
POET: The Online Preference Elicitation Tool∗

James Royalty, Robert Holland, Judy Goldsmith, Alex Dekhtyar
Department of Computer Science

University of Kentucky
Lexington, KY 40506

jroya00@cs.uky.edu, robert@macauley.com,
{goldsmit,dekhtyar}@cs.uky.edu

Abstract

If the goal of eliciting accurate user preferences over a com-
plex value space is to be realized, the elicitation process must
be through while at the same time not overly burdensome
to the user. An ideal preference elicitation tool would max-
imize the information about preferences acquired from the
user while minimizing the number of queries required. To
this end, we present POET: the Online Preference Elicitation
Tool.
POET is a graphical Java applet designed to elicit complex
preference structures to form autility function. Once the elic-
itation process is complete POET outputs the resulting utility
function as an XML document. Internally, POET represents
utility for independent and dependent values as a set ofdepen-
dency trees. Though POET’s output and internal representa-
tion involves real numbers, from the user’s point-of-view, the
experience is completely symbolic.

Introduction
Because of the ever-expanding body of human knowledge
and the increasing demands of society and of the mod-
ern workplace, the expectations of a college education are
steadily increasing in complexity. This often translates into
complex university and departmental requirements for col-
lege graduation. It is the job of faculty, or designated advi-
sors, to help university students navigate these requirements.

Unfortunately, in many academic institutions, these ad-
vising duties come on top of increased pressure on faculty
to: improve their teaching and their department’s retention
of students, increase research and funding thereof, and most
of all, increase the flow of administrative paperwork. All
of these demands, including those inherent in the (some-
times Byzantine) requirements for students, take away from
the human interaction component of advising. Thus, there
are clear benefits to automating the mechanical parts of aca-
demic advising including: schedule consistency checking,
progress toward degree completion, and optimization of the
student’s educational priorities.

We hope, by automating the advising process, to increase
the time that advisors can spend actually listening to their
advisees and helping these students prioritize goals and op-
timize their time at the university. The Bayesian Advisor

∗A little poetic license.

tool (Dekhtyaret al. 2001), of which the work described in
this paper is a part, aims to do just that. The advisor tool will
check whether a student is on track to meet requirements in
a way consistent with their priorities; it will suggest courses
to further that process, and will be able to compare different
plans (from disparate sources) and recommend those with
the highest expectation of success for that student.

Ideally, success will be defined by each student accord-
ing to her priorities. Those priorities could include: rapid
progress toward graduation, a high GPA, a concentration of
courses in a sub area, a concentration of courses by their fa-
vorite professors or at their favorite times of day. In short,
to choose a sequence of courses that optimizes the expected
utility of the student’s academic career, it is necessary to
determine that individual’s preferences, priorities, and the
corresponding utility function. In this paper, we describe a
representation of, and a procedure for, eliciting such prefer-
ences and forming them into a utility function suitable for
use by the Bayesian Advisor tools planner.

The work described here is specific to the academic do-
main. To the best of our knowledge, we are the only group
looking at modeling academic advising using Bayes net-
works. There is, however, significant work on using Bayes
nets in other educational settings. For instance, (Nichol-
sonet al. 2001) describes a tutoring system for elementary
mathematics based on a Bayes network model of student
knowledge. While the high-level goals are similar (namely
to improve student learning/utility) there are considerable
differences in these goals and projects. To begin with, the
tutoring systems are inferential, whereas the Bayesian Advi-
sor tool is decision-theoretic. Furthermore, tutoring systems
focus on actual learning while the Advisor focuses on what-
ever goals the student provides. These may include max-
imizing learning or optimizing exam performance but are
neither necessary nor necessarily sufficient.

We expect that our careful attention to the details of
this domain will yield a better understanding of, and us-
able software for, the preference elicitation task for planning
problems in general. We begin by giving a more detailed
overview of the application domain of the Bayesian Advisor
tool and the role of preferences therein. We then discuss the
representation we have chosen for preferences and its pros
and cons. Next, we describe the actual elicitation process
and the software tool we are developing to support it. We

From: AAAI Technical Report WS-02-13. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



then compare our approach with those of some other recent
preference representations and elicitation processes. Finally,
we discuss probable extensions of this work.

Bayesian Advisor Background
The underlying mechanism of the Bayesian Advisor tool
will be planning over a Bayes network. The network will
represent the causal dependencies of success in courses
based on success in other courses or additional factors such
as exam scores. For instance, the network might represent
success in an introductory AI course as depending on suc-
cess in courses on algorithms, programming, and logic.

