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Abstract

In scheduling meetings, agents generally have preferences
regarding possible times and sites. In addition, they may
have privacy concerns along with the desire to solve collec-
tive problems efficiently, which necessarily involves a degree
of communication. The present work is a study of meeting
scheduling by independent agents, where preference scales
are not assumed to be identical and where actual preferences
are not communicated directly. The purpose was to study the
means of reducing the effort (number of communications) re-
quired to find a solution that is in some sense optimal with re-
spect to all agent preferences, as well as the relations between
efficiency, solution quality (based on various measures) and
privacy loss. Agents propose meeting times and places con-
sistent with their schedules while responding to other pro-
posals by accepting or rejecting them. Agents also store in-
formation about other agents that is gleaned from the com-
munications, together with general assumptions about travel
constraints and possible meeting sites. This provides a way
of improving efficiency but also exacerbates the problem of
privacy loss, since agents can deduce personal information re-
garding meetings as well as relative preferences from limited
forms of communication. We develop strategies for finding
optimal solutions, given minimal assumptions about the com-
parability of agent preferences, and we show that efficiency
can be improved either by making deductions based on com-
munications received or by revealing a limited amount of in-
formation about one’s own schedule in communications. We
find that in some respects the problem of privacy loss can be
finessed by this additional information.

Introduction
As a result of the growth of the Internet and World Wide
Web, it has become possible to automate a number of co-
operative functions, even among widely dispersed partici-
pants. One area of application receiving considerable atten-
tion is meeting scheduling (Garrido & Sycara 1996) (Luo,
Leung, & Lee 2000) (Sen, Haynes, & Arora 1997). This is a
task which might be profitably delegated to software agents
communicating over networks. In many cases it is expected
that the agents will exhibit a degree of independence, since
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each is working for an individual with distinct affiliations.
Thus, rather than solving parts of a single problem, as in
the distributed CSP paradigm (Silaghi, Sam-Haroud, & Falt-
ings 2001), each agent has its own problem, but the solutions
must all be mutually consistent.

In cooperative communication involving independent
agents there are at least three issues that arise: problem-
solving efficiency, privacy of agent information, and agent
preferences. With respect to privacy, there will be cases
where individuals are interested in restricting the informa-
tion communicated to other individuals to prevent sensi-
tive information from being received by others (Garrido &
Sycara 1996). At the same time, the necessary cooperation
involves some minimum of information exchange. However,
maintaining privacy in such contexts may make cooperative
decision making less efficient. When there are independent
preferences for solutions, problems usually become harder,
since preferences add a new level of constraints on accept-
able solutions. This may also involve finding an optimal
rather than just a feasible solution.

In previous work, we have considered relations between
privacy and efficiency in this context (Freuder, Minca, &
Wallace 2001) (Wallace, Freuder, & Minca 2002). In that
work, a major emphasis was on the degree to which agents
could deduce private information from restricted communi-
cations together with general knowledge of the situation. In
this work we consider the addition of preferences for meet-
ings. As before, we work with a simplified situation (pref-
erences are assigned at random) with the expectation that
the methods developed here will also work in more realistic
settings.

This work builds on a recent proposal for representing
preferences in a way that can be handled by techniques de-
rived from the study of soft constraints (Franzin et al. 2002).
In this proposal, agents have a common scale of preference,
so that meeting preferences can be meaningfully commu-
nicated; in this way it is possible to find a provably opti-
mal solution based on a reasonable criterion for optimality
(the maximum minimum preference across all agents). Ear-
lier work has also assumed a common preference scale, that
allowed joint utilities to be calculated (Garrido & Sycara
1996) (Luo, Leung, & Lee 2000) (Sen, Haynes, & Arora
1997).

However, the assumption of a common scale of prefer-
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ence may not be realistic in many situations. The question
arises, therefore, whether agents can find solutions of high
quality using strategies that do not require a common scale.
In the present work we examine communication and solu-
tion strategies that do not depend on the this assumption. In
addition, there is either no direct communication of prefer-
ences, or preferences are communicated in a simple, quali-
tative manner (“I prefer not” versus “I cannot”). In this sit-
uation, we also carry forward the goal of previous work: to
examine tradeoffs and other relations between efficiency and
privacy when preferences also enter into the picture. In this
context, we would like to find methods to enhance efficiency
while keeping privacy loss to a minimum.

