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Abstract

For agent technology to be accepted in real-world applica-
tions, humans must be able to customize and control agent
operations. One approach for providing such controllabil-
ity is to enable a human supervisor to define guidance for
agents in the form of policies that establish boundaries on
agent behavior. This paper considers the problem of conflict-
ing guidance for agents, making contributions in two areas:
(a) outlining a space of conflict types, and (b) defining reso-
lution methods that provide robust agent operation in the face
of conflicts. These resolution methods combine a guidance-
based preference relation over plan choices with an ability
to extend the set of options considered by an agent when
conflicts arise. The paper also describes a PRS-based guid-
ance conflict-handling capability applied within a multiagent
intelligence-gathering domain.

Introduction
Many potential applications for agent technology require
that humans and agents work together in order to accom-
plish tasks effectively. This requirement is especially im-
portant for domains where task complexity precludes for-
malization of agent behaviors for all possible eventualities.
In such domains, the availability of mechanisms by which
a human supervisor can provide direction will enable agents
to be informed by the experience, breadth of knowledge, and
superior reasoning capabilities that a human expert can bring
to the problem-solving process.

In previous work, we defined a framework for agent guid-
ance that supports dynamic directability of agents by a hu-
man supervisor (Myers & Morley 2001; 2002). Guidance
imposes boundaries on agent behavior, thus enabling a hu-
man to customize and direct agent operations to suit his or
her individual requirements. The guidance framework fo-
cuses on two types of agent directability, namely adjustable
agent autonomy and strategy preferences. Guidance for ad-
justable autonomy enables a supervisor to vary the degree
to which agents can make decisions without human inter-
vention. Guidance for strategy preferences constitutes rec-
ommendations on how agents should accomplish assigned
tasks. For example, the directive “Use helicopters for survey

Copyright c
 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tasks in sectors on the west coast” imposes restrictions on
how resources can be used to perform a certain class of task.

User guidance provides a powerful mechanism for run-
time customization of agent behavior. However, it also in-
troduces the potential for problems in the event that the guid-
ance recommends inconsistent responses. Such conflicts
cannot arise with adjustable autonomy guidance, but are a
significant issue for strategy preference guidance. Robust-
ness of operations requires mechanisms for detecting these
conflicts and responding in a manner that does not jeopar-
dize agent stability.

This paper addresses two main issues related to the topic
of conflicting strategy preference guidance for agents. First,
it identifies different types of conflict that can arise. Second,
it defines automated techniques for resolving the conflicts.
Our approach combines the selective dropping of problem-
atic pieces of guidance with a proactive capability to elimi-
nate the source of conflicts by modifying current agent activ-
ities. We do not consider interactive techniques for conflict
resolution in this paper, although they would certainly play
an important role in a comprehensive conflict resolution sys-
tem.

The conflict resolution techniques defined in this paper
have been implemented within the Taskable Reactive Agent
Communities (TRAC) framework (Myers & Morley 2001;
2002), which provides a domain-independent guidance ca-
pability for PRS agents (Georgeff & Ingrand 1989). The
techniques have been applied within the context of a sim-
ulated disaster relief task force in which a human super-
visor must manage a team of agents engaged in a vari-
ety of information-gathering and emergency response tasks.
Within this testbed, referred to as TIGER (TRAC Intelli-
gence Gathering and Emergency Response), agents control
simulated trucks and helicopters in the performance of their
assigned tasks.

We begin with a description of the agent model that un-
derlies our work on agent guidance, followed by a definition
of strategy preference guidance. Next, we outline different
types of conflict that can arise with agent guidance and our
conflict resolution methods. Finally, we describe a realiza-
tion of the conflict resolution mechanisms within the TIGER
framework and discuss related work.
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Agent Model

We adopt a typical Belief-Desire-Intention (BDI) model of
agency in the style of (Rao & Georgeff 1995). BDI agents
are so-called due to the three components of their “mental
state”: beliefs that the agent has about the state of the world,
desires to be achieved, and intentions corresponding to ac-
tions that the agent has adopted to achieve its desires.

Each agent has a library of plans that defines the range of
activities that an agent can perform to respond to events or to
achieve assigned tasks; our plan model is based on (Wilkins
& Myers 1995). Plans are parameterized templates of ac-
tivities that may require variable instantiations to apply to
a particular situation. In a standard BDI framework, there
are two types of plan: fact-invoked plans for responding to
changes in the beliefs of the agent, and goal-invoked plans
for decomposing tasks into constituent subgoals and actions.

Each plan has a cue that specifies a stimulus that activates
the plan, either a new goal (for a goal-invoked plan) or a
change in the agent’s beliefs (for a fact-invoked plan). A set
of preconditions associated with plans defines gating con-
straints that must be satisfied for a plan to be applied. A
plan is said to be relevant to a world change (e.g., new goal
or belief change event) if the plan cue matches the stimu-
lus, and applicable if, additionally, the plan preconditions
are satisfied relative to the agent’s current beliefs. The body
of a plan specifies how to respond to the stimulus, in terms
of actions to perform and subgoals to achieve.

