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Abstract

Logic programs with ordered disjunction (LPODs) combine
ideas underlying Qualitative Choice Logic (Brewka, Benfer-
hat, & Le Berre 2002) and answer set programming. Logic
programming under answer set semantics is extended with
a new connective called ordered disjunction. The new con-
nective allows us to represent alternative, ranked options for
problem solutions in the heads of rules: A x B intuitively
means: if possible A, but if A is not possible then at least B.
The semantics of logic programs with ordered disjunction is
based on a preference relation on answer sets. LPODs are
useful for applications in design and configuration and can
serve as a basis for qualitative decision making.

Introduction

In a recent paper (Brewka, Benferhat, & Le Berre 2002) a
propositional logic called Qualitative Choice Logic (QCL)
was introduced. The logic contains a new connective X rep-
resenting ordered disjunction. Intuitively, A x B stands for:
if possible A, but if A is impossible then (at least) B. This
connective allows context dependent preferences to be rep-
resented in a simple and elegant fashion. As a simple exam-
ple consider the preferences for booking a hotel for a con-
ference. Assume the most preferred option is to be within
walking distance from the conference site, the second best
option is to have transportation provided by the hotel, the
third best is public transportation. This can simply be repre-
sented as

walking x hotel—transport x public—transport

From a description of available hotels, a disjunction express-
ing that one of the hotels must be picked, and the above for-
mula QCL is able to derive the hotel which satisfies best
the given preferences (if there is more than one such hotel a
corresponding disjunction is concluded).

The semantics of the logic is based on degrees of satis-
faction of a formula in a classical model. The degrees, intu-
itively, measure disappointment and induce a preference re-
lation on models. Consequence is defined in terms of most
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preferred models. It is argued in that paper that there are nu-
merous useful applications, e.g. in configuration and design.

In this paper we want to combine ideas underlying QCL
with logic programming. More precisely, we want to investi-
gate logic programs based on rules with ordered disjunction
in the heads. We call such programs logic programs with
ordered disjunction (LPODs).

The semantical framework in which the investigation will
be carried out is that of answer set semantics (Gelfond & Lif-
schitz 1991). Logic programs under answer set semantics
have emerged as a new promising programming paradigm
dubbed answer set programming. There are numerous in-
teresting Al applications of answer set programming, for in-
stance in planning (Lifschitz 2001) and configuration (Soini-
nen 2000). One of the reasons for this success is the avail-
ability of highly efficient systems for computing answer sets
like smodels (Niemeld & Simons 1997) and dlv (Eiter et al.
1998).

We think it is worthwhile to investigate simple representa-
tions of context dependent preferences in the answer set pro-
gramming paradigm. Our combination of ideas from (CL
and answer set programming will lead to an approach which
is less expressive than ()CL in one respect: the syntax of
LPODs restricts the appearance of ordered disjunction to
the head of rules. On the other hand, we inherit from an-
swer set programming the nonmonotonic aspects which are
due to default negation. This allows us to combine default
knowledge with knowledge about preferences and desires in
a simple and elegant way.

The basic intuition underlying our approach can be de-
scribed as follows: we will use the ordered disjunctions in
rule heads to select some of the answer sets of a program as
the preferred ones. Consider a program containing the rule

Ax B+ C

If Sy is an answer set containing C' and A and S» is an
answer set containing C' and B but not A, then - ceteris
paribus (other things being equal) - S; is preferred over S,.
Of course, we have to give precise meaning to the ceteris
paribus phrase. Intuitively ceteris paribus is to be read as .Sy
and Ss satisfy the other rules in the program equally well.
We will show that under certain conditions reasoning
from most preferred answer sets yields optimal problem so-
lutions. In more general decision making settings the pref-



erence relation on answer sets provides a basis for best pos-
sible choices given a specific decision strategy.

We will restrict our discussion in this paper to proposi-
tional programs. However, as usual in answer set program-
ming, we admit rule schemata containing variables bearing
in mind that these schemata are just convenient representa-
tions for the set of their ground instances.

