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Abstract

This paper focuses on problems where the objective is to
maximize a set of local preferences for times at which events
occur. Previous work by the authors and others has resulted in
a formalization of a subclass of these problems into a general-
ization of Temporal Constraint Satisfaction Problems, using
a semi-ring as the underlying structure for reasoning about
preferences. A tractable strategy for combining and com-
paring preferences was proposed, wherein computing global
preferences consists of taking the minimum of the compo-
nent preference values. This strategy, which we here dub
the “weakest link optimization” (WLO) strategy, is a coarse
method for comparing solutions, and can easily be demon-
strated to have drawbacks. To compensate for these limita-
tions, we make WLO more robust by combining it with a
process that involves iteratively committing to temporal val-
ues in the set of optimal solutions, and concomitantly fixing
the preference value for the projection of the solution to the
local preference. We prove the value of this strategy by show-
ing that the resulting solutions are also Pareto optimal.

Introduction
The notion ofsoftnesshas been applied in the planning or
scheduling literature to describe either a constraint or plan-
ning goal, indicating that either can be satisfied to matters of
degree. Sometimes softness is naturally associated with the
constraints used in defining the problem. For example, in an
earth orbiting spacecraft, sensitive instruments like imagers
haveduty cycles, which impose restrictions on the amount
of use of the instrument. A duty cycle is typically a complex
function based on both the expected lifetime of the instru-
ment, as well as short term concerns such as the amount of
heat it can be exposed to while turned on. Duty cycles im-
pose constraints on the duration that the instrument can be
on over a given length of time, but it is natural to view this
duration as flexible. For example, this restriction might be
waived to capture an important event such as an active vol-
cano. Thus, the flexibility of the duty cycle “softens” the
constraint that the instrument must be off for a certain dura-
tion. One way to express the soft constraint is to say that the
duration of time the instrument is on should be as close as
possible to that specified in the constraint. Reasoning about
soft constraints for planning or scheduling is for the purpose
of finding a solution that satisfies the constraint to the high-
est degree possible.

For temporal reasoning problems, a simple method for
evaluating the global temporal preference of a solution to
a Temporal CSP involving local temporal preferences was
introduced in (Khatibet al. 2001), based on maximizing
the minimally preferred local preference for a time value.
Because the locally minimally preferred assignment can be
viewed as a sort of “weakest link” with respect to the global
solution , we dub this method “weakest link optimization”
(WLO), in the spirit of the well-known television game
show. WLO was chosen for reasons of computational ef-
ficiency. Specifically, it can be formalized using a general-
ization of Simple Temporal Problems (STPs), called STPs
with Preferences (STPPs), that preserves the capability to
tractably solve for solutions (with suitable preference func-
tions). Unfortunately, as often occurs, this efficiency has
a price. Specifically, WLO offers an insufficiently fine-
grained method for comparing solutions, for it is based on
a single value, viz., the “weakest link.” It is consequently
easy to conceive of examples where WLO would accept
intuitively inferior solutions because of this myopic focus.
Although it is possible to consider more robust alternatives
to a WLO strategy for evaluating solutions, it is not clear
whether any of these methods would preserve the computa-
tional benefits of WLO. This impasse is the starting point of
the work described in this paper.

We propose here an approach to making WLO more ro-
bust by combining it with an iterative strategy for solving
soft constraint reasoning problems. The process involves re-
peatedly restricting temporal values for the weakest links,
resetting their preference values, and again applying the
WLO procedure to the reduced problem that results from
these changes. The intuition is simple: by re-starting WLO
iteratively on the reduced problem, WLO might be able to
improve the preference values of the remaining temporal
variables, thus compensating for the myopia of WLO. We
motivate this technique with an example from a Mars Rover
planning domain.