An agent’s plan library will generally contain a range
of plans describing alternative responses to posted goals or
events. Sets of these plans may be operationally equivalent
(i.e., they share the same cue and preconditions) but differ in
the approach that they embody. Some form of metacontrol
policy can be defined to select among such alternatives, such
as strategy preference guidance.

A BDI interpreter runs a continuous sense-decide-act loop
to respond to changes in its operating environment. At the
start of each cycle, the interpreter collects all new goals and
events (i.e., changes in its beliefs about the world). Next, it
determines whether there are any plans in its library that are
applicable to these changes. From this set, it selects some
subset for execution and creates intentions for them. Finally,
some bounded number of steps for each current intention are
performed.

The guidance framework assumes that agents are capable
of fully autonomous operation. More concretely, an agent’s
plan library covers the range of activities required to perform
its assigned tasks. This assumption means that agents do not
depend on the human supervisor to provide knowledge to
complete tasks. Within this setting, guidance provides cus-
tomization of agent behavior to suit the preferences of the
human supervisor. In many applications, such guidance will
enable superior performance, given that few plan libraries
will reflect the experience, breadth of knowledge, and rea-
soning capabilities that a human supervisor can bring to the
decision-making process.

Strategy Preference Guidance
Strategy preference guidance expresses recommendations
on how an agent should accomplish tasks. These prefer-
ences could designate classes of plans to employ or restric-
tions on plans that should not be employed, as well as con-
straints on how plan variables can be instantiated. For ex-
ample, the directive “Try contacting Nongovernmental Orga-
nizations for information before sending vehicles to towns on
the west coast” expresses a preference for selecting among
operationally equivalent plans. The directive “Only use heli-
copters for survey tasks in sectors that are expected to be in-
accessible by truck for more than 1 week” restricts the choice
of resource type for instantiating certain plan variables.

Representation of Guidance

Our language for representing agent guidance builds on
three main concepts: the underlying agent domain theory, a
domain metatheory, and the connectives of first-order logic.
Using these elements, we develop the main concepts under-
lying our model of agent guidance. These consist of an ac-
tivity specification for describing abstract classes of action,
a desire specification for describing abstract classes of goal,
and an agent context for describing situations in which guid-
ance applies.

Domain Metatheory A standard domain theory for an
agent consists of four types of basic element: individuals
corresponding to real or abstract objects in the domain, re-
lations that describe characteristics of the world, goals that
an agent may adopt, and plans that describe available means
for achieving goals.

The domain metatheory provides an abstracted charac-
terization of elements of the domain theory that highlights
key semantic differences. As discussed in (Myers 2000a),
a metatheory can yield a rich vocabulary for describing ac-
tivity, thus providing a powerful basis for supporting user
communication. The main concepts within our metatheory
for agent guidance are features and roles (similar in spirit to
those of (Myers 1996)) defined for agent plans and goals.

Consider first plans. A plan feature designates an attribute
of interest for a plan that distinguishes it from other plans
that could be applied to the same task. For example, among
plans for route determination, there may be one that is Opti-
mal but Slow with a second that is Heuristic but Fast; each of
these attributes could be modeled as a feature. Although the
two plans are operationally equivalent (i.e., same cue and
preconditions), their intrinsic characteristics differ signifi-
cantly. Features provide the means to distinguish between
such operationally equivalent alternatives.

A plan role describes a capacity in which a domain ob-
ject is used within a plan; it maps to an individual variable
within a plan. For instance, a route determination plan may
contain variables location.1 and location.2, with the former
corresponding to the Start and the latter the Destination.

In analogous fashion, roles and features can also be de-
fined for goals. For example, a goal of informing another
party of task progress may have a Communication feature
and Recipient role associated with it. These metatheoretic



constructs can be used to specify the class of goals that in-
volve communicating with the commander.

Activity and Desire Specification An activity specifica-
tion characterizes an abstract class of plan instances for an
agent. Our domain metatheory provides the basis for defin-
ing an activity specification, in terms of a set of required and
prohibited features on a plan, as well as constraints on the
way in which plan roles are filled.

Definition 1 (Activity Specification) An activity specifica-
tion α = hF +;F �;R ;φi consists of

� a set of required features F +

� a set of prohibited features F �

� a set of roles R = [R1; : : : ; Rk]

� a role-constraint formula φ[R1; : : : ; Rk]

For example, the following activity specification describes
the class of plan instances with the feature Survey but not
Heuristic, where the variables that fill the roles Start and
Destination are instantiated to values in the same sector.
<fSurveyg, fHeuristicg, fStart, Destinationg,

f(= (sector Start) (sector Destination))g>
A desire specification constitutes the goal-oriented ana-

logue of an activity specification, consisting of a collection
of required features, prohibited features, roles, and role con-
straints for goals.