In Section 2 we describe the basic problem for our agents.
Section 3 discusses procedures for finding solutions that
are optimal under reasonable criteria. Section 4 discusses
knowledge that each agent can acquire about other agents
in this situation. Section 5 describes a testbed and design
of experiments that test effects of different levels of com-
munication and forms of knowledge (modal and actual) on
efficiency and privacy loss. Section 6 describes the basic
experimental results. Section 7 gives conclusions.

A Meeting Scheduling Problem
In the scheduling problem we are considering, each of k
agents has its own calendar, which consists of appointments
in different cities at different times of the week. The prob-
lem is to find a meeting time that meets the following re-
quirements:

1. all agents can attend given their existing schedules and
constraints on travel time

2. the meeting is sufficiently preferred by each agent

To find such a meeting time, agents communicate on a
1:1 basis; the basic protocol is for one agent to suggest a
meeting time in a certain city to each of the other agents,
who then tell the first agent whether the choice is acceptable
or not, given their existing schedules. This continues until a
time and place are found that is acceptable to all agents. We
assume that during this time the agents’ own schedules do
not change.

Basic problem
For purposes of analysis and experimentation, we devised a
simplified form of this problem. First, we assume a fixed set
of cities where meetings can be held: London, Paris, Rome,
Moscow and Tbilisi. We also restrict meeting times to be an
hour in length and to start on the hour between 9 AM to 6
PM, inclusive, on any day of the week. These restrictions
apply both to the pre-existing schedules as well as the new
meeting assignment.

The basic constraints are the times (in hours) required for
travel between meetings in different cities. These are indi-
cated in Figure 1. Times between cities within one region
(Western Europe or the former Soviet Union) are shown be-
side arcs connecting cities; the arc between the two ellipses
represents constraints between any city in one region and the
cities in the other.

Figure 1: Time constraint graph. Cities are London, Paris,
Rome, Moscow and Tbilisi. Further details in text.

Addition of preferences
We assume that for each open meeting an agent has a partic-
ular level of preference. In the present situation, we do not
assume that agents have identical preference scales, but only
that each agent’s scale is ordinal. This means that agents can
compare preferences for their own meetings and can also es-
tablish “preference thresholds” such that a candidate meet-
ing can be compared with the threshold to determine if it
meets the minimal level of preference that the agent will
accept. We also assume a finite number of distinguishable
preference values for each agent.

In the present form of the problem, each meeting is as-
signed a preference at random. On the face of it, this is
highly unrealistic. For example, in this case a meeting in
Rome on Tuesday might have a preference value of 7 at 1
PM, 2 at 2 PM and 8 at 3 PM. Or a meeting in Paris at 1
PM might have a preference of 8 for an agent that has a
meeting in Moscow at 12 PM on the same day. Nonethe-
less, this approach was chosen because, (i) it is not yet clear
how to generate preference profiles in a sufficiently system-
atic manner. This is because there are many features of the
situation that could serve as the basis for preferences, and
one would expect individual differences in the relative im-
portance of these features, (ii) the methods devised to find
meetings with good preference values in the random case
will also work when preferences are more systematically re-
lated to the features of the problem, (iii) under the present
conditions, or assumptions, the existence of profiles and the
like are less likely to alter the results appreciably, since the
extra degree of organization will not be directly reflected in
the communications.

In this work, we also consider different levels of com-
munication. The first is the simplest one, described at the
beginning of this section. The second one elaborates on the
first by using the communication “not preferred” rather than
“reject”, when a proposal is consistent with the agent’s con-
straints but does not reach its current preference threshold. A
third level adds to the second by including reasons for rejec-
tion based on constraint violations, i.e. an existing meeting
that conflicts with the current proposal.

Procedures for Finding Optimal
Meeting-Preferences

Within the context of our assumptions about preferences, we
consider two criteria for optimization:

• maximize the minimum preference value of any agent



• find a member of the Pareto optimal set of preference-
vectors, i.e. one such that there is no other meeting
for which one agent has a higher preference value while
the others have preferences that are no worse than their
present values

The first criterion requires some explication, since it would
seem to require a common preference scale. Here, we create
a pseudo-common-scale with the desired properties in the
following way. If all agents have a finite number of ordered
preference values in their individual scales, we can consider
these values in terms of the number of successive steps re-
quired to reach them, where each step is from some value to
the next higher or lower. A maxi-min strategy then involves
maximizing the minimum number of steps, i.e. the mini-
mum number of distinct values between the value selected
and the lowest value.