The remainder of this paper is organized as follows. In
Section 2, we summarize the soft constraint framework in-
troduced previously; this review serves to motivate the cur-
rent work. We then illustrate the deficiencies of WLO on
a simple example, which also reveals the intuition under-
lying the proposed strategy for overcoming this deficiency.
The main contribution of this paper is discussed in section 3,
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which formalizes this strategy and proves that any solutions
generated by an application of this strategy is in the set of
Pareto optimal solutions for the original problem.

Reasoning about preferences with soft
constraints

In (Khatibet al. 2001), asoft temporal constraintis defined
as a pairhI; fi, whereI is a set of intervalsf[a; b]; a �
bg andf is a function from

S
I to a setA of preference

values. To compare and combine values from this set,A is
organized in the form of ac-semiring(Bistarelliet al. 1997).
A semiringis a tuplehA;+;�; 0; 1i such that

� A is a set and0; 1 2 A;

� +, the additive operation, is commutative, associative and
0 is its identity element(a+ 0 = a);

� �, the multiplicative operation, is associative, distributes
over +, 1 is its identity element and0 is its absorbing
element(a� 0 = 0).

A c-semiringis a semiring in which+ is idempotent (i.e.,
a + a = a; a 2 A), 1 is its absorbing element, and� is
commutative.

Soft temporal constraints give rise to a class of con-
strained optimization problems called Temporal Constraint
Satisfaction Problems with Preferences (TCSPPs). A TC-
SPP can simply be viewed as a generalization of a clas-
sical TCSP with soft constraints. In TCSPs (Dechteret
al. 1991), a temporal constraint depicts restrictions ei-
ther on the start times of events (in which case the con-
straints are unary), or on the distance between pairs of dis-
tinct events (in which case they are binary). For example,
a unary constraint over a variableX representing an event,
restricts the domain ofX , representing its possible times
of occurrence; then the interval constraint is shorthand for
(a1 � X � b1) _ : : : _ (an � X � bn). A binary con-
straint overX andY , restricts the values of the distance
Y � X , in which case the constraint can be expressed as
(a1 � Y � X � b1) _ : : : _ (an � Y � X � bn). A
uniform, binary representation of all the constraints results
from introducing a variableX0 for the beginning of time,
and recasting unary constraints as binary constraints involv-
ing the distanceX �X0. A TCSP in which each constraint
is defined by a single (convex) interval is called a Simple
Temporal Problem (STP).

As with classical TCSPs, the interval component of a soft
temporal constraint depicts restrictions either on the start
times of events, or on the distance between pairs of distinct
events. The class of TCSPPs in which each constraint con-
sists of a single interval is calledSimple Temporal Problems
with Preferences(STPPs). Asolutionto a TCSPP is a com-
plete assignment to all the variables that satisfies the tem-
poral constraints. An arbitrary assignment of values to vari-
ables has aglobal preference value, obtained by combining
the local preference values using the semiring operations.
A C-semiring induces a partial order relation�S overA to
compare preference values of arbitrary assignments;a �S b
can be readb is more preferred than a. Classical Tempo-
ral CSPs can be seen as a special case of TCSPP, with “soft”

constraints that assign the “best” (1) preference value to each
element in the domain, and the “worst” (0) value to every-
thing else.

The optimal solutions of a TCSPP are those solutions
which have the best preference value in terms of the ordering
�S. Weakest Link Optimization(WLO) is formalized via
the semiringSWLO = hA;max;min;0;1i. Thus, where
a; b 2 A, a + b = max(a; b) anda � b = min(a; b), and
1 (0) is the best (worst) preference value. Given a solution
t in a TCSPP with semiringSWLO, let Tij = hIi;j ; fi;ji be
a soft constraint over variablesXi; Xj and (vi; vj) be the
projection oft over the values assigned to variablesXi and
Xj (abbreviated as(vi; vj) = t#Xi;Xj

). The corresponding
preference value given byfij isfij(vj�vi), wherevj�vi 2
Ii;j . The global preference value oft, val(t), is defined as
val(t) = minffij(vj � vi) j (vi; vj) = t#Xi;Xj

g.Thus, a
“weakest link” in a WLO solutiont is any minimumf that
determinesval(t), and theWLO-optimal solutionsto a prob-
lem are the ones that have a maximum weakest link value.