The rest of the paper is organized as follows. In the next
section we introduce syntax and semantics of LPODs. We
define the degree of satisfaction of a rule in an answer set
and show how to use the degrees to determine a preference
relation on answer sets. Conclusions are defined as the liter-
als true in all preferred answer sets. The subsequent section
discusses some simple examples and potential applications.
We then investigate implementation issues. The following
section shows how LPODs can serve as a basis for a qual-
itative decision making. The last section discusses related
work and concludes.

Logic programs with ordered disjunction

Logic programming with ordered disjunction is an extension
of logic

programming with two kinds of negation (default and
strong negation) (Gelfond & Lifschitz 1991). The new con-
nective X representing ordered disjunction is allowed to ap-
pear in the head of rules only. A (propositional) LPOD thus
consists of rules of the form

Cl X ... XCn(—Al,...,Am,HOtBl,...,HOtBk

where the C;, A; and B; are ground literals.

The intuitive reading of the rule head is: if possible C',
if C'y is not possible then Cs, ..., if all of Cy,...,C), 1 are
not possible then C),. The literals C; are called choices of
the rule. Extended logic programs with two negations are a
special case where n = 1 for all rules. As usual we omit
< whenever m = 0 and k = 0, that is, if the rule is a fact.
Moreover, rules of the form < body (constraints) are used as
abbreviations for p < body, not p for some p not appearing
in the rest of the program. The effect is that no answer sets
containing body exist.

Before defining the semantics of LPODs a few observa-
tions are in order. As already mentioned in the introduction
we want to use the ranking of literals in the head of rules to
select some of the answer sets of a program as the preferred
ones. But what are the answer sets of a program among
which to make this selection?

Since ordered disjunction is a particular prioritized form
of disjunction it seems like a natural idea to base the seman-
tics of LPODs on one of the standard semantics for disjunc-
tive logic programs, for instance Gelfond and Lifschitz’s se-
mantics (Gelfond & Lifschitz 1991).

Unfortunately, this doesn’t work. The problem is that
most of the semantics for disjunctive logic programs have
minimality built in. For instance, according to Gelfond and
Lifschitz, S is an answer set of a disjunctive logic program
P iff S is a minimal set of literals which is logically closed,
and closed under the S-reduct of P. The S-reduct of P is
obtained from P by (1) deleting all rules r from P such that

not B; in the body of r and B; € S, and (2) deleting all
default negated literals from the remaining rules. A set of
literals S is closed under a rule r if one of the literals in the
head of r is in S whenever the body is true in S (see (Gel-
fond & Lifschitz 1991) for the details).

In this approach answer sets are minimal: if S; and S» are
answer sets of a disjunctive program P and S; C Ss, then
Sy CS;.

Minimality is not always wanted for LPODs. Consider
the following two facts:

HDAxBxC
2)B x D

The single best way of satisfying both ordered disjunctions
is obviously to make A and B true, that is, we would expect
{A, B} to be the single preferred answer set of this simple
LPOD. However, since B is sufficient to satisfy both dis-
junctions, the set { A, B} is not even an answer set of the cor-
responding disjunctive logic program (where X is replaced
by V) according to the semantics of (Gelfond & Lifschitz
1991): the built in minimality precludes sets containing both
A and B from consideration.

We thus have to use a semantics which is not minimal.
Indeed, there is such a semantics, the possible models se-
mantics proposed by Sakama and Inoue (Sakama & Inoue
1994). It is based on so-called split programs, that is, dis-
junction free programs which contain arbitrary subsets of
single head rules obtained from disjunctive rules by deleting
all but one alternatives in the head.

Unfortunately, also this semantics is inadequate, this time
for opposite reasons: it admits too many literals in answer
sets. Consider the disjunctive logic program

HYAvBvVC

There are seven split programs corresponding to the
nonempty subsets of the literals of the fact. The split pro-
gram containing the facts A, B, C' generates the possible
model where A, B, C'is true.