For the first criterion, we have tested two simple strate-
gies, which we call “step-up” and “step-down”. These will
be described in terms of “preference thresholds”, in which
for any agent, preferences must be at or above the cur-
rent preference threshold value for a meeting to be accepted
(along with it also meeting the constraints of the problem).
For step-up, the agents begin by setting their thresholds to
their lowest preference values. Then, proposals are made un-
til a meeting is found consistent with the threshold value for
all agents. Then the threshold is increased to the next lowest
value for each agent, and more proposals are made, etc. The
procedure continues until some step k, where no proposals
can be found that are acceptable for all agents. Then the
last acceptable proposal can be selected as an optimal solu-
tion. Step-down is similar, but in this case agents begin with
thresholds set to their highest preference values, decreasing
the threshold at each step until a proposal is made that is
acceptable to all, which, again, must be an optimal solution.

For the Pareto optimal criterion, agents begin by setting
their thresholds to the lowest possible value, say 1. They
then search for an acceptable solution, essentially without
regard to preference values. When this is found, each agent
proposes a solution that is at least minimally better than the
present one, and each other agent accepts it only if it is at
least as good as the present choice. This continues until there
are no further proposals to consider.

Each of these criteria has its limitations. It is possible that
better solutions could be found - in terms of average number
of steps - for the same maxi-min criterion. (Here, it may
be possible to elaborate the step procedure to obtain a maxi-
min solution that is also better according to an averaging
criterion.) For the Pareto strategy, a solution can be found
that meets the criterion but which is not even close to maxi-
min, for example a solution that is associated with the top
value for one agent and the lowest value for the other agents.

Another issue is the possibility of different numbers of
scale values. Fortunately, this does not prevent the step-up
procedure from finding maxi-min solutions. For example,
suppose there are two agents with five and 10 distinct val-
ues, respectively, and there is a solution associated with the
fifth and eighth values for the respective agents. Then both
agents will step up to their fifth values, after which (since
no failure has occurred) the second agent will continue step-

ping up until the ninth step, when search fails. In contrast, if
the step-down strategy is used, the first success will occur on
step 3, when the second agent has reached its eighth value
and the first agent its third. Despite this potentially serious
limitation of step-down, we decided to test both strategies
when there were equal numbers of scale values, in order to
compare their performance.

Agent Knowledge
Agent Views
In the situation we are considering there are three basic mes-
sages: a proposal, consisting of a city, day and hour (“Paris
on Monday at 3 PM”), an acceptance (“OK.”), and a re-
jection (“Sorry, I cannot.”). Agents may also indicate their
preference for a particular proposal, in a limited, qualitative
fashion (“Sorry, I prefer not to.”). In addition, under some
conditions agents give reasons for a rejection by commu-
nicating one of their conflicts (“I have a meeting in Rome
on Monday at 5 PM.”). (In this work, under any specified
condition all agents communicate the same kinds of infor-
mation.)

In this situation, agents do not know each other’s sched-
ules or their preferences. However, since a solution to each
agent’s problem depends on k − 1 other problems, agents
can improve the overall efficiency of problem-solving by
collecting information about other agents in the course of
search. This, together with general information common to
all agents (here, temporal and geographical features) can al-
low agents to avoid proposals that will not be accepted and to
select those that are more likely to be accepted. Such effects
are possibly more relevant when preferences are involved,
due to the greater difficulty in satisfying criteria for meeting
preferences as well as constraints.

To this end, agents maintain “views” of other agents’
schedules. A view can be updated after each communication
from another agent. Part of a view is factual information that
has been collected or deduced, in this case actual meetings
or open slots. It could also, of course, include actual pref-
erences if these were communicated, although this was not
done in the present tests.

In addition, agents can store information concerning pos-
sibilities (e.g. agent k might be able to meet in Moscow on
Friday at 3 PM, or, agent k might have a meeting in Rome on
Tuesday at 9 AM). This can be derived from acceptances and
rejections, as well as more explicit communications. For ex-
ample, if agent k rejects a proposal for a meeting in Moscow
on Friday at 3 PM, this may (given certain protocol conven-
tions or levels of communication) eliminate this possibility
from the proposing agent’s view of agent k.

