
Utility Functions for Ceteris Paribus Preferences

Michael McGeachie
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

mmcgeach@mit.edu

Jon Doyle
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7535
Jon Doyle@ncsu.edu

Abstract

Although ceteris paribus preference statements concisely
represent one natural class of preferences over outcomes or
goals, many applications of such preferences require numeric
utility function representations to achieve computational effi-
ciency. We provide algorithms, complete for finite universes
of binary features, for converting a set of qualitative ceteris
paribus preferences into quantitative utility functions.

Introduction
Although researchers have developed several logical rep-
resentations of preference information (Doyle, Shoham, &
Wellman 1991; Mura & Shoham 1999; Bacchus & Grove
1996), development of adequate means for automated rea-
soning within and computational use of these representa-
tions remains an underexplored topic. To improve the utility
of these representations for practical applications, we con-
sider the task of constructing or compiling numeric utility
functions to fit logical preference specifications, and present
algorithms for this task appropriate to the ceteris paribus
logic of Doyle, Shoham, and Wellman (1991).

Wellman and Doyle (1991) observed that ceteris paribus
preference provides a natural interpretation of a common
type of human preference, and built on this to develop
logical and mathematical formalizations of such informa-
tion (Doyle, Shoham, & Wellman 1991; Doyle & Wellman
1994). Ceteris paribus preferences express preference com-
parisons over sets of possible worlds or outcomes character-
ized in terms of a set of binary features � . Then each ceteris
paribus rule specifies some features of outcomes, and a pref-
erence over them, while ignoring the remaining features, the
intent being that comparisons hold the ignored features con-
stant.

Consider, for example, “Prefer programming tutors re-
ceiving an A in Software Engineering to tutors not receiving
an A, other things being equal.” We imagine a universe of
computer science tutors described by binary features as in-
dicated in Table 1. The preference about tutors stated previ-
ously means that a particular computer science tutor is more
desirable if the tutor received an A in the Software Engi-
neering course, all other features being equal. In particular,

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Tutor � � �
Feature
Graduated false false true
A in Software Engineering true false false
A in Computer Systems true true false
Cambridge resident true true true
Will work Tuesdays false false true

...
...

...
...

Table 1: Properties of possible computer science tutors

the tutor � described in Table 1 is preferred to the tutor �
in that same table, assuming the elided features for each are
identical. In contrast, the ceteris paribus preference makes
no statement about the relative desirability of tutors � and
�. Tutors � and � differ only in the feature mentioned in the
preference statement, getting an A in Software Engineering.
The stated preference does not apply to tutors � and � be-
cause they differ with regard to other features.

Although one can reason from statements expressed in
this logic of preference to determine which of two outcomes
is preferable, if either is, many applications of decision the-
ory require the use of numerical utility functions. This pa-
per describes means for constructing utility functions that
represent preferences stated in a logic of preference ceteris
paribus .

Ceteris paribus preference and utility
We employ a restricted logical language �, patterned after
(Doyle, Shoham, & Wellman 1991) but using only the stan-
dard logical operators � and �, over a set of atoms � corre-
sponding to propositional features mentioned in preference
statements. By �������	�� � we denote the atoms of � and
their negations; �������	�� � � � � ��
 � 
 � ��. We call
a complete consistent set � of literals a model. That is, a
set of features � is a model iff � contains, for each 
 � � ,
exactly one of 
 and �
 . We use� for the set of all models
of �.

A model of � assigns truth values to all atoms of �, and
therefore to all formulae in �. We write 
��� for the truth
value assigned to feature 
 by model �. A model satisfies
a sentence � of � if the truth values � assigns to the atoms

From: AAAI Technical Report WS-02-13. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



of � make � true. We write � �� � when � satisfies �. We
define the proposition expressed by a sentence �, denoted ���
by ��� � �� �� � � �� ��.

A preference order is a complete preorder (reflexive and
transitive relation) � over �. When � � ��, we say that
� is weakly preferred to ��. If � � �� and �� 	� �, we
write � 
 �� and say that � is strictly preferred to ��.
If � � �� and �� � �, then we say � is indifferent to
��, written � � ��. A utility function � � � � � maps
each model to a real number. A utility function � represents
a preference order � just in case ���� 
 ����� whenever
� � ��.

