
Towards a Classification of Preference Handling Approaches in Nonmonotonic
Reasoning

James P. Delgrande
�
, Torsten Schaub

���
, Hans Tompits

�
, and Kewen Wang

�
�

School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
e-mail: jim@cs.sfu.ca�

Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam, Germany
e-mail:

�
torsten,kewen � @cs.uni-potsdam.de	

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria, e-mail: tompits@kr.tuwien.ac.at

Abstract

In recent years there has been large amount of disparate work
concerning the representation and reasoning with preferential
information in approaches to nonmonotonic reasoning. Given
the variety of underlying systems, assumptions, motivations,
and intuitions, it is difficult to compare or relate one approach
with another. Here we present an overview and classification
for approaches to dealing with preference. A set of criteria for
classifying approaches is given, followed by a set of desider-
ata that an approach might be expected to satisfy. A compre-
hensive set of approaches is subsequently given and classified
with respect to these sets of underlying principles.

Introduction
The notion of preference is pervasive in commonsense rea-
soning, in part because preferences constitute a very natu-
ral and effective way of resolving indeterminate situations.
In decision making, for example, one may have various
desiderata, not all of which can be simultaneously satisfied;
in such a situation, preferences among desiderata may allow
one to come to an appropriate compromise solution. In legal
reasoning, laws may conflict. Conflicts may be resolved by
principles such as ruling that newer laws will have priority
over less recent ones, and laws of a higher authority have
priority over laws of a lower authority. For a conflict among
these principles one may further decide that the “authority”
preference takes priority over the “recency” preference.

Preference has a decidedly nonmonotonic flavour. Or,
more accurately, it may be considered as having a fundamen-
tal nonmonotonic aspect. Roughly, given a preference or-
dering, however constituted, and some basic or case-specific
information,
 , one may come up with a set of desired out-
comes. However, a strict superset of this case-specific in-
formation,
��� , may lead to a different set of desired
outcomes. For example, imagine feeding information into
an automated financial advisor: that one is a relatively cau-
tious investor, that one has a long-term horizon, etc. Given
these preferences, a set of recommended mutual funds may
be suggested by the automated advisor. If the user subse-
quently states that they also prefer that their funds invest in�

Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, Canada.
Copyright c

�
2002, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.

environmentally and socially responsible companies, then a
different set of suggestions may well result.

In AI, a standard approach to handling preferences is to
take an existing system and, in one fashion or another, equip
it with preferences. For example (Brewka 1994; Delgrande
& Schaub 2000a) add preferences to Default Logic while
(McCarthy 1986; Lifschitz 1985a) and (Zhang & Foo 1997a;
Brewka & Eiter 1999) do the same in circumscription and
logic programming, respectively. However, although the
notion of “preference” is intuitively straightforward, there
is surprising variety in how this notion is realised in vari-
ous approaches. Thus some approaches take a preference
ordering as expressing a “desirability” that a property be
adopted while in others the ordering expresses the order in
which properties (or whatever) are to be considered. As
we later describe, some approaches conflate the notion of
inheritance of properties with the general notion of pref-
erence. The outcome of course is that, depending on how
the notion of preference is interpreted, different conclu-
sions may be forthcoming. At the same time, while log-
ical preference handling already constitutes an indispens-
able means for legal reasoning systems (cf. (Gordon 1993;
Prakken 1997b)), it is also being used in other application ar-
eas such as intelligent agents and e-commerce (Grosof 1999)
and the resolution of grammatical ambiguities (Cui & Swift
2001).

In this paper we survey various approaches to handling
preference information that have appeared in the literature.
The intent is to consider ways (or dimensions or axes) in
which the general notion of preference may be interpreted
in a system, and to classify and evaluate approaches based
on these axes. We begin, in the next section, by considering
a number of ways, or dimensions, in which approaches may
be classified. As well we discuss a number of desiderata that
an approach or system may be expected to satisfy. In the fol-
lowing section we compare and contrast extant systems with
respect to these criteria, concentrating on points of interest
illustrated by a particular approach.

Comparing Approaches to Preference
In this section we consider a number of ways in which ap-
proaches to representing and reasoning with preferences can
be compared. In the first subsection we consider ways to
classify approaches to preference – that is, relatively neutral

From: AAAI Technical Report WS-02-13. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

criteria (or “axes” or “dimensions”) by which approaches
may be distinguished or compared. In the second subsection
we suggest possible desiderata for approaches, or properties
that an approach ideally will satisfy. (Note however that the
difference between a criterion and desideratum isn’t neces-
sarily a clear-cut distinction).

Informally, a preference relation will be a binary relation� between objects of a specific type (formulas, rules, sets of
objects, etc.). Most often � will be a partial order. The idea
is that objects with higher precedence or preference are to be
asserted (concluded, applied, . . .) over lower ranked objects.
Thus for � � � � � , if � � and � � are in conflict, one might
expect, all other things being equal, that the higher-ranked
object � � will be asserted over the lower, � � .1 Different ap-
proaches have further interpreted or constrained the relation� in a multitude of ways; it is the purpose of this paper then
to try to provide some framework, or perspective, to these
various approaches.