As shown in earlier work (Wallace, Freuder, & Minca
2002), the latter type of information can be represented in
the form of constraint satisfaction problems whose domain
values are “modal values” (Figure 2). Taking time-slots as
variables, there are possible values both for meetings that
another agent may have in its schedule and for meetings
that it may be able to attend, which we term “possible-
has-meeting” and “possible-can-meet” values, respectively.
Considered more generally, the former represent possible



Figure 2: Part of one agent’s view of another agent, consist-
ing of two modal-valued CSPs, one representing possible
meetings that the latter can attend, the other possible meet-
ings that the latter has already.

existing assignments in an actual, unknown CSP, while the
latter represent possible future assignments in the same CSP.
This means that, at the beginning of a session when an agent
knows nothing about other agents’ schedules, there are two
such modal-valued CSPs one whose domains each consist of
five possible-has-meeting values and one in which each do-
main has five possible-can-meet values (in each case, one
for each city). We have called these modal-valued CSPs
“shadow CSPs”, to indicate the close semantic relation be-
tween them and the actual CSP of an agent. Note that we
can handle facts such as value x is both a possible existing
and a possible future assignment in a natural way with this
formalism. In practice, it is more useful to store knowledge
of nogoods than positive modal values, in order to rule out
possibilities.

In this shadow CSP system, we reason from communica-
tions to restrictions in the domains of the actual (originally
unknown) CSP, to restrictions of corresponding values in the
relevant shadow CSPs. For example, if an agent proposes a
meeting in London on Thursday at noon, the other agents
can deduce that it has no meeting at that time, thus deleting
all five possible-has-meeting values for that variable in the
view of that agent. (The reasoning here uses closed-world
assumptions with respect to actual CSP domains, so that ¬x
entails �¬x which is equivalent to ¬�x.) Or, if an agent
rejects a proposal, the proposer can deduce that this is not a
valid future assignment, so that one possible-can-meet value
can be deleted from the shadow CSP in that view. (Note that,
here, nothing can be deduced regarding the corresponding
possible-has-meeting value.)

These ideas can be extended to what can be called
“shadow preferences”, given the assumption of ordinal
scales. These can be represented in terms of ranges, start-
ing with a complete range, based either on an agent’s own
set of possible preference values or the number of steps
through the pseudo-scale if a step strategy is used. Then,
under the given communication and protocol conventions,
these ranges can be restricted. For example, in the step-up
procedure, acceptance indicates that the preference for this
meeting is at least as good as the present step, while a rejec-

tion indicates that the preference value is below the present
threshold. Note that if, for step-up, a pattern of acceptance
and then rejection is detected for a given proposal, then that
meeting can be assigned a single shadow value, and a sim-
ilar deduction can be made under the complementary situa-
tion for step-down. In contrast, the Pareto strategy does not
allow such deductions.

Some of the present protocols place fairly tight restric-
tions on the capacity of agents to deduce possibilistic infor-
mation from rejections. Consider first the case of minimal
communication: proposal, acceptance or rejection. For the
step-up and Pareto procedures, rejections due to constraint
violations can only be distinguished from those due to pref-
erence violations at the first step of the procedure, before
the first acceptable solution has been found. For step-down,
even this is not possible. In contrast, with additional prefer-
not communications, agents can continue to gather and de-
duce information based on rejections. In all cases, propos-
als and acceptances imply open slots and in each instance
of such communications five nogood possible-has-meeting
values can be added to an agent’s view of another agent.
In addition, with the step procedures it is possible to refine
knowledge of preferences throughout a session.

Using agent knowledge
Agents can use the stored knowledge in their views to avoid
making proposals that will not be accepted or to temporar-
ily avoid those that are deemed less likely to be approved,
as shown in (Wallace, Freuder, & Minca 2002). This is ob-
vious in the case of known meetings (agent k knows that
agent r has a meeting in Rome on Tuesday at 2 PM), but
it can also be deduced from possibilistic information, either
directly (e.g. if all possible can-meet’s for agent k have been
ruled out for a certain time slot) or indirectly (e.g., if all has-
meeting’s have been ruled out for a time slot due to conflicts,
then the agent cannot meet at that time slot even though it is
open). A particularly powerful form of inference is based on
possible causes for a rejection; since these must be a subset
of the set of possible-has-meeting values, reducing the latter
also reduces the former and this may allow agents to make
inferences about meetings in another agent’s schedule with
enough precision to avoid unacceptable proposals.