We define a new language �r of preference rules or pref-
erence constraints to consist of statements of the form, for
�
 � � �, of � � �, meaning � is desired at least as much as
�, and � � �, meaning � is desired more than �. Models of
�r consist of preference orders over models of �. We define
the meaning of preference rules in terms of the notions of
�-model equivalence and modification.

The support of a sentence � � � is the minimal set of
atoms determining the truth of �, denoted 	���. The support
of � is the same as the set of atoms appearing in an irre-
dundant sum-of-products sentence logically equivalent to �.
Two models � and �� are equivalent modulo � if they are
the same outside the support of �. Formally,� � �� ��� �
iff

����������	�	����� � �����������	�	�����

Model modification is defined as follows. A set of model
modifications of � making � true, written ����, are those
models satisfying � which assign the same truth values to
atoms outside the support of � as � does. That is,

���� � ��� � ��� � � � �� ��� ���

Formally, we say that a preference order� satisfies � � �
if and only if for all � in �, �� � ��� � ��� and ��� �
���� � ��, we have �� � ���. This means that when two
models assign the same truth values to all features not in
the support of either � or �, one making � true and � false
is weakly preferred to one making � false and � true. The
preference order satisfies a strict ceteris paribus preference
� � � if and only if in addition some case has a model makes
� true and � false strictly preferred to one making � false and
� true.

For a preference rule �, we write ��� to denote the set of
preference orders over � that satisfy �, that is, consistent
with the constraint expressed by �. We write ��� for a set of
preference rules to denote the set of orders consistent with
each � � �, that is, ��� �

�
��� ���. Consistent rules and

rule sets admit at least one consistent preference order. If a
preference rule � implies that �� 
 ���, for ��
��� � �,
we write �� 
� ���. For a set � of preference rules, we
write �� 
� ��� to mean that �� 
� �

�� for each � � �.
We define the support of �, denoted � ���, to be the set

of features in � present in the support of statements of � ap-
pearing in constraints in �. Formally, � ��� contains those
features 
 such that either 
 or �
 appears in

�
��� 	���.

The following examines the problem of constructing, for
a finite set � of ceteris paribus preference rules, a utility
function � that represents some order in ���.

Intermediate representation
The utility construction methods developed here employ an
intermediate representation in terms of simple rules that re-
late paired patterns of specified and “don’t care” feature val-
ues.

Let � be a finite set of preference rules. Because each
preference rule mentions only finitely many features, � ���
is also finite, and we write � to mean �� ����.

We construct utility functions representing the constraints
in � in terms of model features. Features not specified in
any rule in � are not relevant to compute the utility of a
model, since there is no preference information about them
in the set �. Accordingly, we focus our attention on � ���.

We define the intermediate representation relative to an
enumeration � � �
�
 � � � 
 
� � of � ���.

We define the language �r��� of intermediate rules in
terms of a language ���� of intermediate propositions over
the ternary alphabet 	 � �

 �
 ��.

A statement in ���� consists of a sequence of � letters
drawn from the alphabet	, so that���� consists of words of
length � over 	. For example, if � � �
�
 
�
 
��, we have
��
 � ����. Given a statement � � ���� and a feature

 � � ���, we write 
��� for the value in 	 assigned to 
 in
�. In particular, if 
 � ��, then 
��� � ��.

An intermediate rule in �r��� consists of a triple � 
 � in
which �
 � � ���� have matching � values. That is, � 
 �
is in �r��� just in case �� � � if and only if �� � � for
all � � � � � . For example, if � � �
�
 
�
 
��, �r���
contains the expression ��
 
 �

 but not the expression
��
 
 
�
. We refer to the statement in ���� left of the

 symbol in a rule � as the left-hand side of �, and denote
it ������. We define right-hand side ������ analogously.
Thus � � ����� 
 �� and � � ����� 
 ��.