We separate random variables we plan to include in the
model into two basic categories:performance in univer-
sity coursesandsupplemental information. Student perfor-
mance in each university course will be a random variable,
and therefore, a node in the network. Supplemental infor-
mation or overall predictors such as current grade point av-
erage (GPA), high school GPA, as well as scores on stan-
dardized tests (SAT, ACT, GRE, TOEFL, and the like) will
also be nodes. Besides theseobservablevariables, we may,
whenever possible, represent some of thehiddenvariables
present like “mathematical sophistication”, “programming
skills”, “analytical ability”, and so forth.

The inputs to the system will consist of a student tran-
script which can be viewed as an instantiation of some of the
variables of the network modeling the university curriculum,
and a utility function for the student in question. A planning
algorithm will be employed to generate recommendations
for subsequent courses. The utility function, elicited as de-
scribed in this paper, will be used by the planning algorithm
to compare candidate plans; the plan(s) with higher utility
value are considered more valuable to the user.

Note that probabilities will be used to generate predic-
tions on student performancefor use in internal computa-
tions only. The Advisor will not publish these predictions to
the student, faculty, or advisors; doing so might affect both
the student’s performance and the professor’s grading of that
student.

The Online Preference Elicitation Tool

The Online Preference Elicitation Tool (POET) is being de-
veloped in the context of the Bayesian Advisor tool. Input to
and output from POET will be in an XML format consistent
with the Semistructured Probabilistic Object Markup Lan-
guage (Zhao, Dekhtyar, & Goldsmith 2002) used by other
parts of the Advisor. Planning algorithms for this system
will use utility functions generated by POET.

Representation
Preferences We defineA = {A1, A2, · · · , An} as a set
of attributes over which the user has some preference.
Each Ai can take on somevalue from the setAi =
{ai1, ai2, · · · , ain} ≡ dom(Ai) of possible values; this is the
domain ofAi. For instance, in academic advising, we might
have A = {Professor, Subject} with AProfessor =
{Goldsmith,Marek} andASubject = {Databases,AI}.

ak1 ∈ Ak

©©
©©
©

HH
HH

H

〈ai1 ∈ Ai, U〉 ai2 ∈ Ai
©©
©©

HH
HH

〈aj1 ∈ Aj , U〉 〈aj2 ∈ Aj , U〉
Figure 1: Dependency tree for values from the domains of
Ak, Ai andAj . U represents the utility, provided by the
user, for the given leaf.

We require the user indicate her preference for values of
eachAi, and any combinationAi× · · ·×Aj she deems rel-
evant. Preferences for individual values or combinations of
values are represented as real-valued utilities in a fixed, fi-
nite range. Values for which the user is indifferent are given
the special designationλ.

Initially, we assume all preferences on values areindepen-
dentunless the user states some dependency structure during
elicitation, and, that the user isindifferent to all values not
explicitly evaluated – in other words, those values have a
utility of λ.

Dependency Trees Our goal is to represent (explicitly or
implicitly) student preferences for each value of each at-
tribute. Whether dependent or independent, preferences are
represented as sets of decision trees, which we termdepen-
dency trees. The utility function for each tree assigns a nu-
merical value to each path; the overall utility function is the
sum of the values on all the trees.

A leaf in a dependency tree consists of an attribute value
and a utility value. The utility value applies to the path rep-
resented by that leaf. Trees representing independent values
consist of a single leaf (a tree ofheight 0). Trees for de-
pendent values are more complex. Figure 1 depicts a depen-
dency tree for dependent values. The valueak1 depends on
ai1 andai2. ai2, in turn, depends onaj1 andaj2.

Internal nodes have as children a set of values from the
domain of some particular attributeAi. That set does not
need to include all possible values fromAi; those values
not included are given the designationλ. No attribute value
appears as an ancestor (or descendant) of itself on any tree.

A sample dependency tree is presented in Fig-
ure 2. This tree represents a student’s utility for
the MathematicalSophistication value from the
AncillarySkills attribute. According to the tree, the
student believes that mathematical sophistication can be
obtained by taking either anAI or a Database class.
However, the utility of this skill differs based on who
teaches the class. If the AI class is taught byGoldsmith
the utility depends on the time of day when the class is
offered; if it is taught byMarek, it depends on the student’s
expected courseload.