Agent Context Just as individual plans employ precondi-
tions to limit their applicability, guidance requires a similar
mechanism for defining scope. To this end, we introduce
the notion of an agent context. While plan preconditions are
generally limited to beliefs about the world state, our model
of agent context focuses on the full operational state of an
agent, characterized in terms of its beliefs, desires, and in-
tentions. Beliefs are specified in terms of constraints on the
current world state. Desires are specified as desire specifica-
tions describing goals that the agent has adopted. Intentions
are specified as activity specifications describing plans cur-
rently in execution by the agent.

Our model of agency assumes a hierarchical collection of
plans and goals; furthermore, agents are capable of multi-
tasking (i.e., addressing multiple goals in parallel). Within a
given phase of the BDI executor cycle, an agent’s goals can
be scoped in three ways:

� Current goal: the goal for which the BDI interpreter is
selecting a plan to execute

� Local goals: the current goal or any of its ancestors

� Global goals: any goal of the agent

By distinguishing these different scopes for goals, guid-
ance can be localized to more specific situations. Plans be-
ing executed can be scoped in a similar fashion.

Definition 2 (Agent Context) An agent context is defined
by a tuple κ = hΦ;∆;Ai, where

� Φ is a set of well-formed formulae.
� ∆ = ∆C [ ∆L [ ∆G is a set of current, local, and global

desire specifications, respectively.

� A = AL [ AG is a set of local and global activity specifi-
cations, respectively.1

Strategy Preference Strategy preference guidance con-
sists of two components: an agent context and a response
activity specification. The activity specification designates
the class of recommended plan instances to be applied (i.e.,
choice of plan and variable instantiations for designated
roles) when the agent enters a state that matches the des-
ignated agent context.

Definition 3 (Strategy Preference) A strategy preference
rule is defined by a pair hκ;αi where κ is an agent context
and α is an activity specification.

Example
To illustrate strategy preference guidance, we consider an
example from a simplified description of the TIGER do-
main.

Within TIGER, the demand for intelligence gathering and
other services generally exceeds the capabilities of the avail-
able agents. As a result, task management constitutes one of
the key functions of TIGER agents. We assume that tasks
have associated properties such as type (e.g., survey, evacu-
ation, medical emergency) and priority.

A TIGER agent controls a single vehicle (either a truck or
a helicopter) and can work on at most one task at any time.
When an agent receives a task in the form of a goal (task t),
it must decide whether to start on the task immediately, to
postpone the task until other tasks are completed, or to drop
the task, leaving it for other agents to perform. We use the
following predicates to represent the task execution state of
the agent:

� (available) – the vehicle that the agent is controlling is
available for use

� (doing t) – the agent is doing task t

� (pending t) – the agent will do task t after it has completed
other tasks

� (ignored t) – the agent has determined not to do task t

Using a simple notation for describing plans, Figure 1 de-
fines three plans for responding to the goal (task t). In the
bodies of these plans, we represent the action of asserting a
fact φ into the agent’s belief set by +φ and retracting φ by
�φ. We use the notation fa1; : : :akg to represent performing
k actions in parallel within the body of a plan. The notation
a1;a2 denotes action sequencing.

The first plan encodes a response to (task t) when not
engaged in another task; it involves asserting (doing t), re-
tracting (available), and then performing t. The second plan
records the task as pending in the case where the agent is
busy. The third plan ignores the task. Additional plans (not
shown) provide the capabilities to start a pending task when
the active task completes, to perform a task, etc.

Features for these plans reflect their inherent semantic dif-
ferences: Adopt indicates that the plan results in the agent

1Because the motivation for guidance is to influence the choice
of plan for the current goal, the agent context excludes an activity
specification for the current plan.



Name: Immediate-Response
Cue: (task t)
Preconditions: (available)
Body: f�(available);+(doing t)g;(do t)
Features: Adopt Roles: NewTask = t

Name: Delay-Response
Cue: (task t)
Preconditions: :(available)
Body: +(pending t)
Features: Adopt;Delay Roles: NewTask = t

Name: Ignore-Response
Cue: (task t)
Preconditions: true
Body: +(ignored t)
Features: Ignore Roles: NewTask = t

Figure 1: TIGER Task Management Plans

deciding to perform the goal task, although maybe not im-
mediately; Delay indicates that the plan results in execution
of t being delayed; Ignore indicates that the plan results
in the agent deciding not to perform t (the complement of
Adopt). The role NewTask is used to reference the new task
under consideration. For goal (task t) we associate the fea-
ture TaskResponse and role CurrentTask = t.

