A2)={b|a|b∈{1, 2}, b6=1, a=b, privA2(1)=4, V=3},
AWC leads A2 to abandon the search immediately after receiving
the proposal a = 1, since A2 don’t accept to divulge the infeasi-
bility of b = 1. ABTR instead allows A2 to generate a heuristic
message and a reordering can be issued where A2 gets the highest
priority. A2 can propose b = 2 and the solution is found immedi-
ately.

AWC can reorder values and this can allow for solving Dis-
PrivCSPs that are abandoned with ABTR, such as:
CSP(A1)={a|b|a ∈ {0, 1, 2, 3},a=b,a6=2,privA1(2)=4,V=3}
CSP(A2)={b|a|b∈{1, 2, 3}, a=b, a6=1, |a−b|6=2, privA2(1)=4,

V=3}

In the previous proof we did consider that agents in ABTR
stubbornly stick to the initial order on their values. Clearly,
the ABTR protocol can easily be extended to allow the
agents to use strategies where they can choose values in a
wiser way. It remains an open question whether such strate-
gies can solve all the problems that can be solved with AWC.

The protocol combining DMAC with the reordering of
ABTR is called Multiply Asynchronous Search (MAS). It
can be noted that no algorithm has been yet described that
would combine DMAC-ABT with the reordering of ABTR
(DMAC-ABTR).

Proposition 13 MAS ≺ DMAC.

Proof. This relation is similar to the one at Proposition 10.

It is obvious that ABTR cannot be looser than MAS
since MAS can emulate ABTR. However, we have not yet
succeeded in designing DisPrivCSP examples that can be
solved by MAS and cannot be solved by ABTR, such that
the relationship between these two algorithms remains an
open question.

SyncBT

DisDFSB

SyncMC

ABT

AAS DMAC− ABT

ABTRAWC

DMAC

MAS

Figure 2: Dashed lines with arrows at both sides show pro-
tocols proven to be incomparable with the relation looser.
For lines with one arrow, the arrows point towards looser
protocols. The relation ≺ is transitive.

Summary of Distributed Search Protocols
In Figure 2 we give a global image of the aforementioned
results in the comparison of protocols for DisPrivCSPs.
Several very recent protocols (e.g. (Bessière, Maestre,
& Meseguer 2001; Meisels & Razgon 2001)) are not yet
analyzed. Some protocols (e.g. (Solotorevsky, Gudes, &
Meisels 1996)) initially designed for problems without pri-
vacy could also be studied in the future from the point of
view of DisPrivCSPs.

The relation ≺ is transitive (Proposition 2) and therefore,
several additional relations can be inferred from the proven
ones. Some questions remain open, e.g. the relation between
ABTR, AWC, and AAS or DMAC-ABT.

Secure protocols vs. distributed search
In the previous sections we have seen several search proto-
cols for solving distributed CSPs. One of the main motiva-
tions behind DisCSPs is the privacy that they offer. In the
Background section we have first introduced secure multi-
party computations, the main competitor for distributed
search.

Before closing this report, we will discuss some of the
trade-offs between the two techniques. Clearly, each of them
is appropriate for a different type of problems, while for
some problem the choice can be difficult.

Secure protocols have the main advantage that it is proba-
ble that they lead the computation without any privacy loss,
other than the official result. In contrast, distributed proto-
cols by their nature divulge additional constraints and values
(except when the first checked tuple is a solution).

Secure protocols lead to deterministic results that depend
only on the initial description of the problem and strate-
gies (Yao 1982), and of the way the distribution/shuffling is
done. The result in distributed search is influenced by agent
strategies, network load, divulged information.

Distributed search has the advantage that in any moment,
an agent knows and enforces an upper bound of how much
information it may have divulged. In typical secure proto-
cols, there is no way for an agent to know that any privacy
was actually saved.

Distributed search fits well human-machine interaction,
while secure protocols are cryptic and are only appropriate
for purely machine-based problem solving.