There is one large and important subclass of preference-
like relations that we will not discuss here, that associated
with inheritance of properties. Essentially, in inheritance
of properties, the preference ordering is determined by the
specificity of antecedent information. As well, with inheri-
tance, one only infers properties from the most specific ap-
plicable subclass. Consider rules concerning primary means
of locomotion: “animals normally walk”, “birds normally
fly”, “penguins normally swim”. If we learn that some thing
is penguin (and so a bird and animal), then we would want to
apply the highest-ranked default and, all other things being
equal, conclude that it swims. However, if the penguin in
question is hydrophobic, and so doesn’t swim, we wouldn’t
want to inherit the next most specific conclusion, that it flys,
and so in this case we would conclude nothing about loco-
motion. However, in a preference ordering one would try
to apply the next default and so, again all other things be-
ing equal, conclude that the penguin flys. So inheritance
of properties leads to different behaviour from preference
orderings, as we interpret them here. See (Delgrande &
Schaub 2000c) for a further discussion.

Classifying Approaches to Preference
We describe here a number of ways in which approaches
to preference may be classified. For ease of exposition and
concreteness, we will most often use Default Logic (Reiter
1980) to illustrate various concepts. Thus we may write������������ � ���������������� � �� "!#�$�&% �!'���&% (1)

to show a preference over colours, implemented as an order-
ing on default rules. However it should be emphasised that
this is for illustration only; we have no particular preference
for Default Logic;2 some other system could be the “host”
system; preferences need not be on rules and so on. Sim-
ilarly a phrase such as “a higher-ranked rule is applied” is
simply an abbreviation for the much more cumbersome “a
higher-ranked object (be it a rule, term, formula, set, etc.) is
applied (concluded, asserted, etc.).”

1Note that some approaches use (in the opposite sense to us.
2well, ok, actually we do.

We have the following set of not-necessarily independent
criteria for classifying approaches to preference:

Host system Previously (during the 1990’s) Default Logic
(Reiter 1980) was by-and-large the host system of choice, in
that the majority of approaches to adding preferences added
them to Default Logic. More recently the emphasis has
shifted to logic programs, and in particular extended logic
programs. Likely this change reflects a general shift in fo-
cus in the research community, from Default Logic being
the most popular nonmonotonic reasoning formalism, to the
emergence of extended logic programs and answer set pro-
gramming. The main thing that can be said about the “un-
derlying system” is that it is easier to compare approaches
that use the same base system. As well, a specific approach
to preference may be “ported” from one underlying system
to another, as for example is done in (Delgrande & Schaub
2000a; Delgrande, Schaub, & Tompits 2002) and (Brewka
& Eiter 1999; Brewka & Eiter 2000).

Meta-level vs. object level preferences Most commonly,
given some underlying host system, a preference ordering is
imposed “externally” on rules of the system. For example,
a default theory)+*-,'.0/ may be extended to a preferred de-
fault theory)1*-,#.2, � / where �43 *657* gives a preference
ordering on how rules may be applied. Alternatively, pref-
erences may be imposed at the object level. For example in
(Delgrande & Schaub 2000a), constants representing names
are associated with the default rules. Instead of a relation� � � � � between default rules one can now assert 8 �:9 8 �
between the corresponding names, where 9 is a (new) bi-
nary relation in the object language.

External, or meta-level preferences, have the advantage
that they are (usually) easier to realise: the underlying in-
ference relation is modified to take into account preferences.
On the other hand, the object-level approach allows one to
formalise preferences within a theory, instead of about a the-
ory. As well, the object-level approach is potentially more
flexible since one may cancel preferences or apply prefer-
ences in a context (e.g. ;=<?>�@BAC)D8 � 9 8 � /), or have prefer-
ences apply by default (e.g. E ��%GFIHJ%LK%GFMHN%LK).

Static vs. dynamic preferences A closely-related dis-
tinction to the preceding concerns whether preferences are
static, or fixed at the time the theory is specified, or dynamic,
and so can be determined “on the fly”. An approach with ex-
ternal preferences will, of necessity, have static preferences.
In the case of Default Logic, an approach with static, object-
level preferences, would have preferences appearing only in
the world knowledge . , and as ground atomic formulas;
otherwise preferences would be (potentially) dynamic. In
the case of extended logic programs, an approach with static,
object-level preferences, would have preferences appearing
only as ground facts (i.e. as rules of the form)D8 � 9 8 � /PO).

Properties of the preference ordering The majority of
approaches assume that the relation � is a (irreflexive) par-
tial order, and this seems to be the minimal notion that would

justify the use of the term “preference”. However, one might
go on and impose further conditions, such a connectivity
or (in the case of infinite orderings) well-foundedness. As
well, as we describe subsequently, in determining preferred
outcomes, a given partial order may be extended to a total
order.

What is the preference ordering an ordering on? A
preference ordering � is a binary relation on objects of some
given type. This distinction then concerns the things that �
is a binary relation on. Although seemingly clear-cut, there
are some subtleties here.

First, in Default Logic or extended logic programs, prefer-
ences would most naturally (in fact, seemingly unavoidably)
be on the rules in a theory. However we have already noted
one distinction: in an external preference relation, the pref-
erences are indeed on the rules themselves. In an object-
level preference relation, the preferences are expressed on
constants naming the rules; it is then up to the implementer
of such an approach to ensure that these constants do indeed
denote the rules in question.