With these features and roles, we can define strategy
preference rules to provide guidance for responding to
a new task. For example, the guidance “Adopt medical
emergency tasks that involve more than 5 people” could be
represented by the following strategy preference rule:

Agent Context:
Current Desire Specification:

Features+: TaskResponse
Roles: CurrentTask
Constraint:

(and (= (task-type CurrentTask) medical)
(> (task-number-affected CurrentTask) 5))

Response Activity Specification:
Features+: Adopt

The agent context states that the guidance is applica-
ble when the current goal has the feature TaskResponse
and the role CurrentTask, so that the task that instanti-
ates CurrentTask has type medical and more than five peo-
ple affected. The response activity specification desig-
nates any plan with the feature Adopt. Given the plans de-
fined above, that would mean either Immediate-Response or
Delay-Response.

Guidance Semantic Model

Space limitations preclude a full description of the semantics
for guidance satisfaction defined in (Myers & Morley 2002).
We present a brief summary here.

The semantic model for guidance satisfaction interprets
strategy preference rules as a filter on the plan instances that

an agent can execute. A strategy preference rule is deemed
to be relevant to a given BDI executor cycle iff the agent
context of the rule matches the current execution state. For
a relevant rule to be satisfied, the BDI interpreter must not
select a plan instance that violates the rule’s activity speci-
fication. One interesting consequence of this model is that
a strategy preference rule that is not relevant to the current
decision cycle is trivially satisfied.

When a BDI agent needs to expand a goal, it determines
the applicable plans for the goal and selects one of these to
add to its intentions. Under the guidance satisfaction model,
the set of plans from which the agent selects is restricted
to those that satisfy the strategy preference rules: the agent
identifies the relevant strategy preference rules and filters out
plan instances that do not match the suggested response. The
BDI interpreter selects one of the remaining plans to execute
for the current goal.

Types of Guidance Conflict
Guidance can lead to two types of conflict: plan selection
and situated guidance.

Plan Selection Conflict
A plan selection conflict occurs when multiple pieces of
guidance make incompatible recommendations for respond-
ing to a goal within a given cycle of the BDI executor. Con-
flicts of this type can arise in different forms. Here, we dis-
tinguish between direct and indirect conflicts.

A direct conflict arises when guidance yields contradic-
tory plan selection recommendations. At the plan level, such
conflicts can arise through explicitly contradictory directives
(e.g., guidance that reduces to the constraints Execute plan
P and Don’t execute plan P), or implicitly because of in-
place control policies (e.g., guidance that reduces to the con-
straints Execute plan P and Execute plan Q in the context of
a control policy that allows only one response to any posted
goal). Conflicts can also arise at the level of variable bind-
ings (e.g., Instantiate role R to A and Instantiate role R to B,
where A 6= B).

An indirect conflict among guidance occurs when there is
no direct conflict, yet the plans recommended by the guid-
ance cannot complete successfully because of interplan in-
teractions. Such a situation could arise due to future con-
tention for resources, deadlock/livelock, or race conditions
(among others). The problem of indirect conflict arises for
any multithreaded system, not just systems in which guid-
ance has been used to select activities.

Direct conflicts are easy to detect, as they lead to incom-
patible recommendations for responding to a posted goal. In
contrast, it is generally difficult to detect a priori the plan in-
terference problems that underlie indirect conflicts. Because
such interference problems remain an open research area in
the agents community, we focus exclusively on direct con-
flicts in the remainder of this paper.

Situated Guidance Conflicts
The semantic model from (Myers & Morley 2002) inter-
prets guidance as a filter on the set of otherwise applicable



plan instances for a particular goal or event. For example,
consider a situation in which all TIGER vehicles are in use
for various tasks, and the human supervisor has asserted the
guidance Adopt medical emergency tasks that involve more
than 5 people from the previous section. Suppose an emer-
gency event arises. The relevant task adoption plans (namely
Immediate-Response and Delay-Response) each require the
availability of a vehicle. Because all vehicles are in use, no
immediate response plans could be adopted for the event.
Had there been a vehicle available, however, an emergency
response of some form would have been adopted. Further-
more, according to the filtering semantic model, the declared
guidance will eliminate from consideration the only applica-
ble response, namely Ignore-Response, because it does not
satisfy the guidance recommendations.

In this case, there is a clear expectation on the part of the
human supervisor for the system to adopt a task in response
to the emergency. Supporting this reaction requires a gener-
alization of the filter-based semantic model described above.

More generally, this type of conflict arises in situations
where a plan p is relevant for a current goal g but some pre-
condition C of p does not hold, making p inapplicable. The
unsatisfied condition may be blocked by a contradictory be-
lief of the agent, or some already executing activity. This
type of situation can arise independent of guidance. Our
interest in such situations relates to cases where guidance
would recommend the execution of p but the violation of C
eliminates its consideration. In other words, the prior activ-
ity or state condition conflicts with the intent of applying the
guidance. For this reason, we call this phenomenon a situ-
ated guidance conflict, as it depends on the consideration of
guidance within a particular execution state of an agent.