We regard statements of ���� containing no � letters as
models of ����, and write ���� to denote the set of all
such models. We say a model � satisfies 	, written � �� 	,
just in case � assigns the same truth value to each feature
as 	 does for each non � feature in 	. That is, � �� 	 iff

��� � 
�	� for each 
 � � ��� such that 
�	� 	� �. For
example, 

�� satisfies both �
�� and 

��.

We project models in � to models in ���� by a map-
ping � � � � ���� defined, for each � � � and

 � � ���, so that 
������ � � if 
 � � and 
������ � 

if �
 � �. This projection induces an equivalence rela-
tion on �, and we write ��� to mean the set of models
in � mapped to the same model in ���� as �, namely
��� � ��� �� � ����� � �����.

We say that a pair of models ��
��� of ���� satisfies
a rule � in �r���, and write ��
��� �� �, if � satisfies
������, �� satisfies ������, and �
�� have the same
value for those features represented by � in �, that is, �� �
��
�

for each � � � � � such that ������� � �. For exam-
ple, ��


 
�
� �� �
� 
 
��, but ��
�
 
�
� 	�� �
� 
 
��.

The meaning ��� of a rule � in �r��� is the set of all pref-
erence orders 
 over � such that for each �
�� � �, if
�����
 ������ �� �, then � 
 ��. The meaning of a set
� of rules consists of the set of preference orders consistent
with each rule in the set, that is, ��� �

�
������. Thus a rule



��
� 
 ���
 represents four specific preferences




� 
 

�


�
� 
 
��

�

� 
 �
�

��
� 
 ���


Note that this says nothing at all about the preference rela-
tionship between, e.g., 0101 and 1010.

To use the intermediate representation, we must translate
sets � of ceteris paribus rules into sets � of intermediate
representation rules in a way that guarantees compatibility
of meaning in the sense that ��� � ���. We do this as fol-
lows.

The translation involves considering models restricted to
subsets of features. We write ���� to denote the set of
models over a feature set � � � , so that � � ��� �.
If � � ���� and �� � � , we write � � �� to denote the
restriction of� to ��, that is, the model�� � ����� assign-
ing the same values as � to all features in ��. We say that
a model � � ���� satisfies a model �� � �����, written
� �� �� just in case �� � � and �� � � � ��.

A set of rules � of intermediate representation is com-
patible with a rule � � �� � �� in the ceteris paribus rep-
resentation of the previous section just in case ��� � ���.
If �� 
� ��, this means that for some � � � we have
���

�
�
�
�� �� �, where ��
�� model �, ��

�
�
�
� model

����, such that �� � ���
�� and �� � ���

��. We give a
construction for such an � from an arbitrary �.

We first define the characteristic model ���� of a state-
ment � in ���� to be the model in ��	���� defined by

���� � �
 � 
��� � �� � ��
 � 
��� � 
��

Note that for � � � we have � �� �������, that is,
������� � � � � ���.

We translate a single ceteris paribus rule � � �r into a
set of intermediate representation rules � by the support of
�. If � is of the form �� � ��, where ��
 �� are sentences in
�, then models that satisfy �� � ��� are preferred to models
that satisfy������, other things being equal. For brevity, let
	� � 	���������	��������, so that 	� � � ��� is the set of
support features for each rule � � �, and consider models in
��	��. Let �� be the set of such models satisfying ������,
that is

�� � �� ���	�� � � �� �� � ����


and define �� as the corresponding set of models satisfying
the right-hand side,

�� � �� ���	�� � � �� ��� � ����

We construct new sets � �
�

and � �
� of statements in ����

from �� and �� by augmenting each member and translat-
ing into ����. We define these new sets by

� �
� � �� � ���� � ����� � 	�� ����

� �
� � �� � ���� � ����� � 	�� �����

Note that the members of � �
�

and � �
� are of length �� ����,

while those of �� and �� are of size �	��.
We now construct a set of rules in �r��� to include a rule

for each pair of augmented statements, that is, a set

� � ���
� 
 ��

� � �
�
� � � �

� 
 �
�
� �� �

���

This completes the translation.
Consider a simple example. In the following, we assume