Second, there is a distinction between what a user would
regard as a preference, and how the preference would be
implemented. Thus, informally, it makes sense to think
of preferences as being on formulas: for example, one
might wish to express that green things are preferred to
blue things, which are preferred to red. This could be
expressed within a first-order language by predicates such
as QSRUT+V�)XWYRUT#TIZ[)D\N/M,#]_^a`bTc)1\J/U/ and QSR'T1Vd)�]_^a`bTe)D\N/M,#fgT#hi)D\N/�/ .
Thus preferences would be expressed on (reified) formu-
las such as WYRUT#TIZ[)D\N/ . However, for implementation such
a preference relation might be translated into a suitably-
quantified version of something like (1). That is, the under-
lying reasoning machinery might make use of (here) Default
Logic. Such a scheme has a number of advantages, includ-
ing adherence to a knowledge engineering principle that says
a user should only be given the power that they need for ex-
pressing a problem. As well, here the preference relationQSRUT+Vd)$jk,Xjl/ would be translated into preferences on normal
defaults which might then come with improved complex-
ity characteristics over preferences on general rules. How-
ever, the specification of such a “knowledge engineered”
language remains largely for future research.

At present, for Default Logic and extended logic pro-
grams, preference one way or another, is generally expressed
on the rules. Exceptions to this include (Sakama & Inoue
2000), wherein preferences are given directly on atoms of
the language, along with others such as (Pradhan & Minker
1996; Lifschitz 1985b). As well, we note that for a gen-
eral approach, an account of preference on sets of objects
will need to be given. For example in purchasing a car, one
might wish to express that a car that is safe and economical
is preferred to one that is just safe, which in turn is preferred
to one that is safe and powerful. Thus perhaps:m �onn , ��pprq � �onn � m �onn , ��sntqgu
Prescriptive vs. descriptive preferences The intuition
behind a preference ordering is that higher-ranked rules are

to be applied before lower-ranked ones. A major distinction
as to how this can be done concerns whether � specifies the
order in which defaults are to be applied, or provides a no-
tion of “desirability” that a rule be applied. In a prescriptive
interpretation, the idea is that an order on defaults specifies
the order in which the defaults are to be considered for ap-
plication. Thus one applies (if possible) the most preferred
default(s), the next most preferred, and so on. In a descrip-
tive interpretation, the preference order represents a ranking
on desired outcomes: the desirable (or: preferred) situation
is one where the most preferred default(s) are applied.3 The
distinction between these interpretations is illustrated in the
following example (Brewka & Eiter 2000):

�ovv � �&wyxwyx � vz��xx{u (2)

Assume that there is no initial world knowledge. In a pre-
scriptive interpretation, one would fail to apply the most pre-
ferred default (viz.

v7��xx) since the antecedent isn’t provable.
However, one might expect to apply the two lesser-preferred
defaults, giving an extension containing >}|~,#@[�:A .4 In a de-
scriptive interpretation one might observe that by applying
the least-preferred default, the most preferred default can be
applied; this yields an extension containing >}|~,'�:A .

A full discussion of this distinction is given in (Delgrande
& Schaub 2000a). We briefly recapitulate two salient points
here. First, a descriptive interpretation seems to rely on a
meta-level specification of preference (more accurately: we
are not aware of any object-level specifications, nor do we
know how such might be carried out). In contrast, with a pre-
scriptive object-level approach, we can potentially axioma-
tise within a theory how different preference orders interact.

Second, a prescriptive interpretation arguably comes with
more representational force and allows a tighter character-
isation of a domain. That is, a prescriptive interpretation
forces a knowledge base designer to be explicit about what
things should be applied in what order. A descriptive inter-
pretation on the other hand gives a wish list of preferences
which may or may not be meaningful. This is illustrated by
the example (2), where the default

vg��xx has highest prior-
ity, but this default can only be applied if the prerequisite is
proved; one way that this can come about is by applying the
lower-ranked default

�ovv . But this implies that
�ovv should

be considered first and so have higher priority than
vz�Uxx . As

well, there is no situation in which
vg��xx can be applied and�ovv cannot. Thus, the inference structure of default logic

would seem to dictate that
�$vv not be ranked below

vz��xx .
Yet this is what the order � in (2) stipulates.

Going from Preferences to Preferred Results Given a
theory and a set of (object- or meta-level) preferences, the

3This isn’t necessarily a cut-and-dried distinction; for example,
(Brewka & Eiter 2000) contains elements of both.

4This is for instance obtained in (Baader & Hollunder 1993a;
Brewka 1994; Marek & Truszczyński 1993); the approach pre-
sented in (Delgrande & Schaub 2000a) yields no “preferred” ex-
tension.

standard computational problem is to generate a set of pre-
ferred outcomes. In Default Logic or extended logic pro-
grams, a preferreed set of outcomes would be part of an ex-
tension or answer set. The set of all extensions or answer
sets would represent the possible sets of preferred outcomes
when there is ambiguity in the underlying theory.

The preceding prescriptive/descriptive distinction repre-
sents a broad characterisation of computational strategies
that may be employed. With respect to the preference or-
dering � , there are also two different specific computational
strategies. In most of the existing approaches, the notion of a
preferred extension is defined directly from the ordering � ,
unmediated by implied total orderings. There are also a few
approaches, for example (Brewka & Eiter 1999), that are ex-
plicitly based on total ordering. That is, one has to first gen-
erate all possible total extensions of the given partial order� . Each total order then is used to generate a preferred ex-
tension. That is, we have two specific computational strate-
gies with respect to the preference ordering � :

1. One might generate the set of all orderings from the par-
tial order given by � (e.g. (Brewka 1994)). Each total
order then is used to generate a preferred extension.