Let us replace disjunction by ordered disjunction in this
formula. According to our intuitive discussion we want to
read the rule as ”if possible A, if this is not possible then B,
and if also B is not possible then C”. Under this reading
models containing more than one of the literals in the head
do not seem justified on the basis of a single rule (they may
be justified by different rules, though).

For this reason we will not allow cases where a single rule
of the original program gives rise to more than one rule in
the split program. There is a further complication: consider
the program:

HDAxBxC

2)A
We do not want to obtain { A, B} as an answer set from the
split program consisting of these 2 atomic facts since again
this does not correspond to the intuitive reading of the first
rule (B only if A is not possible). We therefore have to use
slightly more complicated rules in split programs.

Definition 1 Letr = Cy x ... x C,, < body be a rule. For
k < n we define the kth option of r as

rk = Cy < body,not Cy,...,not Cy_;.



Definition 2 Let P be an LPOD. P’ is a split program of
P if it is obtained from P by replacing each rule in P by one
of its options.

Here is a simple example. Let P consist of the rules

1) A X B <+ notC
2) BxC < notD

We obtain 4 split programs

A<+ notC
B < notD

A+ notC
C < not D,not B

B + not C,not A B <+ not C,not A
B < notD C < not D,not B

Split programs do not contain ordered disjunction. We
thus can define:

Definition 3 Let P be an LPOD. A set of literals A is an
answer set of P if it is a consistent answer set of a split
program P’ of P.

We exclude inconsistent answer sets from considera-
tion since they do not represent possible problem solu-
tions. In the example above we obtain 3 answer sets:
{4, B},{C},{B}. Note that one of the answer sets is a
proper subset of another answer set. On the other hand, none
of the rules in the original LPOD sanctions more than one
literal in any of the answer sets, as intended.

Not all of the answer sets satisfy our most intended op-
tions. Clearly, {B, A} gives us the best options for both
rules, whereas {C'} gives only the second best option for 2)
and {B} the second best option for 1). To distinguish be-
tween more and less intended answer sets we introduce the
degree of satisfaction of a rule in an answer set:

Definition 4 Ler S be an answer set of an LPOD P. S
satisfies the rule

Ci x...xCp+ Ay,..., Ay, not By,...,not By,

o todegreelif A; ¢ S, for some j, or B; € S, for some i,
o fodegreej (1 < j<n)ifall Aj € S, no B; € S, and
j=min{r|C, € S}.

Proposition 1 If A is an answer set of P then A satisfies all
rules of P to some degree.!

Proof: Let r be a rule of P. If S is an answer set of P,
then there is a split program P’ such that S is an answer set
of P'. Let r' be the rule in P' generated from r. Since S
is an answer set of P’ either the body of r* is satisfied in .S
and thus C; is contained in S, in which case r is satisfied
to degree i or smaller, or the body of r? is not satisfied in
S, in which case r is satisfied to degree 1 in S, or there is
a better choice than Cj, kK < 4, in S and r is satisfied to
degree k. O We use the degrees of satisfaction of a rule
to define a preference relation on answer sets. There are
different ways of doing this. For instance, we could sim-
ply add up the satisfaction degrees of all rules and prefer

'The other direction of the proposition does obviously not hold.
For example, the set { A} satisfies the rule B < not A, but is not
an answer set for the program consisting of this single rule.

those answer sets where the total sum is minimal. Although
this may be reasonable in certain applications, this approach
makes quite strong assumptions about the commensurability
of choices in different rule heads. In (Brewka, Benferhat, &
Le Berre 2002) a lexicographic ordering of models based on
the number of premises satisfied to a particular degree was
proposed. This lexicographic ordering has a highly syntac-
tic flavour. Therefore, we will use here a somewhat more
cautious preference relation (in the sense that fewer answer
sets are considered better than others) based on set inclusion
of the rules satisfied to certain degrees:

Definition 5 For a set of literals S, let S'(P) denote the
set of rules in P satisfied by S to degree i. Let S1 and S5 be
answer sets of an LPOD P. Sy is preferredto Ss (S1 > S3)
iff there is i such that S5(P) C S{(P), and for all j < i,
S1(P) = S3(P).