� � �
�,
�,
�,
��. A ceteris paribus rule might be of the
form 
���
��
�. This expresses the preference for models
satisfying

�
� � �
�� � �
�

over models satisfying

��
� � �
�� � 
�

other things being equal. Note 	� � �
�
 
�
 
��. Then, fol-
lowing the above construction,�� � ��
�
�
�
�
���, and
�� � ��
�
 
�
 
��, ��
�
 
�
 
��, ��
�
 
�
�
���. In this
case we translate these into three intermediate representation
rules:

��

 
 ����
��

 
 �
��
��

 
 �
�


The above translation can be used to convert a set � of
ceteris paribus rules into a set � � of intermediate represen-
tation rules equivalent in the sense that both sets denote the
same set of preference orders ��� � �� ��. Furthermore, this
translation from rules in �r to rules in �r��� can be proven
correct, by reference to the definitions of the notations used
in each language. We omit the proof here because, although
the ideas are intuitively simple, the details are cumbersome.
A translation from �r��� to �r is also possible, and follows
in much the same way.

It is important to note that the richer language �r allows
us to represent more complicated preferences than are possi-
ble in �r���. Accordingly, the translation of a single ceteris
paribus rule might produce many intermediate representa-
tion rules.

Some direct utility functions
We now define several direct utility functions consistent with
a set of preferences in the intermediate representation. One
can use these to define utility functions over models in � by
composition with the model-projection mapping �. Specif-
ically, given a set � of preference rules and a translation of
� into a set � � of intermediate preference rules, one finds
the utility of a model � � � by computing the projection
���� � ���� and using one of the functions defined in the
following, each of has the form � ������ �.

To construct these utility functions, we use the rules in � �

to define a directed graph��� �� over����, called a model
graph, that represents the preferences expressed in � �. Each
node in the graph represents one of the �� possible mod-
els ����. Algorithmic constructions can get by explicitly
representing only those nodes of the graph linked by edges,
which typically constitute a smaller subset.

The model graph��� �� contains an edge ����
��� from
source �� to sink �� if and only if ���
��� �� � for
some rule � � � �. Each edge represents a preference for
the source over the sink. If � � is consistent, then ��� �� is
acyclic; a cycle would indicate the inconsistency of � �. We
can determine whether � is preferred to �� by looking for
a path from � to �� in ��� ��. The existence of such a path
means � 
 ��.



We define four utility functions over the model graph
��� ��, as summarized in Table 2.

�� (“Minimizing”) longest outgoing path length
�� (“Descendant”) number of descendants
�	 (“Maximizing”) longest incoming path length
�
 (“Topological”) rank in topological-sort order

Table 2: Four model-graph utility functions

� �� , the minimizing utility function, sets �� ��� equal to
the number of nodes on the longest path originating from
� in ��� ��.

� ��, the descendant utility function, sets ����� equal to
the total number of nodes on all paths originating from �
in ��� ��.

� �	 , the maximizing utility function, sets �	��� equal
to the length of the longest path in ��� ��, denoted
�
����� ���, minus the number of nodes on the longest
path originating at any node other than � and ending at
� in ��� ��.

� �
 , the topological-sort utility function, sets �
 ���
equal to �� minus the rank of � in the order obtained
by a topological sort � of ��� ��.

Each of the ordinal utility functions so defined has somewhat
different properties, particularly in how they assign values to
preferentially-unrelated models�� and�� such that neither
�� 
 �� or �� 
 �� according to � �. The ordering
properties specified by � � say nothing about how to order
these, so we may order them as convenient. In particular,
a utility function � consistent with � � need not ����� �
�����, but instead can distinguish these utility values.

Before proving that these four types of functions represent
the stipulated preference orders, we illustrate the differences
among them by considering an example in which the rules in
� � are such that only the pairs of models related in Table 3
satisfy any rule in � �. These orderings leave the relationship

�� 
 ��

�� 
 ��

�� 
 ��

�� 
 ��

Table 3: Orderings illustrating alternative utility functions

between �� and �� unspecified, as well as the relationship
between any of these models and some other model ��. A
utility representation of these orderings may order these un-
related models in any way.