2. One might generate preferred extensions directly from the
ordering � , unmediated by implied total orderings.

This second case has two realizations:

(a) Generate all extensions of the underlying (preference-
free) theory, and use � to filter non-preferred exten-
sions (e.g. (Sakama & Inoue 2000)).

(b) Generate only preferred extensions directly from �
(e.g. (Delgrande & Schaub 2000b)).

Clearly the last possibility appears on the surface to be the
most appealing, since it generates neither extraneous exten-
sions nor specialisations of the preference ordering. On the
other hand, there has been no work (that we are aware of)
comparing the adequacy of these broad characterizations ei-
ther from a formal or a pragmatic viewpoint.5

Evaluating Approaches to Preference

This subsection discusses a number of possible desiderata
that an approach may be expected to satisfy. To begin with,
(Brewka & Eiter 1999) propose two “principles” argued to
constitute a minimal requirement for preference handling
in a rule-based system. While the principles are formu-
lated with respect to static preferences, the second need not
be (Delgrande, Schaub, & Tompits 2002). The principles
are expressed with respect to rule-based systems. Thus ap-
proaches such as Default Logic and logic programming are
most naturally covered by these principles, although they are
also applicable, for example, to a circumscriptive abnormal-
ity theory with preferences.

5This isn’t totally accurate, since the complexity of various de-
cision problems is known for the major approaches. However, even
if we make the eminently reasonable assumption that complexity
reflects expressibility, this still says nothing about practical issues.

Principle I: Let � � and � � be two extensions6 of a priori-
tised theory)1�_, � / generated by ground rules ���:>�� � A and���4>�� � A , where rules � � ,'� ���� � . If � � is preferred over � �
then � � is not a preferred extension of � .

The term “generated” is crucial in Principle I: For extension� a rule � is a generating rule just if its prerequisites are in� and it is not defeated by � .

Principle II: Let � be a preferred extension of a priori-
tised theory)1�_, � / and � a ground rule such that at least
one prerequisite of � is not in � . Then � is a preferred
extension of)1�?��>}�CAL, �g� / whenever

�_�
agrees with

�
on

priorities among rules in � .

Thus adding a nonapplicable rule in a preferred extension
does not make the extension nonpreferred, so long as prior
preferences are not changed.

Complexity: For the major approaches to nonmonotonic
reasoning, the complexity of general decision problems
of interest (along with corresponding search problems) is
known. Arguably, adding preferences to a given approach
should not change the complexity of a given problem. Thus,
consider a decision problem such as:

Is � a member of all extensions of theory � ?

Arguably, the overall complexity should not change if all
extensions is replaced by all preferred extensions. The intu-
ition is that if the complexity does change, then substantial
machinery has been added to the underlying formalism in
order to implement preferences.

In adding preferences to an approach, the original ap-
proach should be changed “minimally”, in that by and large,
properties of the approach (at least those unrelated to notions
of preference) should remain unaffected. This leads to two
further criteria.

Is a preferred extension an extension of the theory with-
out preferences? Thus in a default theory with static pref-
erences)1*�,'.2, � / , one might expect that an extension of
this theory also be an extension of the theory without pref-
erences)+*-,'.0/ . For a circumscriptive abnormality theory
with preferences, one might expect that its circumscription
implies the circumscription without preferences. Similarly,
in general a preferred answer set should be also an answer
set without preference. However, there are some application
domains which require modifications of standard extensions,
for example, updating logic programs (Eiter et al. 2000) and
resolving conflicts caused by classical negation (Buccafurri,
Faber, & Leone 1999). In addition, if the preference rela-
tion � is empty, the reference theory should have the same
extensions with the theory without preference.

6We prefer the term “extension” to (Brewka & Eiter 1999)’s
“belief set”. In using “extension” we do not presuppose anything
about the underlying system.

Do the properties of the original system remain? This
criterion can actually be seen as a collection of criteria: An
approach comes with certain formal properties; arguably, the
approach with preferences should maintain the same formal
properties (unless there is a good reason not to). For exam-
ple, normal default theories guarantee the existence of exten-
sions. It would seem reasonable that a normal default theory
with preferences also guarantee the existence of extensions.

As a second example, in logic programing there are two
major semantics for logic programs: answer sets seman-
tics and well-founded semantics. For logic programming
without preference, an important property is that the well-
founded model provides an approximation to the answer sets
semantics. This property should also be preserved in the set-
ting of logic programming with preference.

Approaches
In this section, we cover the salient features of various ap-
proaches with respect to how they handle preferences. Ap-
proaches are considered in four broad categories: preference
in default logic, in logic programming, in updating logic
programs, and in other nonmonotonic formalisms.