Utility Function The overall utility function will be the
sum of the utilities of the values for each attribute. Note
that an attribute may occur in several trees. A student might



MathematicalSophistication

©©
©©
©©
©©
©©
©

HH
HH

HH
HH

HH
H

AI

©©
©©
©©
©

HH
HH

HH
H

Dr. Goldsmith

©©
©©

HH
HH

〈Afternoon, 5〉 〈Morning, 3〉

Dr. Marek

©©
©©

HH
HH

〈12 credits, 3〉 〈15 credits, 2〉

Databases

©©
©©
©

HH
HH

H

〈Dr. Dekhtyar, 4〉 Dr. Marek

©©
©©

HH
HH

〈Morning, 3〉 〈Afternoon, 1〉

Figure 2: AI with Goldsmith in the morning or databases with Marek in the afternoon?

mildly prefer morning classes but consider Marek’s morning
class of greater utility than Goldsmith’s. The utility of a
given system state (a static transcript) and an action is the
sum of the utilities for the relevant attribute.

We define the utility functionu from values to depen-
dency trees. Each tree will assign a value fromA to each
path in the tree. Trees with one node have one path, thus
assigning a number to that value; trees with no nodes im-
plicitly assignλ to the corresponding value.

Reasoning with the Utility Function
The goal of the Bayesian Advisor tool is to produce relevant
plans of study for students. Each plan is a function that finds
actions (courses to take) for each state of the system.

Plans can be evaluated by considering each possible state
of the system, orinstance, that is reachable from the start
state, and taking the sum of these values, weighted by the
probabilities of reaching each instance. Because our utility
function is factored, and the instances are factored, this can
be done efficiently.

The value of an instance, i.e., a partial transcript, is the
sum of the values of the individual components, namely
courses, according to the utility function. Each compo-
nent can be evaluated in terms of each attribute:Subject,
Professor, TimeOfDay, AncillarySkills, GPA, and
so on. The student’s utility for each value can be looked up
quickly using an adequate hash function on the (attribute)
values themselves. Those values that are part of a depen-
dency tree (either root or node) can be cross-referenced, cre-
ating a data structure of pending evaluations. In the case
where there are no dependency trees, or at least no trees in-
dicating concurrent-type dependencies (“Database courses
are desirable if not concurrent with Networks courses”, for
example), the evaluation of fluents can be done in parallel
with no communication. If there are concurrency-type con-
straints, then parallel evaluation will require two passes.

Elicitation Process in POET
It is necessary that the elicitation process be thorough, while
at the same time, not burdensome to the user. In other words,

we wish to maximize the information about preferences ac-
quired from the user while minimizing the number of queries
required.

The academic domain, like other complex domains, such
as military modeling (Laskey & Mahoney 2000), has at-
tributes with many values. Consider, for instance, the at-
tributes ofProfessor andMilitaryV ehicle, respectively.
Eliciting preferences for each value (and combination of val-
ues) is potentially mind-numbing. Thus, our challenge is
to acquire many preferences implicitly, using a reasonably
small number of queries.

POET Features

Our approach to making the elicitation process more
tractable includes the following:

• archetype selection;
• preset utility on values from the archetype;
• simple utility specification interface;
• intuitive dependency specification.

We define an archetype to be an easily recognizable
summary of a typical student’s goals and priorities. An
archetype consists of a set of preselected attributesA′ ⊆ A,
along with a set of valuesA′i ⊆ dom(A′i) from each at-
tribute inA′ deemed relevant to the given archetype. Some
values will be preset to some utility if they are believed to
be of specific importance to the particular archetype. The
remaining values will be set toλ.

In order to further simplify the elicitation process, some
values from eachA′i will be omitted altogether1. Presenting
the user with these archetypes allows us to “jump start” the
elicitation process in exchange for a minimal amount of user
effort.

At present, assumptions about attributes contained within
each archetype, and any preset utility, are based on informa-
tion informally elicited from experts (namely students and
advisors) at the University of Kentucky.

1The user will have the opportunity to add or remove (hide) any
attribute or value, perhaps subject to constraints.



Interacting with POET

A user’s interaction with POET proceeds according to the
following five stages:

1. explanation of the process;

2. archetype selection;

3. specification of utility for independent values;

4. specification of structure for dependent values and
the associated utility;

5. result presentation.