The idea that the distance between nodes in an acyclic
graph can indicate their relative utilities underlies the min-
imizing utility function �� . That function assigns the fol-
lowing values to the models in the example.

�� ���� � � �� ���� � 
 �� ���� � �
�� ���� � � �� ���� � 
 �� ���� � 

�� ���� � 


We call this utility function minimizing because it assigns
minimal (
) utility to models not explicitly preferred to other
models according to the preference set. Thus the model ��,
about which no preferences were specified, is assigned the
value 
.

The descendant utility function uses the relationships of
the example to assign the following utilities to models.

������ � � ������ � 
 ������ � �
������ � � ������ � 
 ������ � 

������ � 


Descendant utility gives slightly higher values to �� and��

than minimizing utility, since the former counts all descen-
dants, while the latter counts only the longest path.

The maximizing utility function assigns the following val-
ues to the models of the example.

�	���� � � �	���� � � �	���� � �
�	���� � � �	���� � 
 �	���� � 

�	���� � �

This function assigns �	���� � �, the highest value among
those assigned, to the node about which the preferences pro-
vide no information.

In general, a directed graph admits more than one topo-
logical sort. Each topological sort utility function therefore
assigns values that depend on the ordering of nodes in some
specific topological sort. The following assignment of val-
ues reflects one possible topological sort of the models in the
example.

�
 ���� � � �
 ���� � � �
 ���� � �
�
 ���� � � �
 ���� � � �
 ���� � �
�
 ���� � �

The class of topological sort utility functions thus illustrates
by itself the ability to vary utility assignments consistent
with the specificied preferences.

We now show that the minimizing and descendant utility
functions defined over model graphs accurately represent the
preferences defining the graphs. We state the corresponding
results for the maximizing and topological sort utility func-
tions, but omit the proofs here due to space limitations.

Theorem 1 The minimizing utility function �� defined over
a model graph ��� �� represents some preference order in
�� ��.

Proof. Let �� ��� be equal to the number of nodes on
the longest path originating from � in ��� ��. For �� to be
consistent with � � requires that �� ���� � �� ���� when-
ever �� 
 �� according to � �. Choose a pair ��
�� such
that �� 
 �� according to � �. By construction of ��� ��,
there exists a path from �� to �� in ��� ��. Since ��� �� is
acyclic, no part of the path from �� to �� can be reached
from ��. This implies that the longest path originating at
�� contains the longest path originating at ��, but not vice
versa. Therefore �� ���� � �� ����. �

Theorem 2 The descendant utility function �� defined over
a model graph ��� �� represents some preference order in
�� ��.



Proof. From the proof of Theorem 1, if �� 
 �� ac-
cording to � �, then by construction of ��� �� there exists
a path from �� to �� in ��� ��. Since ��� �� is acyclic,
and �� is on a path from ��, therefore �� has at least
one more descendent than ��, namely, ��. Therefore
������ � ������. �

Theorem 3 The maximizing utility function �	 defined
over a model graph ��� �� represents some preference or-
der in �� ��.

Proof omitted.

Theorem 4 Every topological-sort utility function �
 de-
fined over a model graph ��� �� represents some preference
order in �� ��.

Proof omitted.

Complexity
The utility functions outlined in the previous section, while
conceptually simple, have worst-case complexity exponen-
tial in the number of relevant features � � �� ����.

As noted earlier, the model graph ��� �� has �� nodes,
but this exponential size does not in itself imply exponential
cost in computing utility functions because the utility func-
tions derive from graph edges rather than graph nodes. The
descendant utility function ��, for example, requires count-
ing the number of descendants of nodes, a number at worst
linear in the number of edges. The other utility functions
measure the number of ancestors, or the longest path from
or to a node. Clearly counting the number of ancestors is the
same computational burden as counting the number of de-
scendants. Computing the longest path originating at a node
and ending elsewhere has the same bound, since searching
all descendants can determine the longest path. Accordingly,
the number of edges in the model graph provides a basic
complexity measure for these utility computations.