In certain situations, there may be no recourse to address
the violated conditions (e.g., consider a requirement for fa-
vorable weather). However, others may be resolved by un-
dertaking appropriate actions in the domain. Proactive re-
sponse of this type lies at the heart of our techniques for
resolving for this class of guidance conflict.

Conflict Resolution
The original semantic model for guidance interpretation has
a passive flavor in that it simply filters otherwise applicable
plan instances that violate current guidance. This passive
semantic model has the virtue of simplicity, but it eliminates
the applicability of guidance in many interesting situations.

One problematic situation arises when guidance makes
contradictory recommendations (e.g., “Execute plan P” and
“Don’t execute plan P”) as described above for the case of
plan selection conflicts. Because the passive semantic model
eliminates plans that violate current guidance, such a situa-
tion would lead to the selection of no plan. As noted above,
the filter-based semantics also leads to trivial satisfaction
of guidance in cases where a more proactive interpretation
would be preferred.

Meaningful resolution of guidance conflicts requires a
richer semantic model for guidance satisfaction. Our ap-
proach builds on the definition of satisfaction of an individ-
ual piece of guidance from (Myers & Morley 2002). How-
ever, we adopt a preference-based approach that seeks to

maximize guidance satisfaction relative to stated priorities.
Furthermore, instead of reducing the set of plans that the
agent considers (by filtering plans that violate guidance), we
expand the set to include options that would otherwise be
discarded as inapplicable in the current execution state.

Preference Semantics for Plan Selection
Our approach to resolving plan selection conflicts involves
identifying a plan instance that ‘best satisfies’ current guid-
ance, through the definition of a partial order over plan in-
stances. We assume that strategy preference rules include a
weight reflecting the relative strength for that preference.

Different criteria could be used for combining and com-
paring the weights associated with the strategy preference
rules to produce the partial order. We adopt an approach that
rewards guidance satisfaction while punishing guidance vi-
olation, as characterized by the following guidance ranking
function for plan instances.

Definition 4 (Guidance Ranking of a Plan) Let p be a
plan instance for a goal g and Q be the current set of guid-
ance, where Q+p �Q is the set of guidance satisfied by p and

Q�
p � Q is the set violated by p. The guidance ranking of

p is defined as follows in terms of the priority GPriority(q)
associated with each guidance rule q:

GRanking(p) = ∑
q2Q+

p

GPriority(q)� ∑
q2Q�

p

GPriority(q)

Candidate Plan Expansion
The ranking of applicable plan instances is insufficient to
resolve situated guidance conflicts. Our approach involves
expanding the set of plan instances considered for applica-
tion to a given goal. This expanded set builds on the agent’s
library of predefined plans, extending plans that guidance
might recommend to compensate for violated applicability
conditions. The expansion process requires the satisfac-
tion of certain prerequisites related to resolvability and cost-
benefit analysis.

Resolvability The unsatisfied applicability conditions of
the guidance-recommended plan must be resolvable. In
particular, there must be identified methods (called reso-
lution plans) that can be invoked to achieve the unsatisfied
conditions.

Cost-Benefit Analysis The benefits in following the pre-
scribed guidance must outweigh the costs associated with
executing the resolution plans.

We consider these two requirements in turn, and then de-
scribe the process for expanding the set of plan instances to
be considered for a given goal.

Resolvability Resolution plans could be defined for a
wide range of conditions. Resource availability constitutes
one important class; in this paper, we focus on conditions
related to serially sharable resources (i.e., resources that can
be used sequentially but not simultaneously).

In this context, resolution plans must free the resource
employed by the current activity to enable its use by the



guidance-recommended plan. Within the context of serially
sharable resources, cancellation of the prior activity consti-
tutes one obvious solution. In addition, prior activities could
be modified to eliminate the dependence on the conflicted
resource, say by substituting a different resource or by de-
laying the prior activity. We call a current activity that is
impacted by a resolution plan a conflict task.

In addition to establishing resolvability conditions, res-
olution plans must also leave an agent in a coherent state.
This requirement means that a resolution plan must consider
the in-progress effects of any current activities that are to be
modified or canceled to ensure that appropriate ‘clean-up’
processes are invoked. For example, consider an emergency
response task in which a truck has picked up a set of sup-
plies to deliver to a designated location. Early termination
of such an activity might involve, at a minimum, delivering
those supplies to a local depot (for delivery by some other
agent). Definition of recovery mechanisms of this type is not
restricted to agents under human supervision via guidance,
but rather constitutes a problem for any agents that need to
dynamically modify their activities at runtime.