Archetype Selection The elicitation process begins with
a simple, friendly, user-oriented explanation of the above
stages. After choosing to continue, the user is prompted to
select an archetype that best fits her goals and priorities. Ex-
ample archetypes used in POET include:

• Work in the computer industry

• Go to graduate school

• Party like a rock star

• Graduate with a high GPA

• Graduate as soon as possible

• I don’t know2

Currently the choice of archetype is mutually exclusive:
the user can select only one of the above options. The feasi-
bility (indeed the desirability) of allowing the user to select
multiple archetypes, when applicable, is a possible future
extension; see the last section for more information.

Utility for Independent Values Once an archetype has
been selected the user is given the opportunity to evaluate
each value according to her preference, using slider bars (see
Figure 3.)

For instance,TimeOfDay is relevant to both the would-
be rock star and the industry-bound student. However, one
would expect the rocker to strongly prefer not to have morn-
ing classes while the budding member of the workforce
should start learning to function properly before noon.

If the user believes certain attributes or values should be
added (and/or removed) to (from) her archetype, she will be
given the opportunity to make such changes at this point.

Utility for Dependent Values Adjacent to each slider bar
is a checkbox labeled “It Depends”. If this box is checked,
the slider value is ignored and the user is asked to specify
upon whichattribute(s)her preference for the related value
depends (see Figure 4.)

Once the dependent attributes are chosen, the values for
each attribute are displayedin combinationand utilities are
elicited for each in the same fashion described previously.
In addition, for each value combination, the user is given the
opportunity to specify dependencies using the “It Depends”
semantics described previously. Care must be taken to pre-
vent the user from specifying cyclic dependencies – POET
enforces this restriction.

2At present, this archetype includes all attributes fromA, e.g.
A′ ≡ A.

Figure 3: Evaluating independent features in POET

Figure 4: Specifying a dependency structure in POET



Result Presentation Finally, after the dependency specifi-
cation and evaluation phase, POET will present the user with
a “friendly” summary of the preference information elicited
from her, as a simple means of verification. This could
take the form of programmatically generated English sen-
tences such as, “You are very interested in taking AI classes.
You are not interested in taking Networking in the morning,
but are indifferent to Networking in the afternoon.” Results
could also be presented graphically as actual dependency
trees similar to the one shown in Figure 2, or a histogram
depicting the utility value contained in the leaves of each
tree.

As a result of this presentation, the user may wish to revise
her preferences – she will be given that opportunity here.

Once the user verifies her results, POET will encode the
preference information (in the form of a utility function) in
an XML document for use in other Advisor tools.

A Simple Example
Consider a hypothetical undergraduate, Sue Smarty. Her ed-
ucational goals are to graduate in at most nine semesters
with a degree in computer science and a GPA of at least
3.9. After graduation Ms. Smarty would like to work in the
computer industry, particularly in the areas of networking
and databases. Along the way, she would prefer to have
some classes in the morning3 and would like to avoid mid-
afternoon classes, if possible, as she tends toward involun-
tary naps.

During an advising session Ms. Smarty is faced with a
choice: she can take a late-afternoon course from her fa-
vorite female professor in computer science, who is known
to be very challenging, or she can take a much easier mid-
afternoon course from a male professor. Which should she
choose?

Ms. Smarty’s decisions may be quite simple: if her over-
riding priority is a high GPA, then she takes the easier
course. A more complex situation arises if she has trade-
offs (in other words, a dependency structure) in mind: time
is more important than the professor’s gender, but the likeli-
hood of a high grade is more important than either.

When Ms. Smarty starts using POET, she will give very
high utility to the valueHighGPA within the GPA at-
tribute. Within the attribute ofProfessor, when choos-
ing her favorite female professor, she will click “It De-
pends” and then choose theGPA and TimeOfDay at-
tributes. Figure 5 depicts a possible set of dependency trees
for Ms. Smarty.

Related Work
There are a variety of approaches in the literature to the
problem of representing and eliciting preferences. We give
a brief survey of some of them here.

A significant body of work on qualitative preferences ex-
ists to date. These are used for applications such as prod-
uct database searches (see the discussion in (Boutilieret al.
1999) and the implementation of the Active Buyer’s Guide
website (Active Decisions, Inc. )) and constraint-based

3After all, she has to learn to wake up earlyat some point.

product configuration. Because we intend to use our prefer-
ence information in decision-theoretic planning, we require
not only a ranking of preferences but actual utilityfunctions.