Definition 6 A set of literals S is a preferred answer set of
an LPOD P iff S is an answer set of P and there is no
answer set S' of P such that S' > S.

Definition 7 A literal | is a conclusion of an LPOD P iff |
is contained in all preferred answer sets of P.

Consider again the program

1) A X B+ notC
2) Bx C < notD

As discussed before we obtain the 3 answer sets: S; =
{A,B}, S; = {C} and S3 = {B}. S satisfies both rules
with degree 1, {C'} satisfies 1) to degree 1 but 2) to degree
2. {B} satisfies 1) to degree 2 and 2) to degree 1. The single
preferred answer set is thus S7, as intended, and A and B
are the conclusions of the program.

Examples

LPODs allow us - like normal logic programs - to express
incomplete and defeasible knowledge through the use of de-
fault negation. In addition, they provide means to repre-
sent preferences among intended properties of problem so-
lutions. Moreover, these preferences may depend on the cur-
rent context.

In this section we discuss several examples illustrating
potential uses of LPODs. The first example is about how
to spend a free afternoon. You like to go to the beach, but
also to the cinema. Normally you prefer the cinema over
the beach, unless it is hot (which is the exception in the area
where you live, except during the summer). If it is hot the
beach is preferred over the cinema. In summer it is normally
hot, but there are exceptions. If it rains the beach is out of
question. This information can be represented using the fol-
lowing rules:

1) cinema x beach < not hot
2) beach x cinema < hot

3) hot < not —hot, summer
4) =beach < rain

Without further information about the weather we obtain the
single preferred answer set S; = {cinema}. There is no
information that it might be hot, so rule 1) will determine
the preferences. S; satisfies all rules to degree 1.



Now assume the fact summer is additionally given. In
this case we obtain Sy = {summer, hot, beach} as the sin-
gle preferred answer set. Again this answer set satisfies all
rules to degree 1.

Next assume that, in addition to summer also the literal
—hot is given. The single preferred answer set now is S =
{summer, —hot, cinema}. All rules are staisfied to degree
1.

Finally, assume the additional facts are summer and
rain. Now the single preferred answer set (and in fact the
single answer set) is

Sy = {summer,rain, hot, ~beach, cinema}.

Note that this time it is not possible to satisfy all rules to
degree 1: rule 2) is satisfied to degree 2 only. As often in
real life, there are situations where the best options simply
do not work out.

We think that LPODs are very well suited for represent-
ing problems where a certain choice has to be made or, more
generally, where a number of components have to be chosen
for a certain configuration task. The general idea would be
to have

o for each component a set of rules describing its properties,

e rules describing which components are needed for the
configuration to be complete; this may depend on other
components chosen,

e rules describing intended properties of the solution we
want to generate. The involved preferences may be con-
text dependent, and

e a description of the case at hand.

In each case default knowledge can be used to describe
what is normally the case. Consider the problem of con-
figuring a menu. The menu should consist of a starter, a
main course, a dessert and a beverage. As a starter you
prefer soup over salad. As main course fish, beef and
lasagne are possible (this is all you are able to cook) and
your preferences are in this order. Of course, if the visi-
tor is vegetarian the first two (as well as the soup) are out
of the question. In case of beef you prefer red wine over
white wine over mineral water, otherwise the order be-
tween wines is reversed. Only ice—cof fee and tiramisu is
available as a dessert. If tiramisu is chosen, then an extra
cof fee is necessary. You prefer espresso over cappucino.