Checkpoint schemes constitute one standard technique for
ensuring state coherence when activities may need to be ter-
minated prematurely. With checkpoint schemes, coherent
states are saved periodically to enable rollback to a consis-
tent state in case of unrecoverable failures. Because agents
operating in dynamic environments will generally perform
activities that change the world in irrevocable ways, such
schemes are not viable. Instead, agents require forward re-
covery methods that can take actions to transition from an
unable situation to some known, safe state.

Formulation of forward recovery methods presents sev-
eral problems. In general, the specific actions to take could
depend both on the state of execution of the in-progress
plans and on the status of other executing activities and
world state properties. In the worst case, a unique recovery
method would be required for each such situation. For this
reason, forward recovery mechanisms for agents are gener-
ally implemented in an ad hoc, domain-specific manner.

The resolution plans for task management within TIGER
were defined by hand. They consist of plans for delaying
and terminating prior tasks. Because the number of sub-
tasks involved with the survey and emergency response tasks
is relatively small (i.e., fewer than five), the number of pos-
sible combinations of state to consider is correspondingly
low. Furthermore, tasks are undertaken independently of
each other, so cross-task interactions were not an issue.

Cost-Benefit Analysis The value in modifying exist-
ing activities to enable activation of new guidance-
recommended activities depends on a range of factors. We
consider a model grounded in the following two concepts:

� Resolvability Cost: the cost of executing any required res-
olution plans

� Activity Priorities: the priorities of the recommended ac-
tivity and any conflict activities

Different approaches can be considered for combining
the above factors to determine the appropriate response to

a situated guidance conflict. We describe three general ap-
proaches here.

One approach involves defining a multidimensional
objective function that determines when the guidance-
recommended activity should be undertaken. Such a func-
tion would cover every possible situated guidance conflict,
thus enabling a fully automated conflict resolution method.
Multidimensional evaluation functions are notoriously diffi-
cult to define, as they must relate values that are not directly
comparable. The need to consider all combinations of values
complicates matters further.

In contrast, a mixed-initiative approach could be adopted
in which a human supervisor determines the appropriate
course of action based on the factors cited above. This ap-
proach avoids the cost of defining a priori comparison func-
tions and provides maximum flexibility at runtime. How-
ever, situational conflicts may arise frequently in some do-
mains, thus burdening the user with a high level of decision
making involvement.

A third approach involves the definition of policies (simi-
lar to guidance) for determining the conditions under which
modification of earlier activities should be undertaken. Such
policies would involve constraints on the various factors de-
scribed above. For example, “Only modify ongoing activities
when the priority of the new task exceeds that of the original,
and the recovery cost is less than 0.5”. For situations where
the policies are sufficient to identify a response, conflicts
will be resolved automatically. In other cases, the human
supervisor would be engaged to make the appropriate deci-
sion. As such, this third approach combines the benefits of
predefining certain responses with the flexibility of runtime
decision-making by the human supervisor for situations that
cannot be readily characterized ahead of time.

Expanded Set of Candidate Plans Our approach to ex-
panding the set of candidate plans for a goal g involves the
dynamic creation of a set of proactive plans. Each proactive
plan is a variant of a potentially applicable plan – a relevant
plan for g whose applicability is blocked by one or more
unsatisfied but resolvable preconditions. The body of the
proactive plan incorporates activities from appropriate reso-
lution plans to achieve the blocked preconditions, as well as
the actions from the potentially applicable plan. In this way,
proactive plans extend the set of actions that can be taken by
an agent for a given goal. The following definitions capture
these notions more precisely.

Definition 5 (Resolvable Condition) A condition φ is re-
solvable in a given BDI executor state iff there is some in-
stance pr of a resolution plan such that Cue(pr) = φand for
every φ0 2 Pre(pr), Believed(φ0) holds in the BDI state.

Definition 6 (Potentially Applicable Plan Instance) A
potentially applicable plan instance for a goal g is a relevant
plan instance for g for which not all preconditions are
satisfied but all unsatisfied preconditions are resolvable.

Definition 7 (Proactive Plan) Let p be a potentially appli-
cable plan instance with Cue(p) = g. Let Pre(p) = ΦF [
ΦT where ΦF = fφF

1 ; :::;φ
F
mg are unsatisfied and ΦT =

fφT
1 :::φT

n g are satisfied. Let pr
1; :::p

r
m be resolution plans such



Name: Resolve-by-Delay
Cue: (available)
Preconditions: (doing t0)
Body:
(pause t0);f+(available);�(doing t0);+(pending t0)g
Features: DelayCurrent Roles: CurrentTask = t0

Name: Resolve-by-Termination
Cue: (available)
Preconditions: (doing t0)
Body: (kill t0);f+(available);�(doing t0);+(ignored t0)g
Features: DropCurrent Roles: CurrentTask = t0

Figure 2: TIGER Resolution Plans

that Cue(pr
i ) = φF

i and for every φ2 Pre(pr
i ), Believed(φ)

holds in the current BDI state. The plan p0 defined below is
a proactive plan for g.