As with classical (binary) CSPs, TCSPPs can be arranged
to form a network of nodes representing variables, and edges
labeled with constraint information. Given a network of soft
constraints, under certain restrictions on the properties of the
semiring, it can be shown that local consistency techniques
can be applied in polynomial time to find an equivalent min-
imal network in which the constraints are as explicit as pos-
sible. The restrictions that suffice for this result apply to

1. the “shape” of the preference functions used in the soft
constraints;

2. the multiplicative operator� (it should be idempotent);
and

3. the ordering of the preference values (�S must be a total
ordering).

The class of restricted preference functions that suffice to
guarantee that local consistency can be meaningfully ap-
plied to soft constraint networks is calledsemi-convex. This
class of functions includes linear, convex, and also some step
functions. All of these functions have the property that if
one draws a horizontal line anywhere in the Cartesian plane
of the graph of the function, the set ofX such thatf(X)
is not below the line forms an interval. Semi-convexity is
preserved under the operations performed by local consis-
tency (intersection and composition). STTPs with semiring
SWLO can easily be seen to satisfy these restrictions.

The same restrictions that allow local consistency to be
applied are sufficient to prove that STPPs can be solved
tractably. Finding an optimal solution of the given STPP
with semi-convex preference functions reduces to a two-
step search process consisting of iteratively choosing a pref-
erence value, “chopping” every preference function at that
(same) point, then solving a STP defined by considering
the interval of temporal values whose preference values lies
above the chop line (semi-convexity ensures that there is a
single interval above the chop point, hence that the problem
is indeed an STP). Figure 1 illustrates the chopping process.
It has been shown that the “highest” chop point that results in
a solvable STP in fact produces an STP whose solutions are
exactly the optimal solutions of the original STPP. Binary
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Figure 1: “Chopping” a semi-convex function
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Figure 2: The STPP for the Rover Science Planning Problem
where T is any timepoint

search can be used to select candidate chop points, making
the technique for solving the STTP tractable (see [Khatib,
et al., 2001] for more details on all this). The second step,
solving the induced STP, can be performed by transform-
ing the graph associated with this STP into a distance graph,
then solving two single-source shortest path problems on the
distance graph. If the problem has a solution, then for each
event it is possible to arbitrarily pick a time within its time
bounds, and find corresponding times for the other events
such that the set of times for all the events satisfy the in-
terval constraints. The complexity of this phase isO(en)
(using the Bellman-Ford algorithm (Cormenet al. 1990)).

The problem with WLO
Formalized in this way, WLO offers a coarse method for
comparing solutions, one based on the minimal preference
value over all the projections of the solutions to local pref-
erence functions. Consequently, the advice given to a tem-
poral solver by WLO may be insufficient to find solutions
that are intuitively more globally preferable. For example,
consider the following simple Mars rover planning problem,
illustrated in Figure 2. The rover has a sensing instrument
and a CPU. There are two sensing events, of durations 3 time
units and 1 time unit (indicated in the figure by the pairs of
nodes labeleds1ins; e

1
ins ands2ins; e

2
ins respectively). There

is a hard temporal constraint that the CPU be on while the
instrument is on, as well as a soft constraint that the CPU

should be on as little as possible, to conserve power. This
constraint is expressed in the STPP as a function from tem-
poral values indicating the duration that the CPU is on, to
preference values. For simplicity, we assume that the prefer-
ence function on the CPU duration constraints is the negated
identity function,f(t) = �t; thus higher preference values,
i.e. shorter durations, are preferred. Because the CPU must
be on at least as long as the sensing events, any globally
preferred solution using WLO has preference value -3. The
set of solutions that have the optimal value includes solu-
tions in which the CPU duration for the second sensing event
varies from 1 to 3 time units. The fact that WLO is unable
to discriminate between the global values of these solutions,
despite the fact that the one with 1 time unit is obviously
preferable to the others, is a clear limitation of WLO.