The possible components thus are soup, salad,
fish, beef, lasagne, ice—cof fee, tiramisu, espresso,
cappucino, red, white and water. The following proper-
ties of the components are relevant:

—wegetarian < beef  alcohol < white
—wegetarian < fish  alcohol < red
—wegetarian < soup

The needed components are

starter beverage
main cof fee « tiramisu
dessert

The preferences are as follows:

soup X salad < starter

fish x beef x lasagne < main

red X white X water < beverage, bee f
white X red X water < beverage, not bee f
espresso X cappuccino < cof fee

ice—cof fee < not tiramisu, dessert
tiramisu < notice—cof fee, dessert

Now, given a description of the case at hand, e.g. whether
the visitor is vegetarian or not, drinks alcohol or not, likes
fish etc. the preferred answer sets will determine a menu
which satisfies the preferences as much as possible. The
last two rules are necessary to make sure that one of the
desserts is picked. For the other courses this is implicit in
the specified preferences. In the language of (Niemeld &
Simons 2000) these rules can be represented as the cardinal-
ity constraint rule 1{ice—cof fee, tiramisu}1 < dessert.
Combinations of LP(ODs and such constraints are a topic of
further research.

Computation

The first question to ask is whether LPODs can simply be
reduced to standard logic programs with two kinds of nega-
tion. In that case standard answer set programming tech-
niques would be sufficient for computing consequences of
LPODs. We will show that a seemingly natural translation
does not yield the intended answer sets.

Definition 8 The pseudo-translation trans(r) of a rule
r=0C1 x...x Cy < body

is the collection of rules

C1 <« body,not — Cy

Cy <« body,not — Cy, —C4
6’7;_1<— body,not — Cp_1,—C4,...
C, < body,—Cy,...,—Cp_1

» T Un—2

where —C' is the complement of C, that is =C if C' is an
atom and C" if C = =C'". The pseudo-translation trans(P)
ofan LPOD P is

trans(P) = U trans(r)

The pseudo-translation creates for each option C; in the head
of r a rule with head C; which has the negation of the better
options as additional body literals. In addition, the rule is
made defeasible by adding the default negation of the com-
plement of C; to the body. There is an exception: the rule
generated for the last option is not made defeasible this way
since at least one of the options must be true whenever the
body of the original rule is true.

Although this translation seems natural it does not work.
Consider the following example:

Daxb
2)p < notp,a

The single preferred answer set is {b}. The pseudo-
translation is



1) a < not —a
2) b+ —a
3)p < notp,a

The resulting program has no answer set. In fact, we can
prove the following proposition:

Proposition 2 There is no translation trans from LPODs
to extended logic programs (without ordered disjunction)
such that for each program P the preferred answer sets of P
and the answer sets of trans(P) coincide.

Proof: The proposition follows from the fact that preferred
answer sets of LPODs are not necessarily subset minimal.
Consider the program a X b; ¢ X b < a; —c. The preferred
answer sets are 51 = {b, ¢} and Sy = {a, b, ~c}. Clearly,
S1 C S3. There is thus no extended logic program with
these answer sets. O

Of course, this does not exclude the possibility of trans-
lations to programs containing some extra atoms. This is a
topic of further study.

An implementation of LPODs on top of a standard an-
swer set prover for non-disjunctive programs is described
in (Brewka, Niemeld, & Syrjidnen 2002). We compute pre-
ferred answer sets of an LPOD P using two programs.
A similar approach is used in (Janhunen et al. 2000) to
compute stable models of disjunctive logic programs using
Smodels. The two programs are:

e A generator G(P) that creates all answer sets of P; and

o A tester TP, M) that checks whether a given answer set
M of P is maximally preferred.

The two programs are run in an interleaved fashion. First,
the generator constructs an arbitrary answer set M of P.
Next, the tester tries to find an answer set M that is strictly
better than M . The tester possesses an answer set M’ iff M’
is an answer set of P preferred to M. If there is no such M’,
we thus know that M is a preferred answer set. Otherwise,
we use G(P) to construct the next candidate. When we want
to find only one preferred answer set we can save some ef-
fort by taking M directly as the new answer set candidate.
We can thus iterate until a maximally preferred answer set is
reached.