Preference in default logic
(Baader & Hollunder 1992; Baader & Hollunder
1993b):

preference preference on rules; static preference; strict
partial order

strategy selection function on extensions; prescriptive
approach meta-level; integrating preference information

into the quasi-induction definition of default extension
complexity same level as host system
distinguished properties (1) preferred extension is also

an extension without preference; (2) Brewka and
Eiter’s Principle I is not satisfied

related work extension of (Brewka & Eiter 1998;
Brewka & Eiter 1999)

(Brewka & Eiter 2000):

preference preference on rules; static preference (plus
extension to dynamic case); strict partial order

strategy selection function on extensions; semi-
prescriptive

approach meta-level; generate all total orderings, each
of which is “applied”

complexity same level as host system
distinguished properties (1) preferred extension is also

an extension without preference; (2) Brewka and
Eiter’s Principle I and II are satisfied

related work extension of (Brewka & Eiter 1998;
Brewka & Eiter 1999)

(Delgrande & Schaub 2000b):

preference preference on rules; dynamic preference;
strict partial order

strategy selection function on extensions; prescriptive

approach meta-level (compiling an ordered default the-
ory into an ordinary one); apply the preference ordering
“directly”

complexity same level as host system
distinguished properties (1) preferred extension is also

an extension without preference; (2) Brewka and
Eiter’s Principle I and II are satisfied

related work (Delgrande, Schaub, & Tompits 2000b;
Delgrande, Schaub, & Tompits 2000c; Delgrande,
Schaub, & Tompits 2002)

(Rintanen 1998):

preference preference on rules; static preference; total
order

strategy selection function on extensions; descriptive
approach meta-level; generate all extensions and filter

via preference ordering; lexicographic comparison (de-
rive a lexicographic ordering from the total order on
defaults); apply the preference ordering “directly”

complexity higher level than host system
distinguished properties Brewka and Eiter’s Principle I

and II are not satisfied

Preference in logic programming
(Brewka & Eiter 1998; Brewka & Eiter 1999):

host system extended logic programs under answer sets
strategy selection function on answer sets; semi-

prescriptive
preference preference on rules; static preference; strict

partial order
approach meta-level; generate all total orderings, each

of which is “applied”
complexity same level as host system
distinguished properties (1) preferred answer set is also

a standard answer set; (2) Brewka and Eiter’s Principle
I and II are satisfied

related work (Delgrande, Schaub, & Tompits 2000a;
Eiter et al. 2001) give translation and implementation

(Delgrande, Schaub, & Tompits 2000b; Delgrande,
Schaub, & Tompits 2000c; Delgrande, Schaub, &
Tompits 2002):

host system extended logic programs under answer sets
strategy selection function on answer sets; prescriptive
preference preference on rules; dynamic preference;

strict partial order
approach object level (compiling an ordered logic pro-

gram into an ordinary one); apply the preference order-
ing “directly”

complexity same level as host system
distinguished properties (1) preferred answer set is also

a standard answer set; (2) Brewka and Eiter’s Principle
I and II are satisfied

related work (Delgrande & Schaub 2000b)
implementation
www.cs.uni-potsdam.de/ � torsten/plp

(Grosof 1997):

host system extended logic programs under answer sets
(no recursion is allowed)

strategy prescriptive
preference preference on rules; dynamic preference;

strict partial order
approach meta-level; apply the preference ordering “di-

rectly”
complexity same level as host system
distinguished properties each ordered logic program

without recursion has a unique preferred answer sets
related work IBM CommonRules project
implementation
ebusiness.mit.edu/bgrosof/

(Schaub & Wang 2001; Wang, Zhou, & Lin 2000):

host system extended logic programs under answer sets,
regular sets, and well-founded model

strategy selection function on answer sets; prescriptive
preference preference on rules; static preference; strict

partial order
approach meta-level; apply the preference ordering “di-

rectly”; modify the immediate consequence; each se-
mantics is defined as a special class of the alternating
fixpoints

complexity same level as host system
distinguished properties (1) preferred answer set is also

a standard answer set; (2) the well-founded model is
correct wrt the preferred answer sets; (3) Brewka and
Eiter’s Principle I and II are satisfied

related work (Baader & Hollunder 1992; Baader & Hol-
lunder 1993b; Schaub & Wang 2002)

implementation
www.cs.uni-potsdam.de/ � torsten/plp

(Zhang & Foo 1997a):

host system extended logic programs under answer sets
strategy modified answer sets
preference preference on rules; dynamic preference;

strict partial order
approach meta-level; program transformation
complexity higher level than host system
distinguished properties Brewka and Eiter’s Principle I

and II are satisfied
implementation
www.cit.uws.edu.au/ � yan/plps.html

(Gelfond & Son 1997):

host system logic programs under answer sets
strategy modified answer sets; prescriptive
preference preference on rules; dynamic preference, ar-

bitrary order
approach object level, meta-interpretation; apply the

preference ordering “directly”
complexity same level as host system

(Sakama & Inoue 2000):

host system extended logic programs (with disjunction)
under answer sets

strategy selection function on answer sets; descriptive
preference preference on literals; static preference; strict

partial order
approach meta-level; generate all extensions and filter

via preference ordering
complexity higher level than host system
distinguished properties Brewka and Eiter’s Principle

II is violated

(Buccafurri, Leone, & Rullo 1996; Buccafurri, Faber,
& Leone 1999; Buccafurri, Leone, & Rullo 1999;
Laenens & Vermeir 1990; Leone & Rossi 1993):

host system ordered logic
strategy modified answer sets; prescriptive
preference preference on rules (called inheritance hier-

archy); static preference; strict partial order
approach meta-level; apply the preference ordering “di-

rectly”
complexity same level as host system

(Kakas, Mancarella, & Dung 1994):

host system Logic programming without negation as
failure (LPwNF) – limited form of classical negation

strategy modified answer sets
preference preference on rules; strict preference; strict

partial order
approach meta-level; prioritized argumentation; apply

the preference ordering “directly”
complexity higher level than host system?
distinguished properties LPwNF can characterize de-

fault negation

(Dimopoulos & Kakas 1995):

host system extension of LPwNF
strategy modified answer sets
preference preference on rules; static preference; strict

partial order
approach meta-level; prioritized argumentation; apply

the preference ordering “directly”