Distributed search seems able to accommodated easily to
very dynamic problems like the one in (Jung et al. 2000).

Overall, we think that distributed search can be preferred
when the participants are not trusted enough for the avail-
able cryptographic protocols to be secure (e.g. for nu-
meric constraints or techniques from (Chaum, Crépeau, &
Damgård 1988a; Ben-Or, Goldwasser, & Widgerson 1988)),
or when the agents strongly need to make sure that the upper
bound of the divulged information is lower than a thresh-
old. They are also preferred when the size of the problems
is sufficiently small such that ’secure protocols’ based on in-
tractability assumptions are too insecure. Secure protocols
are preferred in most other cases, especially when it is very
important to find a solution and the global problem is sus-
pected to be very difficult such that almost everything would
be revealed with distributed search.

Conclusions

While many distributed protocols have been developed re-
cently for coping with privacy, no existing formal framework
allows to go beyond questionable claims. In this article we
propose a framework called Distributed Private Constraint
Satisfaction Problems (DisPrivCSPs), related with the work
in (Freuder, Minca, & Wallace 2001). This framework mod-
els the privacy loss for individual revelations. It also models
the effect of the privacy loss by assuming that agents are de-
termined to abandon when the incremental privacy loss over-
comes the expected gains from cooperation. Applications
of such protocols have been recently described in (Freuder,
Minca, & Wallace 2001). The newly introduced framework
is supported by showing how several existing protocols be-
have and compare against each other within the new defini-
tions. Several relations remain to be discovered. Observa-
tions made during this analysis can direct users in choosing
good strategies for their agents (Silaghi 2002).

References

Armstrong, A., and Durfee, E. F. 1997. Dynamic prioritiza-
tion of complex agents in distributed constraint satisfaction
problems. In Proceedings of 15th IJCAI.

Bacchus, F., and Van Beek, P. 1998. On the conversion be-
tween non-binary and binary constraint satisfaction prob-
lems. In Proceedings of the 15th National Conference on
Artificial Intelligence.

Ben-Or, M.; Goldwasser, S.; and Widgerson, A.
1988. Completeness theorems for non-cryptographic fault-
tolerant distributed computating. In Proc. 20th ACM Sym-
posium on the Theory of Computing (STOC), 1–10.

Bessière, C.; Maestre, A.; and Meseguer, P. 2001. Dis-
tributed dynamic backtracking. In Proc. IJCAI DCR Work-
shop, 9–16.
Chaum, D.; Crépeau, C.; and Damgård, I. 1988a. Multi-
party unconditionally secure protocols. In Proc. 20th ACM
Symposium on the Theory of Computing (STOC), 11–19.
Chaum, D.; Crépeau, C.; and Damgård, I. 1988b. Mul-
tiparty unconditionally secure protocols. In Springer-
Verlag., ed., Proc. CRYPTO 87, LNCS 293, 462.
Chor, B.; Goldwasser, S.; Micali, S.; and Awerbuch, B.
1985. Verifiable secret sharing and achieving simultane-
ity in the presence of faults. In Proceedings of the 26th
IEEE Symposium on Foundations of Computer Science,
383–395.
Collin, Z.; Dechter, R.; and Katz, S. 2000. Self-stabilizing
distributed constraint satisfaction. Chicago Journal of The-
oretical Computer Science.
Denzinger, J. 2001. Tutorial on distributed knowledge
based search. IJCAI-01.
Freuder, E.; Minca, M.; and Wallace, R. 2001. Pri-
vacy/efficiency tradeoffs in distributed meeting scheduling
by constraint-based agents. In Proc. IJCAI DCR Workshop,
63–72.
Goldreich, O.; Micali, S.; and Wigderson, A. 1987. How to
play any mental game - a completeness theorem for proto-
cols with honest majority. In Proc. 19th ACM Symposium
on the Theory of Computing (STOC), 218–229.
Goldwasser, S., and Bellare, M. 1996. Lecture notes on
cryptography. MIT.
Hirt, M.; Maurer, U.; and Przydatek, B. 2000. Efficient
secure multi-party computation. In Advances in Cryptology
- ASIACRYPT’00, volume 1976 of LNCS, 143–161.
Jung, H.; Tambe, M.; Zhang, W.; and Shen, W.-M. 2000.
On modeling argumentation as distributed constraint satis-
faction: Initial results. In Proceedings of the International
Workshop on Distributed Constraint Satisfaction, 47–56.
CP’00.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
AAAI, 1194–1201.
Khedro, T., and Genesereth, M. R. 1994. Modeling multia-
gent cooperation as distributed constraint satisfaction prob-
lem solving. In Proceedings of ECAI’94, 249–253.
Meisels, A., and Razgon, I. 2001. Distributed forward
checking with dynamic ordering. In CP01 COSOLV Work-
shop, 21–27.
Merritt, M. 1983. Cryptographic Protocols. Ph.D. Disser-
tation, Georgia Institute of Technology.
Modi, P. J.; Jung, H.; Tambe, M.; Shen, W.-M.; and Kulka-
rni, S. 2001. Dynamic distributed resource allocation: A
distributed constraint satisfaction approach. In Distributed
Constraint Reasoning, Proc. of the IJCAI’01 Workshop,
73–79. Seattle: IJCAI.
Shamir, A. 1979. How to share a secret. Communications
of the ACM 22:612–613.