Since the tester is based on a declarative representation of
the preference criterion it is easy to switch between different
notions of preference, or to define new ones.

We have constructed a prototype implementation for
LPODs based on Smodels, an efficient ASP solver de-
veloped at Helsinki University of Technology. The gen-
erator and tester programs use special rule types of the
Smodels system, but they can be modified to work with
any ASP solver. The prototype implementation is avail-
able at http://www.tcs.hut.fi/Software/smodels/priority. The
mentioned paper contains also complexity results related to
LPOD:s.

Decision Making using LPODs

In Section we discussed several examples illustrating the
notions underlying LPODs. The examples were chosen in
such a way that the most preferred answer sets in each case

provided the best solutions to the problem at hand. Later in
this section we will analyze why this worked for the chosen
examples.

In more general decision making settings it is not suffi-
cient to consider the most preferred answer sets only since
this amounts to an extremely optimistic view about how the
world will behave (this view is sometimes called wishful
thinking). As is well-known in decision theory, for realistic
models of decision making it is necessary to clearly distin-
guish what is under the control of the agent (and thus may
constitute the agent’s decision) from what is not. We will do
this by distinguishing a subset of the literals in a program as
decision literals.

In this section we describe a general methodology for
qualitative decision making based on LPODs. The basic
idea is to use LPODs to describe possible actions or deci-
sions and their consequences, states of the world and desired
outcomes. The representation of desires induces, through or-
dered disjunction, a preference ordering on answer sets rep-
resenting their desirability. Based on this preference order-
ing an ordering on possible decisions can be defined based
on some decision strategy.

Let us describe the necessary steps more precisely:

1. Among the literals in the logical language distinguish a
set of decision literals C'. C is the set of literals the agent
can decide upon. It’s the agent’s decision which makes
them true. A decision is a consistent subset of C.

2. Represent the different alternative decisions which can be
made by the agent. This can be done using standard an-
swer set programming techniques. Note that certain op-
tions may lead to additional choices that need to be made.

3. Represent the different alternative states of the world.
Again standard answer set programming techniques ap-
ply.

4. Represent relationships between and consequences of dif-
ferent alternatives.

5. Represent desired properties. This is where ordered dis-
junction comes into play. Of course, desires may be
context-dependent.

6. Use the preference relation on answer sets derived form
the satisfaction degrees of rules to induce a preference re-
lation on possible decisions. Of course, there are different
ways to do this corresponding to different attitudes of the
agent towards risk.

7. Pick one of the most preferred decisions.

We will use Savage’s famous rotten egg example (Savage
1954) to illustrate this methodology. An agent is preparing
an omelette. 5 fresh eggs are already in the omelette. There
is one more egg. It is uncertain whether this egg is fresh or
rotten. The agent can

e add it to the omelette which means the whole omelette
may be wasted, or

o throw it away, which means one egg may be wasted, or

e put it in a cup, check whether it is ok or not and put it
to the omelette in the former case, throw it away in the



latter. In any case, a cup has to be washed if this option is
chosen.

In this example, the decision literals correspond to the three
possible actions, that is C is the set of literals built from
{in—omelette, in—cup, throw—away}. Here are the rules
which generate the possible decisions and states of the
world:

in—omelette < not in—cup, not throw—away
in—cup < not in—omelette, not throw—away
throw—away < not in—cup, not in—omelette
rotten < not fresh
fresh < notrotten

For our example it is not necessary to specify that the dif-
ferent actions and states of the egg are mutually exclusive.
It is guaranteed by the rules that only one of the exclusive
options is contained in an answer set.