(Pradhan & Minker 1996):

host system definite logic programs
strategy modified answer sets
preference preference on atoms; static preference; strict

partial order
approach meta-level; employ preference to resolve con-

flicts between different logic programs; apply the pref-
erence ordering “directly”

(Cui & Swift 2001):

host system logic grammars under well-founded model
strategy prescriptive
preference preference on rules; dynamic preference;

strict partial order

approach meta-level; apply the preference ordering “di-
rectly”;

complexity same level as host system
implementation
www.cs.sunysb.edu/ � tswift/

interpreters.html

(Brewka 1996):

host system logic programs under well-founded seman-
tics

strategy prescriptive
preference preference on rules; dynamic preference;

strict partial order
approach meta-level; apply the preference ordering “di-

rectly”
complexity same level as host system

(Prakken 1997a):

host system logic programs
strategy prescriptive
preference preference on rules; strict partial order
approach meta-level; argumentation-based; apply the

preference ordering “directly”

Preference and updating logic programs
(Zhang & Foo 1997b; Zhang & Foo 1998):

host system extended logic programs
strategy modified answer sets
preference preference on rules
approach meta-level; program transformation
distinguished properties describes the update of a logic

program using the preference approach of (Zhang &
Foo 1997a)

(Alferes & Pereira 2000):

host system dynamic logic programs
strategy semi-prescriptive
preference preference on rules; static preferences; strict

partial order
approach meta-level
distinguished properties extends update mechanism of

(Alferes et al. 1998) by allowing preferences between
rules, based on the preference approach of (Brewka &
Eiter 1999)

Preference in other nonmonotonic formalisms
(Lifschitz 1985b):

host system circumscription
strategy meta-level; preorder (preferences induce strata)
preference static preference, preference on special-

purpose predicates, namely ab predicates
approach meta-level; generate all extensions
related work (Chen 1997; Gelfond & Lifschitz 1988;

Wakaki & Satoh 1997) provide compilations from pre-
ferred circumscription into logic programs

(Inoue & Sakama 1999):

host system abduction
strategy selection function on minimal explanations; de-

scriptive
preference static preference, preference on abducibles

(literals)
approach meta-level; generate all extensions; apply the

preference ordering “directly”
complexity higher level than host system
related work this semantics is equivalent to the preferred

answer sets in (Sakama & Inoue 2000)

(Nute 1987; Nute 1994; Billington 1993; Antoniou et al.
2000):

host system defeasible logic
strategy prescriptive
preference preference on rules; static preference; arbi-

trary order
approach meta-level; integrating preference into resolu-

tion procedure

(You, Wang, & Yuan 2001):

host system priority logic (prioritized argumentation)
strategy deriving preference on arguments from rule

preference
preference preference on rules; static preference; arbi-

trary order
approach meta-level; generate all acceptable arguments

and select
complexity higher level than host system
related work prioritized argumentation is also investi-

gated in (Dimopoulos & Kakas 1995; Prakken 1997a)

(Ryan 1992):

host system classical logic (ordered theory presenta-
tions)

strategy descriptive
preference preference on formulas; static preference;

strict partial order
approach meta-level; generate all models and filter via

preference ordering; apply the preference ordering “di-
rectly”

complexity higher level than host system

Conclusion
We have presented an overview and classification of ap-
proaches to dealing with preference in nonmonotonic rea-
soning. A set of criteria for classifying approaches is first
given, followed by a set of desiderata that an approach might
be expected to satisfy. A comprehensive set of approaches is
subsequently given and classified with respect to these sets
of principles. The intent is to provide some structure on the
area, so that seemingly unrelated systems may be compared
or related with each other. The full version of this paper will
also give a higher-level survey and distillation of these ap-
proaches. As well, a suggested list of open problems and
research topics will be given in the full version.