In fact, a simple and familiar example shows that the
model graph can contain a number of edges exponential in
the size of � ���. Suppose, for instance, that � ��� consists
of four features and that the derived intermediate preference
rules � � consist of those displayed in Table 4. These rules

���� 
 ���

���
 
 ��
�
��

 
 �
��
�


 
 
���

Table 4: Lexicographic preference rules

order all models lexicographically in a in a complete linear
order, the same ordering we give models if we interpret them
as binary representations of the integers from 0 to 15. The
longest path through ��� �� has length ��� ����, so the num-
ber of edges is exponential in �� �� � �� ����. One should
note that this example does not imply utility dependence
among the features, but it does imply that the preferences
over some features dominate the preferences over other fea-
tures. Moreover, the example does not show that derivation

of a utility function must take exponential time, because lex-
icographic utility functions can be expressed in much sim-
pler ways than counting path length. The true complexity of
this problem remains an open question.

In fact, one can trade computation cost between construc-
tion and evaluation of the utility function. The evaluation
of specific utility values can be reduced by significant pre-
processing in the function-construction stage. Clearly the
utility value of � � ���� could be cached at the cor-
responding node in ��� ��, using, for example, Dijkstra’s
all-paths algorithm. Alternatively, values for a smaller num-
ber of nodes might be cached. The computation of a util-
ity value could then proceed by traversing ��� �� until each
branch of the search from the starting node reaches a node
with a cached utility value, and then computing the desired
node value from these cached values and the graph portion
traversed in reaching them.

For instance, one might compute a utility function akin
to the descendant utility function by keeping a static set of
nodes with cached utility values. If one finds � separate
branches of the search starting from a node � and termi-
nating in � nodes with cached values ����� for � � �
 ����
 �,
and traverses a total of � nodes along these branches, we as-
sign

���� � � � ��

��

�	�

������

This value can differ from the descendant utility value be-
cause two cached nodes might share some descendants.
Reducing evaluation cost from exponential levels can be
achieved by cutting the number of nodes searched be-
fore reaching cached nodes to �������� ����, but as the
lexicographic example shows, this can require caching
���� ���� ��� ���� ��� nodes, implying an exponential level
of preprocessing cost.

Alternatively, one might calculate utility values by repeti-
tively computing��� ��. One might do this by searching for
a path from a model �
 by finding rules in � � � � such that
��

��� �� �, where�� is arbitrary. The proof of Theorem
1 implies that an edge ���

��� in ��� �� exists if and only
if there exists some ��

��� �� � for any � � � �. Thus,
searching the list of rules in � � for a pair ��

��� �� � for
some � � � � is equivalent to following an edge ���

���
in ��� ��. Then one recursively looks for rules � such that
���
��� �� �, and then ���
���, and so on, such that the
search becomes a traversal of the graph��� ��. Each branch
of the search terminates when �����
��� �� � for some
rule � � � �, but ���
����� 	�� 	 for all rules 	 in �. We
know that there exists a path from �
 with length �; if �
is the length of the longest such path, one can then assign
���
� � �. Note that the heuristics presented by (Boutilier
et al. 1999) do not apply because our preference rules are of
a quite different form, as seen in Table 4.

Improvements
Elsewhere we improve on the performance of these direct
constructions of utility functions by using utility indepen-
dence to decompose the utility-construction task into a prob-



lem of finding an appropriate combination of subutility func-
tions. We provide methods for partitioning the set of features
into clusters that are mutually utility-independent. We use
the direct utility function constructions described in the pre-
ceding to construct subutility functions over each of these
clusters. We then use the initial ceteris paribus statements
to identify constraints on the relations of these subutility
function values, and apply standard constraint-satisfaction
methods to determine subfunction-combination parameters
that yield overall utility functions satisfying the given ceteris
paribus rules.

Related work
Many researchers have defined related logics of desire
(van der Torre & Weydert 1998; Mura & Shoham 1999;
Shoham 1997) or ceteris paribus preference (Tan & Pearl
1994a; 1994b; Bacchus & Grove 1996; 1995; Boutilier et
al. 1999).