We next define the effects of the different choices:

5—omelette < throw—away
6—omelette < fresh,in—omelette
0—omelette < rotten,in—omelette
6—omelette < fresh,in—cup
5—omelette < rotten,in—cup
—wash < notin—cup

wash < in—cup

For the different omelettes we must state that they are mu-
tually inconsistent. We omit the 6 rules necessary for rep-
resenting this. They are of the form —z—omelette <
y—omelette with  # y. We finally represent our desires:

—wash X wash
6—omelette x 5—omelette x 0—omelette

This logic program has the following 6 answer sets

S1 = {6—omelette, ~wash, fresh,in—omelette}

Sy = {0—omelette, ~wash, rotten, in—omelette}
S3 = {6—omelette, wash, fresh,in—cup}

S4 = {5—omelette, wash,rotten,in—cup}

S5 = {5—omelette, ~wash, fresh, throw—away}
Se = {b—omelette, ~wash, rotten, throw—away}

The preference relation among answer sets is as follows: Sy
is the single maximally preferred answer set. S5 and Sg
are preferred to Sz and Sy but incomparable to S3. Ss is
preferred to S, but incomparable to S5, Sg and S,. S and
S, are incomparable. Fig. 1 illustrates these relationships:

S
S5,5  S3
S Sy
Fig.1: Preferences among answer sets

Reasoning from maximally preferred answer sets in the
example would yield in—omelette as the alternative chosen
by the agent. It is obvious that this amounts to an extremely

optimistic attitude towards decision making which in the ex-
ample amounts to assuming the egg will be fresh.

A pessimistic decision maker might choose the action
whose worst outcome is most tolerable. In the example
the answer sets containing throw—away, that is S; and
Sg, are preferred to the least preferred answer set contain-
ing in—omelette, S, and to the least preferred answer set
containing in—cup, S4. Thus, a pessimistic decision maker
would choose throw—away.

An extremely cautious strategy would prefer a decision
C1 over a decision C if the least preferred answer set(s)
containing C; are preferred to the most preferred answer
set(s) containing C'». This is a very strong requirement and
in the egg example no action is preferred to another one ac-
cording to this strategy.

Finally, we can distinguish a set of state literals ¥ and
compare answer sets statewise (states are subsets of X, the
states in the example are fresh and rotten). A decision Cy
is preferred over a decision C5 if for each state T C X the
least preferred answer set(s) containing C; UT" are preferred
to the most preferred answer set(s) containing C, U T'.

Intuitively, Sz in our example seems far less desirable
than S, and both S5 and Sg less desirable than S3. This
is not reflected in our preference relation on answer sets. To
express this it is necessary to represent preferences between
sets of literals rather than single literals.

Within our framework this can be done by introducing
new atoms representing conjunctions of literals. However, it
would probably be more elegant to apply orderd disjunction
directly to sets of literals (read as the conjunction of these
literals). Extending LPODs in such a way is straightforward.

Another natural idea would be to use numerical penalties.
We can use integers for this and write, say:

—wash—cup x wash—cup (1)
6—omelette x 5—omelette (5) x 0—omelette (50)

The overall penalty for an answer set S is obtained by
adding up the penalties for all rules, where the penalty of
c1 X ca(ne2) X ... X ¢x(ng) < body is 0 if body is not sat-
isfied in S or ¢; € S, n; otherwise, where j is the smallest
integer such that ¢; € S. The preference relation among
answer sets is obtained through their overall penalty. In the
example we would obtain the following overall penalties:

5130 5331 5535
56:5 5436 52350

Choices could then be ordered on the basis of the average
penalties of answer sets they contain. This strategy would
thus choose in—cup.

Of course, many alternative strategies can be thought of.
A further investigation is beyond the scope of this paper and
left for future work.