References
Alferes, J., and Pereira, L. 2000. Updates plus Preferences.
In Aciego, M.; de Guzmán, I.; Brewka, G.; and Pereira, L.,
eds., Proc. 7th European Workshop on Logics in Artificial
Intelligence) JELIA 2000 / , volume 1919 of Lecture Notes
in Computer Science, 345–360. Springer.
Alferes, J.; Leite, J.; Pereira, L.; Przymusinska, H.; and
Przymusinski, T. 1998. Dynamic Logic Programming. In
Cohn, A.; Schubert, L.; and Shapiro, S., eds., Proc. 6th
Int. Conf. on Principles of Knowledge Representation and
Reasoning) KR’98 / , 98–111. Morgan Kaufmann.
Antoniou, G.; Billington, D.; Governatori, G.; and Maher,
M. J. 2000. Defeasible logic versus logic programming
without negation as failure. Journal of Logic Programming
42(1):47–57.
Baader, F., and Hollunder, B. 1992. Embedding defaults
into terminological knowledge representation formalisms.
In Nebel, B.; Rich, C.; and Swartout, W., eds., Proceedings
of the Third International Conference on the Principles of
Knowledge Representation and Reasoning, 306–317.
Baader, F., and Hollunder, B. 1993a. How to prefer more
specific defaults in terminological default logic. In Ba-
jcsy, R., ed., Proceedings of the International Joint Con-
ference on Artificial Intelligence, 669–674. Morgan Kauf-
mann Publishers.
Baader, F., and Hollunder, B. 1993b. How to prefer more
specific defaults in terminological default logic. Technical
Report RR-92-58, DFKI.
Billington, D. 1993. Defeasible logic is stable. Journal of
Logic and Computation 3(4):379–400.
Brewka, G., and Eiter, T. 1998. Preferred answer sets for
extended logic programs. In Cohn, A.; Schubert, L.; and
Shapiro, S., eds., Proceedings of the Sixth International
Conference on the Principles of Knowledge Representation
and Reasoning, 86–97. Morgan Kaufmann Publishers.
Brewka, G., and Eiter, T. 1999. Preferred answer sets
for extended logic programs. Artificial Intelligence 109(1-
2):297–356.
Brewka, G., and Eiter, T. 2000. Prioritizing default logic.
In Hölldobler, S., ed., Intellectics and Computational Logic
— Papers in Honour of Wolfgang Bibel. Kluwer Academic
Publishers. 27–45.
Brewka, G. 1994. Adding priorities and specificity to de-
fault logic. In Pereira, L., and Pearce, D., eds., European
Workshop on Logics in Artificial Intelligence (JELIA’94),
Lecture Notes in Artificial Intelligence, 247–260. Springer
Verlag.
Brewka, G. 1996. Well-founded semantics for extended
logic programs with dynamic preferences. Journal of Arti-
ficial Intelligence Research 4:19–36.
Buccafurri, F.; Faber, W.; and Leone, N. 1999. Disjunc-
tive logic programs with inheritance. In Proceedings of the
International Conference on Logic Programming, 79–93.
The MIT Press.
Buccafurri, F.; Leone, N.; and Rullo, P. 1996. Stable mod-
els and their computation for logic programming with in-

heritance and true negation. Journal of Logic Programming
27:5–43.

Buccafurri, F.; Leone, N.; and Rullo, P. 1999. Semantics
and expressiveness of disjunctive ordered logic. Annals of
Mathematics and Artificial Intelligence 25:311–337.

Chen, J. 1997. Embedding prioritized circumscription into
logic programs. In Proc. of the 10th International sym-
posium on Foundations of Intelligent Systems (ISMIS’97),
LNAI 1325, 50–59. Springer-Verlag.

Cui, B., and Swift, T. 2001. Preference logic grammars:
Fixed-point semantics and application to data standardiza-
tion. Artificial Intelligence. To appear.

Delgrande, J., and Schaub, T. 2000a. Expressing prefer-
ences in default logic. Artificial Intelligence 123(1-2):41–
87.

Delgrande, J., and Schaub, T. 2000b. Expressing prefer-
ences in default logic. Artificial Intelligence 123(1-2):41–
87.

Delgrande, J., and Schaub, T. 2000c. The role of de-
fault logic in knowledge representation. In Minker, J.,
ed., Logic-Based Artificial Intelligence. Kluwer Academic
Publishers. 107–126.

Delgrande, J.; Schaub, T.; and Tompits, H. 2000a. A com-
pilation of Brewka and Eiter’s approach to prioritization. In
Ojeda-Aciego, M.; Guzmán, I.; Brewka, G.; and Pereira,
L., eds., Proceedings of the European Workshop on Log-
ics in Artificial Intelligence (JELIA 2000), volume 1919 of
Lecture Notes in Artificial Intelligence, 376–390. Springer-
Verlag.

Delgrande, J.; Schaub, T.; and Tompits, H. 2000b.
Logic programs with compiled preferences. In Baral, C.,
and Truszczyński, M., eds., Proceedings of the Eighth
International Workshop on Non-Monotonic Reasoning.
arXiv.org e-Print archive.

Delgrande, J.; Schaub, T.; and Tompits, H. 2000c. Logic
programs with compiled preferences. In Horn, W., ed.,
Proceedings of the European Conference on Artificial In-
telligence, 392–398. IOS Press.

Delgrande, J.; Schaub, T.; and Tompits, H. 2002. A frame-
work for compiling preferences in logic programs. Theory
and Practice of Logic Programming. To appear.

Dimopoulos, Y., and Kakas, C. 1995. Logic programming
without negation as failure. In Lloyd, J., ed., Proceed-
ings of the International Symposium of Logic Program-
ming, 369–383. The MIT Press.

Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2000.
Considerations on updates of logic programs. In Proceed-
ings of the Seventh European Workshop on Logics in Ar-
tificial Intelligence (JELIA’2000), volume 1919 of Lecture
Notes in Artificial Intelligence, 2–20. Springer-Verlag.

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2001. Com-
puting preferred and weakly preferred answer sets by meta-
interpretation in answer set programming. In Provetti, A.,
and Cao, S., eds., Proceedings AAAI 2001 Spring Sympo-
sium on Answer Set Programming: Towards Efficient and

Scalable Knowledge Representation and Reasoning, 45–
52. AAAI Press.