One way of formalizing this drawback of WLO is to ob-
serve that a WLO policy is notPareto Optimal. To see this,
we reformulate the set of preference functions of a STPP,
f1; : : : ; fm as criteria requiring simultaneous optimization,
and lets = [t1; : : : ; tn] ands0 = [t01; : : : t

0
m] be two solutions

to a given STPP.s0 dominatess if for eachj, fj(tj) � fj(t
0
j)

and for somek, fk(tk) < fk(t
0
k). In a Pareto optimiza-

tion problem, thePareto optimal setof solutions is the set
of non-dominated solutions. Similarly, let theWLO-optimal
setbe the set of optimal solutions that result from applying
the chopping technique for solving STPPs described above.
Clearly, applying WLO to an STPP does not guarantee that
the set of WLO-optimal solutions is a Pareto optimal set. In
the rover planning problem, for example, suppose we con-
sider only solutions where the CPU duration for the first
sensing event is 3. Then the solution in which the CPU du-
ration for the second sensing event is 1 time unit dominates
the solution in which it is 2 time units, but both are WLO-
optimal, since they have the same weakest link value.1

Assuming that Pareto-optimality is a desirable objective
in optimization, a reasonable response to this deficiency is
to replace WLO with an alternative strategy for evaluating
solution tuples. A natural, and more robust alternative eval-
uates solutions by summing the preference values, and or-
dering them based on preferences towards smaller values.
(This strategy would also ensure Pareto optimality, since ev-
ery minimum sum solution is Pareto optimal.) This policy
might be dubbed “utilitarian.” The main drawback to this
alternative is a loss of tractability. The reason is that the
formalization of utilitarianism as a semiring forces the mul-
tiplicative operator (in this case,sum), not to be idempotent
(i.e.,a+ a 6= a), a condition required for ensuring that a lo-
cal consistency approach is applicable to the soft constraint
reasoning problem.

Of course, it would still be possible to apply a utilitar-
ian framework for optimizing preferences, using either lo-
cal search or a complete search strategy such as branch and
bound. Rather than pursuing this direction of resolving the
problems with WLO, we select another approach, based on
an algorithm that interleaves flexible assignment with prop-
agation using WLO.

1This phenomenon is often referred to in the literature as the
“drowning effect.”



An algorithm for Pareto Optimization
The proposed solution is based on the intuition that if a
constraint solver using WLO could iteratively “ignore” the
weakest link values (i.e. the values that contributed to the
global solution evaluation) then it could eventually recog-
nize solutions that dominate others in the Pareto sense. For
example, in the Rover Planning problem illustrated earlier,
if the weakest link value of the global solution could be “ig-
nored,” the WLO solver could recognize that a solution with
the CPU on for 1 time unit during the second instrument
event is to be preferred to one where the CPU is on for 2 or
3 time units. (This is reminiscent of the Weakest Link game
show, where each round eliminates a weakest link.)

We formalize this intuition by a procedure wherein the
original STPP is transformed by iteratively selecting what
we shall refer to as aweakest link constraint, changing the
constraint in such a way that it can effectively be “ignored,”
and solving the transformed problem. A weakest link (soft)
constraint is one in which the optimal valuev for the pref-
erence function associated with the constraint is the same
as the optimal value for the global solution using WLO, and
furthermore,v is not the “best” preference value (i.e.,v < 1,
where1 is the designated “best” value among the values
in the semi-ring). Formalizing the process of “ignoring”
weakest link values is a two-step process of restricting the
weakest links to their intervals of optimal temporal values,
while eliminating their WLO restraining influence by reset-
ting their preferences to a single, “best” value. Formally, the
process consists of:

� Squeezing the temporal domain to include all and only
those values which are optimally preferred; and

� Replacing the preference function by one that assigns the
most preferred value (i.e.1) to each element in the new
domain.