Silaghi, M.-C.; Sabău, Ş.; Sam-Haroud, D.; and Faltings,
B. 2001. Asynchronous search for numeric DisCSPs. In
Proc. of CP’2001, 786.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2000a.
Asynchronous search with aggregations. In Proc. of
AAAI2000, 917–922.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2000b.
Asynchronous search with private constraints. In Proc. of
AA2000, 177–178.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2001a.
ABT with asynchronous reordering. In 2nd A-P Conf. on
Intelligent Agent Technology, 54–63.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2001b.
Consistency maintenance for ABT. In Proc. of CP’2001,
271–285.
Silaghi, M.-C. 2002. Polynomial-Space Asynchronous
Search. Ph.D. Dissertation, Swiss Federal Institute of Tech-
nology (EPFL), CH-1015 Ecublens. submitted.
Solotorevsky, G.; Gudes, E.; and Meisels, A. 1996. Algo-
rithms for solving distributed constraint satisfaction prob-
lems (DCSPs). In Proceedings of AIPS96.
Tel, G. 1999. Multiagent Systems, A Modern Approach
to Distributed AI. MIT Press. chapter Distributed Control
Algorithms for AI, 539–580.
Yao, A. 1982. Protocols for secure computations. In Pro-
ceedings of 23rd IEEE Symposium on the Foundations of
Computer Science (FOCS), 160–164.
Yokoo, M., and Suzuki, K. 2002. Secure multi-agent
dynamic programming based on homomorphic encryption
and its application to combinatorial auctions. In Proc. of
AAMAS-02. to appear.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1992. Distributed constraint satisfaction for formalizing
distributed problem solving. In ICDCS, 614–621.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms. IEEE Trans. on Knowledge and
Data Engineering 10(5):673–685.
Yokoo, M.; Suzuki, K.; and Hirayama, K. 2002. Se-
cure distributed constraint satisfaction: Reaching agree-
ment without revealing private information. In Proc. of the
AAMAS-02 DCR Workshop. submitted.
Yokoo, M. 1993. Dynamic value and variable ordering
heuristics for distributed constraint satisfaction. In Work-
shop on Intelligent Agents’93.
Yokoo, M. 1995. Asynchronous weak-commitment search
for solving large-scale distributed constraint satisfaction
problems. In 1st ICMAS, 467–318.
Zhang, Y., and Mackworth, A. K. 1991. Parallel and dis-
tributed algorithms for finite constraint satisfaction prob-
lems. In Proc. of Third IEEE Symposium on Parallel and
Distributed Processing, 394–397.