From the qualitative preference literature we surveyed,
the representation most similar to ours is the CP network
(Boutilier et al. 1997). A CP network is a graphical rep-
resentation of qualitative preference structures. Our depen-
dency trees are similarly graphical in nature. However, there
are two significant differences. First, our trees not only pro-
vide an ordering on preferences, they also form a utility
function from attribute values to numerical values. Second,
our trees are perhaps simpler than CP networks in that they
(the trees) do not require nodes to be annotated with tables.
On the other hand, a CP network is a potentially more com-
pact representation in that a single network encodes relations
among all values, whereas we require an individual tree per
value/dependency structure4.

The problem of capturing preferences has also been ad-
dressed recently by means of collaborative filtering tech-
niques (Breese, Heckerman, & Kadie 1998). Collaborative
filtering works by comparing the behavior of the current user
with a database of previous uses of the same system and ex-
trapolating possible future behavior of the user. For this ap-
proach to work, one must have a large enough collection of
preferences from previous users. Currently, in our project,
this is not feasible. However, once the preference elicita-
tion system is deployed, we may be able to accumulate an
anonymous database of preferences. We would then be able
to update our user archetypes by using clustering methods,
perhaps along the lines of (Jain, Murty, & Flynn 1999).

One can also represent preferences as feature vectors over
a discrete or continuous domain. This is used in the FindMe
system (Burke, Hammond, & Young 1996), and probably
in various web-based product selection systems. This repre-
sentation does not allow for implicit or succinct representa-
tion of complex or dependent preferences.

On the other hand, one can use feature vectors over con-
tinuous space to represent preference functions (Keeney &
Raiffa 1976). This allows the application of analytic meth-
ods to find dominating preferences. However, the major dis-
advantage becomes apparent when one considers elicitation:
it could take many queries to approximate a smooth curve.

There is also a large body of work on learning user pref-
erences passively, (non-interactively.) This work supports
customized web crawling and targeted advertising. It is sin-
gularly unsuitable for the academic advising domain. By
the time a system has acquired enough data on a user, that
user has almost certainly acquired sufficient credits to grad-
uate! However, one might be able to apply this process to
a database of complete transcripts to infer and then classify
utility functions for use in classification-based utility elicita-
tion (Chajewskaet al. 1998).

4We should also mention that the “depends on” phase of our
elicitation process was inspired by the trade-off phase of CP
network-type elicitation (Boutilieret al. 1999).



〈HighGPA,U〉

favorite female
professor

©©
©©
©©
©©
©©
©©
©

HH
HH

HH
HH

HH
HH

H

HighGPA

©©
©©
©©

HH
HH

HH

〈Morning,U〉 〈Mid, U〉 〈Afternoon,U〉

〈AvgGPA,U〉 · · ·

Figure 5: Possible set of dependency trees for Sue Smarty.U represents the utility for the given leaf. Note the tree to the left
representing an independentHighGPA value.

Future Work
Work on POET is ongoing; we envision the addition of sev-
eral features in the coming months. Areas to receive atten-
tion are presented below.

Extensibility Given that POET is a component of the
Bayesian Advisor tool, it must output a utility function en-
coded in XML (as XML is used for data transfer between
different parts of the Advisor tool). This XML-encoded util-
ity function will be, in turn, passed downstream to the plan-
ning tool.

We have two parallel goals for the future development of
POET:

• build the best tool for this domain, and
• build a general preference elicitation tool for use

with other planning algorithms/tools.

As mentioned previously, POET is domain specific; how-
ever, we expect that careful attention to our domain will en-
able us to produce a tool useful for preference elicitation in
other domains.

We are developing XML schemata for representing pref-
erences and utility functions that will be generic enough to
handle diverse application domains. In the future, POET
will construct generic GUIs for preference elicitation (on the
fly) given an XML instance document describing a particu-
lar preference structure.

Archetypes It is not yet clear whether it would be effica-
cious to allow a user to select multiple archetypes, such as
“Get MBA” and “Work in the computer industry.” Combi-
nations like “Maximize GPA” and “Party like a rock star” do
not seem to be very compatible.

If the selection of multiple archetypes were permitted cer-
tain constraints (expressed in the input XML instance docu-
ment) should be in place to prevent situations like the latter.
A friendly warning message might suffice or, in some cases,
referral to a human advisor.