The first step ensures that only the best temporal values are
part of any solution, and the second step allows WLO to be
re-applied to eliminate Pareto-dominated solutions from the
remaining solution space.

The algorithm WLO+ (Figure 3) returns a Simple Tem-
poral Problem (STP) whose solutions are contained in
the WLO-optimal, Pareto-optimal solutions to the original
STTP,P . WhereC is a set of soft constraints, the STTP
(V;CP ) is solved (step 3) using the chopping approach de-
scribed earlier. In step 5, we denote the soft constraint
that results from the two-step process described above as
h[aopt; bopt]; fbesti, where[aopt; bopt] is the interval of tem-
poral values that are optimally preferred, andfbest is the
preference function that returns the most preferred prefer-
ence value for any input value. Notice that the run time
of WLO+ is O(jCj) times the time it takes to execute
Solve(V;CP ), which is a polynomial.

To illustrate the main theoretical result of this paper, Fig-
ure 4 shows the relationship between the WLO-optimal so-
lutions and the Pareto-optimal solutions.

We now proceed to prove the main result, which is
that the subset of solutions of the input STTP returned
by WLO+ is contained in the intersection of WLO-
optimal and Pareto-optimal solutions. Formally, given an

Inputs: an STPPP = (V;C)
Output:
A STP(V;CP ) whose solutions are Pareto optimal forP .
(1)CP = C
(2) while there are weakest link soft constraints inCP do
(3) Solve(V;CP )
(4) Delete all weakest link soft constraints fromCP
(5) For each deleted constrainth[a; b]; fi,
(6) addh[aopt; bopt]; fbesti toCP
(7) Return(V;CP )

Figure 3: STPP solver WLO+ returns a solution in the Pareto
optimal set of solutions

Pareto Optimal Solutions

WLO Solutions

s1

s2

s3
s4s5
s6

s s’ s is dominated by s’:
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Figure 4: Relationships between Solution Spaces for STTPs
that are WLO or Pareto Optimal

STTP P, letSolWLO(P ); SolPAR(P ) be the set of WLO-
optimal (respectively, Pareto-Optimal) solutions of P, and
let SolWLO+(P ) be the set of solutions toP returned by
WLO+. Then the result can be stated as follows.

Theorem 1 SolWLO+(P ) � SolWLO(P ) \ SolPAR(P ).
Moreover, if P has any solution, thenSolWLO+(P ) is
nonempty.

Proof:
First note that after a weakest link is processed in steps

(4) to (6), it will never again be a candidate for a weakest
link (since its preference is set tofbest). Thus, the algorithm
will terminate when all the soft constraints inCP have pref-
erences that havefbest value over their entire domain.

Now assumes 2 SolWLO+(P ). Since the first iteration
reduces the set of solutions of(V;CP ) to SolWLO(P ), and
each subsequent iteration either leaves the set unchanged or
reduces it further, it follows thats 2 SolWLO(P ). Now
supposes 62 SolPAR(P ). Thens must be dominated by
a Pareto optimal solutions0. Let c be a soft constraint in
C for which s0 is superior tos. Thus, the initial preference
value for s on c cannot befbest. It follows that at some
point during the course of the algorithm,c will become a
weakest link. Sinces survives until then ands0 dominates
s, it follows that s0 also survives. At that time,s will be
excluded by step (6) since it is not WLO optimal, contra-
dicting the assumption thats 2 SolWLO+(P ). Hence,s is
in SolPAR(P ), and so inSolWLO(P ) \ SolPAR(P ).