Every approach to qualitative decision making has to
combine preferences among outcomes of choices with a
treatment of uncertainty. In our approach the preferences are
described through ordered disjunction. But what about the
uncertainty? Different possible states of the world are rep-
resented as different answer sets. As usual in nonmonotonic
reasoning states of the world which are unnormal in some
respect are totally disregarded (this is what McCarthy called



jumping to conclusions). All states which have to be taken
into account are considered plausible. Further distinctions
between the generated answer sets are not possible. For in-
stance, it is not possible to express, say, that fresh is more
probable than rotten in the omelette example. If, however
the possibility of rotten is negligeable and fresh is true by
default we can make sure that only answer sets containing
fresh are generated by using adequate rules. Our general
qualitative attitude towards

uncertainty can thus be described as: states are either neg-
ligeable or plausible; in the latter case no assumption about
the degree of plausibility is made.

We are now in a position to analyze why the examples
in Sect. which were based on reasoning from most pre-
ferred answer sets worked out properly. The reason is that
in these examples only one answer set for the different pos-
sible choices (which were left implicit) is generated. This
means that optimistic, pessimistic and other kinds of LPOD
based decision making coincide. In general, this is possible
whenever there is enough knowledge to guarantee a single
plausible state for each case at hand (as in the cinema exam-
ple), or whenever all relevant literals are under the control
of the agent (as in the cooking example).

Conclusion

In this paper we introduced a new connective to logic pro-
gramming. This connective - called ordered disjunction -
can be used to represent context dependent preferences in a
simple and elegant way. Logic programming with ordered
disjunction has interesting applications, in particular in de-
sign and configuration, and it can serve as a basis for quali-
tative decision models.

There are numerous papers introducing preferences to
logic programming. For an overview of some of these ap-
proaches see the discussion in (Brewka & Eiter 1999) or the
more recent (Schaub & Wang 2001). Only few of these
proposals allow for context dependent preferences. Such
preferences are discussed for instance in (Brewka 1996;
Brewka & Eiter 1999). The representation of the prefer-
ences in these papers is based on the introduction of names
for rules, the explicit representation of the preference rela-
tion among rules in the logical language, and a sophisticated
reformulation of the central semantic notion (answer set,
extension, etc.) with a highly self-referential flavour. Al-
ternative approaches (Delgrande, Schaub, & Tompits 2000;
Grosof 1999) are based on compilation techniques and make
heavy use of meta-predicates in the logical language. Noth-
ing like this is necessary in our approach. All we have to do
is use the degree of satisfaction of a rule to define a prefer-
ence relation on answer sets directly.

Our approach is closely related to work in qualitative
decision theory, for an overview see (Doyle & Thomason
1999). Poole (Poole 1997) aims at a combination of logic
and decision theory. His approach incorporates quantitative
utilities whereas our preferences are qualitative. Interest-
ingly, Poole uses a logic without disjunction whereas we
enhance disjunction. In (Boutilier et al. 1999) a graph-
ical representation, somewhat reminiscent of Bayes nets,
for conditional preferences among feature values under the

ceteris paribus principle is proposed, together with corre-
sponding algorithms. LPQODs are more general and offer
means to reason defeasibly. Several models of qualitative
decision making based on possibility theory are described
in (Dubois et al. 1999; Benferhat et al. 2000). They
are based on certainty and desirability rankings. Some of
them make strong commensurability assumptions with re-
spect to these rankings. In a series of papers (Lang 1996;
van der Torre & Weydert 2001), originally motivated by
(Boutilier 1994), the authors propose viewing conditional
desires as constraints on utility functions. Intuitively, D(a|b)
stands for: the b-worlds with highest utility satisfy a. Our in-
terpretation of ranked options is very different. Rather than
being based on decision theory our approach can be viewed
as giving a particular interpretation to the ceteris paribus
principle.

In future work we plan to investigate application method-
ologies for logic programming with ordered disjunction.
An answer set programming methodology for configuration
tasks has been developed in a number of papers by Niemeld
and colleagues at Helsinki University of Technology (Soini-
nen 2000; Niemeld & Simons 2000). We plan to study pos-
sibilities of combining this methodology with LPODs. Of
course, the discussion of qualitative decision models in this
paper was very preliminary. We plan to work this out in
more detail in a separate paper.
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