Gelfond, M., and Lifschitz, V. 1988. Compiling circum-
scription theories into logic programs. In Proceedings of
the AAAI National Conference on Artificial Intelligence,
455–459. The MIT Press.
Gelfond, M., and Son, T. 1997. Reasoning with prioritized
defaults. In Dix, J.; Pereira, L.; and Przymusinski, T., eds.,
Third International Workshop on Logic Programming and
Knowledge Representation, volume 1471 of Lecture Notes
in Computer Science, 164–223. Springer-Verlag.

Gordon, T. 1993. The pleading game: An Artificial Intelli-
gence Model of Procedural Justice. Dissertation, Technis-
che Hochschule Darmstadt, Alexanderstraße 10, D-64283
Darmstadt, Germany.
Grosof, B. 1997. Prioritized conflict handling for logic pro-
grams. In Maluszynsk, J., ed., Logic Programming: Pro-
ceedings of the 1997 International Symposium, 197–211.
The MIT Press.

Grosof, B. 1999. Business rules for electronic commerce.
http://www.research.ibm.com/rules/papers.html.
IBM Research.

Inoue, K., and Sakama, C. 1999. Abducing priorities to
derive intended conclusions. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 44–49.
Morgan Kaufmann Publishers.
Kakas, A.; Mancarella, P.; and Dung, P. M. 1994. The
acceptability semantics for logic programs. In Hentenryck,
P. V., ed., Proceedings of the International Conference on
Logic Programming, 504–519. The MIT Press.
Laenens, E., and Vermeir, D. 1990. A fixpoint seman-
tics for ordered logic. Journal of Logic and Computation
1(2):159–185.

Leone, N., and Rossi, G. 1993. Well-founded semantics
and stratification for ordered logic programs. New Gener-
ation Computing 12(1):91–121.

Lifschitz, V. 1985a. Closed-world databases and circum-
scription. Artificial Intelligence 27:229–235.
Lifschitz, V. 1985b. Closed-world databases and circum-
scription. Artificial Intelligence 27:229–235.
Marek, V., and Truszczyński, M. 1993. Nonmonotonic
logic: context-dependent reasoning. Artifical Intelligence.
Springer-Verlag.
McCarthy, J. 1986. Applications of circumscription to for-
malizing common-sense knowledge. Artificial Intelligence
28:89–116.
Nute, D. 1987. Defeasible reasoning. In Proceedings of the
20th Hawaii International Conference on Systems Science,
470–477. IEEE Press.
Nute, D. 1994. Defeasible logic. In Handbook of Logics
in Artificial Intelligence and Logic Programming, Vol. 3.
Oxford University Press. 353–395.
Pradhan, S., and Minker, J. 1996. Using priorities to com-
bine knowledge bases. International Journal of Coopera-
tive Information Systems 5(2-3):333–364.

Prakken, H. 1997a. Argument-based logic programming
with defeasible priorities. Journal of Applied Non-classical
Logics 7:25–75.
Prakken, H. 1997b. Logical Tools for Modelling Legal
Argument. Kluwer Academic Publishers.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.
Rintanen, J. 1998. Lexicographic priorities in default logic.
Artificial Intelligence 106:221–265.
Ryan, M. 1992. Representing defaults as sentences with
reduced priority. In Nebel, B.; Rich, C.; and Swartout, W.,
eds., Proceedings of the Second International Conference
on the Principles of Knowledge Representation and Rea-
soning, 649–660. Morgan Kaufmann Publishers.
Sakama, C., and Inoue, K. 2000. Prioritized logic pro-
gramming and its application to commonsense reasoning.
Artificial Intelligence 123(1-2):185–222.
Schaub, T., and Wang, K. 2001. A comparative study of
logic programs with preference. In Nebel, B., ed., Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 597–602. Morgan Kaufmann Publishers.
Schaub, T., and Wang, K. 2002. Preferred well-founded
semantics for logic programming by alternating fixpoints:
preliminary report. In Proc. of the Workshop on
NMR’2002, to appear.
Wakaki, T., and Satoh, K. 1997. Compiling circumscrip-
tion into extended logic programs. In Proceedings of the
International Joint Conference on Artificial Intelligence,
182–187. Morgan Kaufmann Publishers.
Wang, K.; Zhou, L.; and Lin, F. 2000. Alternating fix-
point theory for logic programs with priority. In Proceed-
ings of the First International Conference on Computa-
tional Logic, volume 1861 of Lecture Notes in Computer
Science, 164–178. Springer-Verlag.
You, J.; Wang, X.; and Yuan, L. 2001. Nonmonotonic
reasoning as prioritized argumentation. IEEE Transactions
on Knowledge and Data Engineering 13(6):968–979.
Zhang, Y., and Foo, N. 1997a. Answer sets for prioritized
logic programs. In Maluszynski, J., ed., Proceedings of the
International Symposium on Logic Programming (ILPS-
97), 69–84. MIT Press.
Zhang, Y., and Foo, N. 1997b. Towards Generalized Rule-
based Updates. In Proc. 15th Int. Joint Conf. on Artificial
Intelligence) IJCAI’97 / , volume 1, 82–88. Morgan Kauf-
mann.
Zhang, Y., and Foo, N. 1998. Updating Logic Programs.
In Prade, H., ed., Proc. 13th Europ. Conf. on Artificial In-
telligence) ECAI’98 / , 403–407. Wiley.