Preference information can also be used to improve ef-
ficiency. If an agent knows that a possible meeting in its
schedule is associated with a range of shadow preference
for another agent whose upper bound is below the present
threshold, then it can avoid proposing that meeting.

Experimental Methods
An experimental testbed
To get some idea of how these different procedures and
communication protocols would work together in practice,
we used a demonstration system written in Java (Wallace,
Freuder, & Minca 2002), to which we added features related
to preferences that were described in previous sections. This
system allows the selection of the number of agents and ini-
tial meetings. Test runs are carried out either interactively or
in batch mode.



Figure 3: Multi-agent meeting sheduling system.

The main window of the system is shown in Figure 3, in-
cluding the results of a single run using baseline parameter
settings (described below). In this instance there are three
agents, each with 11 initial meetings. The schedule in the
upper right-hand panel is for agent 1. This agent’s meet-
ings are highlighted on a calendar. The darkened slot in the
schedule is a meeting chosen as the “guaranteed solution”
for this experiment, here Paris on Sunday at 1 PM. The ac-
tual solution found in the run just completed is Paris on Sun-
day at 2 PM. Some of the data for this run can be seen in the
panel on the lower right.

This system was built to be used for experiments. Hence,
almost all features are optional, so that various combinations
of features can be selected for testing. This is especially im-
portant for evaluating tradeoffs among the three main fac-
tors of efficiency, solution quality (in terms of preferences)
and privacy loss. In addition, it allows us to examine these
three factors in relation to variables such as information ex-
changed, knowledge use, proposal strategies, and communi-
cation protocols.

Features are chosen via a dialog box evoked by the button
labeled “Basic parameters” in the main window. The user
can choose the level of communication, kinds of knowledge
(actual and possibilistic) to be gathered, whether to use arc
consistency, the proposal strategy, and the preference strat-
egy. These settings are independent, so, for example, knowl-
edge gathering can go on even under the baseline proposal
strategy, where knowledge is not actually used.

Design of experiments
The experiments reported here involve three agents, where
the number of initial meetings varies from 5 to 40 in steps of
5. For these experiments every agent was given a preference
scale of 10 values. This allowed the assessment of solution
quality that was more comprehensive and comprehensible
than it would have been if agents had different numbers of
values. It also allowed us to evaluate both step strategies, as
discussed earlier.

At the start of each run, schedules are generated at random
for each agent, with number of meetings determined by the
slider setting (see Figure 3). These schedules are built so
as to be consistent with a guaranteed solution that is also
selected at random, as well as the basic constraints of the
problem. (That is, each agent’s schedule is internally con-
sistent.) At this time, all meetings are also given a random
preference value (an integer from 1 to 10).

An individual test run consists of a series of proposals
made until one is found that is acceptable to all agents. At
each (mini)step of the experiment, an agent selects a candi-
date proposal (a day, hour and city) at random that is a so-
lution for its own schedule; it then checks that this solution
has an acceptable preference value, given the current stage
of processing. (If it does not, further solutions are selected
at random from the remaining set until an acceptable one is
found or there are no further choices.) Then, depending on
the parameter settings, it may check this proposal against the
knowledge it has gathered. The first proposal that satisfies
the agent’s own criteria is then communicated to each of the
other agents, and the latter replies with an acceptance or re-
jection to the proposer (alone). At this time agents may also
update their views, depending on the parameter settings. If
the proposal is not acceptable to all of the other agents, an-
other agent is selected and the cycle is repeated. The present
experiments used a round robin protocol in which all agents
take turns proposing a meeting according to a fixed order.

Figure 4: Efficiency measure (proposals per run) in ‘base-
line’ experiments, where no explicit information is commu-
nicated about an agent’s meetings and no knowledge is used.
“-1” is number of proposals before the first solution was
found, for the three strategies. “-all” is number of proposals
before an optimal solution was found.

In these experiments, the efficiency measure was number
of proposals, averaged over all (500) runs in an experiment.
The measures of solution quality were the minimum and the
average preference values. (Averaging could be used here
because in this case the scales did, in fact, have the same
values.) The measures of privacy lost were number of meet-
ings identified, number of open slots identified, number of
possible-values removed for can-meet and has-meeting, and
the number of possible preference values discarded. These



privacy tallies were averaged per “communication link” per
run, to give an average per agent view. (There are two links
for each pair of agents, or n × (n− 1)) links for n agents.)
In addition, average number of solutions per agent was de-
termined as well as the number of common solutions.