There are two directions in which the use of archetypes
can be expanded. First, current archetypes are based solely
on internal, informal, elicitation. As POET is deployed and
used, input from students could be gathered in order to bring

the archetypes in line withtheir self-images. Also, our cur-
rent archetypes reflect only the goals/priorities of undergrad-
uate computer science students. We would, in the short term,
like to expand them to include other types, such as graduate
students. In the long term, we envision that the notion of
archetype could be extended to express generalities in other
domains.

Constraints and Warnings There are numerous domain-
specific constraints that could be included. For instance, dur-
ing the “It Depends” phase of eliciting a student’s utility for
AI courses, POET could be constrained to only list those
professors who actually teach or might teach AI classes.
Encoding such information would significantly reduce the
number of dependent values the user would have to evalu-
ate.

Other domain-specific constraints include forbidden
course combinations due to curriculum requirements, de-
partmental prerequisites, and the prevention of overloaded
schedules.

Verification We have not yet implemented a verification
stage for the elicitation process. We expect to use a ver-
sion of candidate critique (Linden, Hanks, & Lesh 1997)
in the following manner: the user will be presented with a
few precomputed and easily described plans, and asked to
rank them. This ranking will be compared with the rank-
ing generated by evaluating the plans according to the user’s
utility function. If the two rankings differ, the user will be
prompted to refine the utility function.

Later versions may allow the user to specify a plan (or
plans) for evaluation, and/or use plans generated by the plan-
ning tool. Thus, a user’s own plan could be compared to
the generic plan for her archetype. This might lead to up-
dates either of the elicited utility function or of the user’s
self knowledge.



Acknowledgments
This research is partially supported by NSF grant
CCR-0100040. Special thanks to Terran Lane5

(terran@ai.mit.edu) for valuable feedback and assistance
throughout this effort.

References
Active Decisions, Inc. Active Buyer’s Guide
(http://www.activebuyersguide.com).

Boutilier, C.; Brafman, R.; Geib, C.; and Poole, D. 1997.
A constraint-based approach to preference elicitation and
decision making. In Doyle, J., and Thomason, R. H., eds.,
Working Papers of the AAAI Spring Symposium on Qualita-
tive Preferences in Deliberation and Practical Reasoning,
19–28. Menlo Park, California: American Association for
Artificial Intelligence.

Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. InProc. Conference on Uncertainty in
AI, 71–80.

Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Em-
pirical analysis of predictive algorithms for collaborative
filtering. In Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence (UAI-98).

Burke, R.; Hammond, K.; and Young, B. 1996.
Knowledge-based navigation of complex information
spaces. InProc. AAAI ’96.

Chajewska, U.; Getoor, L.; Norman, J.; and Shahar, Y.
1998. Utility elicitation as a classification problem. In
Cooper, G. F., and Moral, S., eds.,Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI-
98), 79–88. San Francisco, California: Morgan Kaufmann.

Dekhtyar, A.; Goldsmith, J.; Li, H.; and Young, B. 2001.
Bayesian Advisor Project I: Modeling academic advising.
Technical report, University of Kentucky, Department of
Computer Science, Lexington, Kentucky.

Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data
clustering: a review. ACM Computing Surveys (CSUR)
31(3):264–323.

Keeney, R. H., and Raiffa, H. 1976.Decisions With Mul-
tiple Objectives: Preferences and Value Tradeoffs. New
York: John Wiley and Sons, Inc.

Laskey, K. B., and Mahoney, S. M. 2000. Network en-
geinnering for agile belief networks.IEEE Transactions
on Knowledge and Data Engineering12(4):487–497.

Linden, G.; Hanks, S.; and Lesh, N. 1997. Interactive as-
sessment of user preference models: The automated travel
assistant. In Jameson, A.; Paris, C.; and Tasso, C., eds.,
Proceedings of the 6th International Conference on User
Modeling (UM-97), CISM, 67–78. Springer.

Nicholson, A.; Boneh, T.; Wilkin, T.; Stacey, K.; Sonen-
berg, L.; and Steinle, V. 2001. A case study in knowledge

5Now with the University of New Mexico in Albuquerque
(http://www.cs.unm.edu/).

elicitation and discovery in an intelligent tutoring applica-
tion. In Proc. Uncertainty in Artificial Intelligence.
Zhao, W.; Dekhtyar, A.; and Goldsmith, J. 2002. A proba-
bilistic database to manage CPTs (work in progress).