� Cue(p0) = g

� Pre(p0) = ΦT [
S

1�i�m Pre(pr
i )

� Body(p0) = fBody(pr
1); : : : ;Body(pr

m)g;Body(p)
� Features(p0) = Features(p)[

S
1�i�m Features(pr

i )

� Roles(p0) = Roles(p)[
S

1�i�m Roles(pr
i ) .

Definition 8 (Proactive Plan Set) The proactive plan set
for goal g, denoted by Proactive(g), consists of the proactive
plans that can be constructed from the potentially applicable
plan instances for g and the available resolution plans.

Note that the applicability of a proactive plan within the
current BDI executor loop is guaranteed, as its preconditions
are drawn from a set of known satisfied conditions.

As noted above, cost-benefit considerations should be
taken into account when deciding how to augment the orig-
inal set of applicable plan instances for a current goal with
proactive plans. Thus, in general, only a subset of the set
Proactive(g) of proactive plans for g would be included.

Given the expanded set of candidate plans for applica-
tion to the current goal g, selection among them can be per-
formed in accord with the preference semantics outlined ear-
lier, through application of the guidance ranking function of
Definition 4.

TIGER Conflict Resolution
TIGER supports situated conflict resolution for task man-
agement activities. Within this context, resource contention
arises because each vehicle is limited to use on at most one
task at a time. TIGER includes resolution plans (see Fig-
ure 2) that achieve (available) (i.e., the availability of the
vehicle) by delaying and terminating prior tasks, thereby en-
abling a new task to be executed immediately. The resolu-
tion plan Resolve-by-Delay delays the current task t0 via the
goal (pause t0). The resolution plan Resolve-by-Termination
terminates the current task via the goal (kill t0). The goals
(pause t0) and (kill t0) also perform appropriate clean-up ac-
tions. When an agent is given a new task but (available) is
unsatisfied, it can synthesize two proactive plans (shown in

Name: Proactive-Immediate-Response-Delay
Cue: (task t)
Preconditions: (doing t0)
Body: (pause t0);f+(available);�(doing t0);+(pending t0)g;

f�(available);+(doing t)g;(do t)
Features: Adopt;DelayCurrent Roles: NewTask =
t;CurrentTask = t0

Name: Proactive-Immediate-Response-Termination
Cue: (task t)
Preconditions: (doing t0)
Body: (kill t0);f+(available);�(doing t0);+(ignored t0)g;

f�(available);+(doing t)g
Features: Adopt;DropCurrent Roles: NewTask =
t;CurrentTask = t0

Figure 3: Sample Proactive Plans

Figure 3) from the plan Immediate-Response and the resolu-
tion plans of Figure 2.

For the small number of plans in this example, resolution
rules might seem unnecessary – one can achieve the same
effect by extending the agent’s plan library to include the
proactive plans. However, with a greater number of plans,
the ability to factor out the recovery mechanisms eliminates
duplication and reduces the potential for error. Alternatively,
one could add explicit subgoals of achieving (available) (in
this case) into the base plans. Because the choice of method
for achieving (available) would occur after the choice of the
base plan, this approach would preclude the use of guidance
to select among options.

The cost-benefit analysis used by TIGER for determin-
ing which proactive plans to consider for a given goal con-
sists of the following three conditions. First, resolvability
costs are computed as a simple heuristic related to expected
time remaining for task completion; a threshold is defined
so that nearly complete tasks are not interrupted. Second,
the priority of the new task must be at least as high as that
of the resolvable task. Third, there must be at least one cur-
rent strategy preference rule whose agent context is satisfied
and whose activity specification matches the proactive plan.
In the future, we intend to replace this fixed criteria with a
policy-based approach similar to that described earlier.

Related Work
Most work on conflict within the agents community has fo-
cused on conflicts among agents (e.g., the papers in (Tessier,
Chaudron, & Muller 2000)) rather than on guidance for con-
trolling an agent. Typically, explicit interagent protocols are
used to negotiate solutions to detected conflicts.

Conflicting advice has been considered previously in the
context of advising an automated planning system (Myers
2000b). Detection and resolution techniques in that work
have a markedly different style from the approach outlined
in this paper, being grounded in heuristic search control
methods for plan generation.

The rule-based reasoning community has considered a
similar problem dealing with resolving rule conflicts. In



(Chomicki, Lobo, & Naqvi 2000), rule conflicts are resolved
by ignoring triggering events that cause conflicts. The work
of (Jagadish, Mendelzon, & Mumick 1996) uses a declara-
tive set of metarules to constrain how a set of rules should
be executed. Their metacontrol language is grounded in
the specifics of rules and rule firing (e.g., ordering rules,
disabling rules, requiring simultaneous triggering of rules),
which differs substantially from our more expressive and
user-focused guidance language.