Efficiency and Privacy: Empirical Results
Baseline performance
Figure 4 shows the efficiency measures for the baseline con-
dition, in which agents used one of the three procedures,
step-up, step-down or the Pareto optimal procedure to find
solutions of optimal quality under the present assumptions.
Under this condition, no information on meetings or meet-
ing preferences was gathered during a test run. Both the
number of proposals to find the first acceptable solution and
the total number of proposals required to establish that an
optimal solution has been found are shown. As might be
expected, the step procedures are not very efficient in com-
parison to the Pareto optimal procedure. For comparison,
the number of proposals required to find a maxi-min solu-
tion when explicit preference information is exchanged un-
der the assumption of a common scale of preference, and
using a procedure similar to step-up, is about 75, 65, 52,
45, 30, 20, 15 and 15 for 5, 10, 15, .., 40 initial meetings,
respectively (data from (Franzin et al. 2002)).

Figure 5: Solution quality measures for baseline experi-
ments. Minimum preference and mean preference values
per run for optimal solutions using maxi-min (with step-up)
and Pareto optimal strategies. Scales have been transformed
to [0..1] for purposes of presentation.

Figure 5 shows two quality measures, the maxi-min score
and the mean preference value for the step-up and Pareto
optimal procedures. (Step-down, of course, gives the same
values as step-up.) In the cases where there are fewer initial
meetings per agent, there is an appreciable fall-off in quality
for the Pareto strategy. The lack of difference with more
meetings is not as consequential, since it is due to the fact
that the number of common solutions approaches 1 as the
number of meetings per agent increases. Hence, we have a
clear efficiency/quality tradeoff.

Effect of knowledge gathering and enhanced
communication

In earlier work (Wallace, Freuder, & Minca 2002) we have
shown that in this situation efficiency can be significantly en-
hanced by the use of knowledge gathered during the course
of trying to find a common solution. This effect depends
critically on possibilistic knowledge, either the deduction of
nogood possible-can-meet’s or the reduction of sets of pos-
sible causes for a former rejection to a small set of (possi-
ble) conflicts. In contrast, merely communicating meetings
in conflict is not sufficient to guide the agents to a common
solution more quickly. This means that efficiency measures
and tradeoffs involving efficiency can be positively effected
by using these kinds of knowledge. Therefore, it may also
be possible in the present situation to improve the efficiency
of the step strategies, while retaining the better quality solu-
tions that are obtained with these methods.

Figure 6: Reduction in mean number of proposals required
to find an optimal solution when knowledge is used. Step-
Up procedure. Baseline condition is shown for comparison.
In the “knowl” condition, knowledge was gathered concern-
ing actual meetings and open slots as well as nogoods for
possible-can-meet’s and -has-meeting’s. In the “shadpref”
condition, shadow preference scales were maintained and
tighter bounds were deduced from communications. In the
“know/shad” condition, all of these sources of information
were used together.

Unfortunately, nogoods of the former type can only be de-
rived in quantity when some knowledge of actual meetings
is obtained, either by direct communication or by deduction
via possible causes (if a set of possible causes is reduced
to one, then the agent must have this meeting). This means
that there is a tradeoff between efficiency and privacy loss
that will be entailed by knowledge gathering. The purpose
of the tests described in the rest of this section was to exam-
ine this tradeoff, as well as to determine the degree to which
efficiency could be improved by these methods.

Figure 6 shows the effect of information gathering on ef-
ficiency under the basic communication protocol involving
minimum information exchange. This is for the step-up pro-
cedure; these techniques were not effective with the step-



Figure 7: Reduction in mean number of proposals required
to find an optimal solution when level of communication is
altered. Step-Up procedure; baseline condition is shown for
comparison. All other conditions involve full knowledge use
(as in the “know/shad” condition in the previous figure). In
the “com pref” condition, agents indicated whether their re-
jection was due to constraint or preference violations (as de-
scribed in Sect. 4.1). In the “com conf” condition agents
also gave one reason for a rejection based on constraint vio-
lations in the form of one meeting that was in conflict with
the proposal.

down procedure (basically because previous rejections could
not be used to bound shadow preferences in a way that al-
lowed agents to avoid making proposals again), while with
the Pareto optimal procedure the bounding procedures used
with the step procedures are not available.