Next suppose the original STPPP has at least one solu-
tion. To see thatSolWLO+(P ) is nonempty, observe that
the modifications in steps (4) to (6), while stripping out so-
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Figure 5: Single WLO+ Solution.

lutions that are not WLO optimal with respect to(V;CP ),
do retain all the WLO optimal solutions. Clearly, if there
is any solution, there is a WLO optimal one. Thus, if the
(V;CP ) in any iteration has a solution, the(V;CP ) in the
next iteration will also have a solution. Since we are assum-
ing the first(V;CP ) (= (V;C)) has a solution, it follows by
induction thatSolWLO+(P ) is nonempty.2

Corollary 1.1 If P has any solution, the setSolWLO(P ) \
SolPAR(P ) is nonempty.

Although the algorithm determines a nonempty set of so-
lutions that are both WLO optimal and Pareto optimal, the
set may not include all such solutions. Consider the exam-
ple in figure 5. Assume the preference function for all soft
constraints is given byf(t) = t, i.e., longer durations are
preferred. The WLO+ algorithm will retain a single solution
where BC and CD are both 5. However, the solution where
BC = 2 and CD= 8, which is excluded, is also both Pareto
optimal and WLO optimal. (Note that AB, with a fixed value
of 1, is the weakest link.)

The theorem shows that it is possible to maintain the
tractability of WLO-based optimization while overcoming
some of the restrictions it imposes. In particular, it is possi-
ble to improve the quality of the flexible solutions generated
within an STPP framework from being WLO optimal to be-
ing Pareto optimal. The only other restriction still required
is that of the semi-convexity of the preference functions.
This restriction is needed because the “chopping” method
assumes that the domain above the chop point defines a STP,
which implies that the preference function is semi-convex.
A possible extension to this work would be to examine ways
to relax this restriction in order to solve more general con-
strained optimization problems.

Another interesting observation is that in each iteration,
the restriction to the WLO optimal solutions means that the
weakest links are restricted to intervals where the original
preference function has a constant (optimal) value. It fol-
lows that the surviving solutions inSOLWLO+(P ) all have
the same (original) preference value for each soft constraint.
Let thesignatureof a solution be the vector of values of its
projection on each constraint. Then the observation may be
restated as saying that the set of solutions in the STP re-
turned by the WLO+ strategy all have the same signature.

A consequence of this observation is that the WLO+ strat-
egy produces solutions that are what will be termedutilitar-
ian optimal with respect to the set of WLO+ solutions.2 In
the current context, a utilitarian strategy is one that seeks to
maximize the sum of the local preferences, and autilitarian

2A similar statement can be made regardinglexicographicop-
timality (Bistarelliet al. 1999).

optimalsolution to a problem is one that is optimal with re-
spect to this strategy. To be utilitarian optimal with respect
to the set of WLO+ solutions means that, among only the
WLO+ solutions, the given solution is utilitarian optimal.
However, the WLO+ solutions are not necessarily utilitarian
optimal with respect to all solutions or even the WLO so-
lutions. For example, if in figure 5, the preference function
is f(t) = t2, a utilitarian optimal WLO solution would be
given by BC = 1 and CD = 9, which is better than the
WLO+ solution in the utilitarian sense.

Thus, there are utilitarian optimal solutions that are
missed by WLO+. These could include solutions that are
not even WLO-optimal but do better overall in meeting lo-
cal preferences. Nonetheless, the results of this paper show
that under certain restrictions it is possible to construct ef-
ficient soft constraint-based systems to perform meaningful
optimization on preferences.

Summary
This paper has presented a reformulation of problems in the
optimization of temporal preferences using a generalization
of Temporal CSPs. The practical context from which this
effort arose is temporal decision-making in planning, where
associated with domains representing temporal distances be-
tween events is a function expressing preferences for some
temporal values over others. The work here extends previous
work by overcoming limitations in the approach that arose
when considerations of efficiency in reasoning with prefer-
ences resulted in coarseness in the evaluation procedure for
global temporal assignments.
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