The work in (Lupu & Sloman 1999) presents a simple
language for defining policies to manage a distributed set of
objects. Static conflict checking is performed when policies
are defined (rather than at runtime, as in this paper). Their
conflict resolution methods include straightforward concepts
such as explicit priorities and preferring negative to positive
rules; in addition, they incorporate more advanced notions of
specificity over rules and distance metrics to generate overall
precedence relationships.

In (Dignum et al. 2000), preferences over BDI agent be-
haviors are expressed through a multimodal deontic logic for
social norms and obligations. Metalevel norms and obliga-
tions are used to resolve conflicts that arise.

The dialog community has focused on techniques for de-
tecting and resolving conflicts that arise in the performance
of collaborative tasks (e.g., (Qu & Beale 1999)). Techniques
of this type could be used as the basis for interactive resolu-
tion of the conflict types explored in this paper.

Conclusions

Many applications that could benefit from agent technol-
ogy impose the requirement that humans retain control over
agent operations. The guidance framework of (Myers &
Morley 2001; 2002) enables a human supervisor to assert
strategy preference rules to influence agent behavior, thus
providing a powerful mechanism for directing agent opera-
tions. However, it also introduces the possibility for prob-
lems in the event that conflicting guidance is declared.

This paper identified two classes of guidance conflict,
namely plan selection and situated guidance, and showed
how such conflicts transcend the purely filter-based seman-
tics introduced originally for agent guidance. To address
such conflicts, we defined a generalized semantic model
for guidance satisfaction that incorporates the complemen-
tary notions of guidance-derived plan preference relations
and plan option expansion. Within this model, the set of
plan options available to an agent is extended to include
plans that would not normally be considered for execution.
These options can be synthesized dynamically by combining
guidance-relevant plans whose applicability is blocked with
resolution plans that can achieve the blocked applicability
conditions. Accompanying conflict resolution methods for
this model were presented that ensure robustness of agent
operations in the face of conflicting guidance.

Acknowledgments This work was supported by DARPA
under the supervision of Air Force Research Laboratory
contract F30602-98-C-0160.

References
Chomicki, J.; Lobo, J.; and Naqvi, S. 2000. A logic pro-
gramming approach to conflict resolution in policy man-
agement. In Cohn, A. G.; Giunchiglia, F.; and Selman, B.,
eds., Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifth International Conference (KR
’00). Morgan Kaufmann Publishers.
Dignum, F.; Morley, D.; Sonenberg, E. A.; and Cavedon, L.
2000. Towards socially sophisticated BDI agents. In Pro-
ceedings of the Fourth International Conference on Multi-
Agent Systems (ICMAS’2000).
Georgeff, M. P., and Ingrand, F. F. 1989. Decision-making
in an embedded reasoning system. In Proceedings of the
Eleventh International Joint Conference on Artificial Intel-
ligence.
Jagadish, H. V.; Mendelzon, A. O.; and Mumick, I. S.
1996. Managing conflicts between rules. In Proceedings of
the ACM Symposium on Principles of Database Systems.
Lupu, E., and Sloman, M. 1999. Conflicts in policy-
based distributed systems. IEEE Transactions on Software
Engineering, Special Issue on Inconsistency Management
25(6).
Myers, K. L., and Morley, D. N. 2001. Human directability
of agents. In Proceedings of the First International Con-
ference on Knowledge Capture.
Myers, K. L., and Morley, D. N. 2002. Policy-based agent
directability. In Hexmoor, H.; Falcone, R.; and Castel-
franchi, C., eds., Agent Autonomy. Kluwer Academic Pub-
lishers.
Myers, K. L. 1996. Strategic advice for hierarchical plan-
ners. In Aiello, L. C.; Doyle, J.; and Shapiro, S. C.,
eds., Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifth International Conference (KR
’96). Morgan Kaufmann Publishers.
Myers, K. L. 2000a. Domain metatheories: Enabling user-
centric planning. In Proceedings of the AAAI-2000 Work-
shop on Representational Issues for Real-World Planning
Systems.
Myers, K. L. 2000b. Planning with conflicting advice.
In Proceedings of the Fifth International Conference on AI
Planning Systems.
Qu, Y., and Beale, S. 1999. A constraint-based model for
cooperative response generation in information dialogues.
In Proceedings of the Sixteenth National Conference on Ar-
tificial Intelligence (AAAI-99).
Rao, A. S., and Georgeff, M. P. 1995. BDI agents: From
theory to practice. In Proceedings of the International Con-
ference on Multi-Agent Systems (ICMAS-95).
Tessier, C.; Chaudron, L.; and Muller, H.-J., eds. 2000.
Conflicting Agents. Kluwer Academic Press.
Wilkins, D. E., and Myers, K. L. 1995. A common knowl-
edge representation for plan generation and reactive execu-
tion. Journal of Logic and Computation 5(6).