Bacchus and Grove (1995; 1996) have presented a some-
what different conception of ceteris paribus preference
specification that incorporates numerical representations
from the start and algorithms for computing with it. Similar
to La Mura and Shoham (1999), their computation paradigm
is an adaptation of Bayesian Networks to utility. Both sys-
tems start with probabilistic actions with known probabili-
ties and outcomes with known numeric utility values, and
then discuss optimizations resulting from utility indepen-
dence.

Tan and Pearl (1994a; 1994b) use conditional ceteris
paribus comparatives in a manner similar to the ceteris
paribus preferences used in this work. Their work does not
address computation, instead concentrating on specificity
of preferences and when one preference supersedes another
preference.

Boutilier et al. (1999; 1997), also propose a system of
conditional ceteris paribus preference statements. They
construct a chain of “flipping feature values” to conduct
dominance queries similar in spirit to the algorithm pro-
posed here. The ceteris paribus preference representation
they employ is quite different from that of (Doyle, Shoham,
& Wellman 1991), and the methods of (Boutilier et al. 1999)
are not directly applicable to constructing utility functions.

Acknowledgements
This work was supported in part by DARPA under contract
F30602-99-1-0509. Michael McGeachie is supported in part
by a training grant from the National Library of Medicine,
and a grant from the Pfizer corporation.

References
Bacchus, F., and Grove, A. 1995. Graphical models
for preference and utility. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, 3–19.
Morgan Kaufmann.
Bacchus, F., and Grove, A. 1996. Utility independence in a
qualitative decision theory. In Proceedings of the Fifth In-
ternational Conference on Knowledge Representation and
Reasoning, 542–552. Morgan Kaufmann.

Boutilier, C.; Brafman, R.; Geib, C.; and Poole, D. 1997.
A constraint-based approach to preference elicitation and
decision making. In Doyle, J., and Thomason, R. H., eds.,
Working Papers of the AAAI Spring Symposium on Qualita-
tive Preferences in Deliberation and Practical Reasoning,
19–28. Menlo Park, California: AAAI.
Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. In Proceedings of Uncertainty in Artificial
Intelligence 1999 (UAI-99).
Doyle, J., and Wellman, M. P. 1994. Representing pref-
erences as ceteris paribus comparatives. In Working Notes
of the AAAI Symposium on Decision-Theoretic Planning.
AAAI.
Doyle, J.; Shoham, Y.; and Wellman, M. P. 1991. A logic
of relative desire (preliminary report). In Ras, Z., ed., Pro-
ceedings of the Sixth International Symposium on Method-
ologies for Intelligent Systems, Lecture Notes in Computer
Science. Berlin: Springer-Verlag.
Mura, P. L., and Shoham, Y. 1999. Expected utility net-
works. In Proc. of 15th conference on Uncertainty in Arti-
ficial Intelligence, 366–373.
Shoham, Y. 1997. A mechanism for reasoning about util-
ities (and probabilities): Preliminary report. In Doyle, J.,
and Thomason, R. H., eds., Working Papers of the AAAI
Spring Symposium on Qualitative Preferences in Deliber-
ation and Practical Reasoning, 85–93. Menlo Park, Cali-
fornia: AAAI.
Tan, S.-W., and Pearl, J. 1994a. Qualitative decision theory.
In AAAI94. Menlo Park, CA: AAAI Press.
Tan, S.-W., and Pearl, J. 1994b. Specification and eval-
uation of preferences for planning under uncertainty. In
Doyle, J.; Sandewall, E.; and Torasso, P., eds., KR94. San
Francisco, CA: Morgan Kaufmann.
van der Torre, L., and Weydert, E. 1998. Goals, desires,
utilities and preferences. In Proceedings of the ECAI’98
Workshop on Decision Theory meets Artificial Intelligence.
Wellman, M., and Doyle, J. 1991. Preferential semantics
for goals. In Dean, T., and McKeown, K., eds., Proceed-
ings of the Ninth National Conference on Artificial Intelli-
gence, 698–703. Menlo Park, California: AAAI Press.