In the case of minimum communication, bounding prefer-
ences via the shadow preference representation is more ef-
fective than actual and possibilistic knowledge that is de-
duced about meetings. This is undoubtedly because infor-
mation can be deduced from rejections only until the first
solution is found, since after this rejections due to constraint
violations cannot be distinguished from those due to prefer-
ence violations. If both are used together, the improvement
is slightly greater than with preference information alone.

Figure 7 shows the effect of including more information
in the communications. There are two important findings.
First, if preference violations are communicated separately
from constraint violations, then the use of knowledge involv-
ing possibilities is more effective. Under this condition, the
effect of preference information alone (not shown in the fig-
ure) is no different from the effect under minimal communi-
cation. This shows that the improvement is due to the use of
rejections based on constraint violations, which can now be
detected throughout the run.

Second, when agents communicate meetings in conflict
there is a further reduction in the number of proposals re-
quired to find an optimal solution. This effect is due to in-
ferences involving modal information, since without such
knowledge use, communication of conflicts gives results for
efficiency that are identical to the baseline condition. By us-
ing modal knowledge together with arc consistency process-

Figure 8: Privacy measures for tests with knowledge and/or
amplified communication. Number of actual meetings and
open slots identified per run per agent view. Data for con-
ditions with 15 initial meetings per agent. “min/know”
= minimal communication with knowledge (actual, modal
and preference), “pf/know” = preference violations distin-
guished, “conf/know” = one conflict revealed with each re-
jection, “conflict” = conflicts revealed when modal and pref-
erence knowledge are not gathered.

ing, agents are able to deduce a large number of nogoods
for possible-can-meet values, and this in turn allows them
to rule out candidate proposals. In all the above conditions,
runtimes were about the same with and without the extra
overhead due to information storage.

Figures 8 and 9 show the effect of communicating more
information on privacy loss. These are for runs where agents
had 15 meetings in their schedules; very similar results were
found for other numbers of initial meetings. There are sev-
eral points to note:

• The small but consistent increase in actual meetings iden-
tified when non-preferences are communicated separately
from constraint violations (Figure 8) is due to deductions
via possible causes for rejections (cf. (Wallace, Freuder,
& Minca 2002)).

• The number of meetings identified when conflicts are
cited by agents is greater when possibilistic knowledge
is not gathered (Figure 8), since the number of proposals
is much greater. This reflects the inability of agents to
use this information directly to guide proposal selection
effectively, as already noted.

• Fewer open slots are deduced when conflicts are commu-
nicated (Figure 8). When possibilistic knowledge is used,
this is due to improved efficiency. In this case, therefore,
the tradeoff between improved efficiency and privacy loss
is avoided.

• The same effect was observed for preference information
(Figure 9).

• Communicating conflicts results in a marked increase in
nogoods deduced for possible can-meet’s (Figure 9). As



Figure 9: Privacy measures for tests with knowledge and/or
amplified communication. Modal nogoods and shadow pref-
erence values gathered per run per agent view. Data for con-
ditions with 15 initial meetings per agent. Labels on x-axis
as in Figure 8.

discussed above, this is the major mechanism by which
efficiency is improved.

These results show that a considerable amount of infor-
mation can be gained about another agent during the course
of solving a problem of common interest. (For reference,
if an agent has 15 meetings, then it has 55 open slots, and
there are 350 distinct modal values of each type, and 350
preferences, which under the assumption of 10 distinct pref-
erence values, gives a total of 3500 possible values.) For
some kinds of information, this occurs even when explicit
communication is kept to a minimum (cf. “min/know” con-
ditions in Figures 8 and 9). In fact, for information about
open slots and preferences, privacy can actually be reduced
by revealing other kinds of private information, here actual
meetings. This means that there is no straightforward trade-
off between efficiency gain and loss of privacy, at least when
agents are able to make sophisticated deductions about an-
other agent’s schedule.

Conclusions
This work shows that ‘optimal’ solutions can be found, ac-
cording to reasonable criteria, under limited assumptions re-
garding the commensurability of preference scales among
independent agents. This can also be done fairly well with
only limited forms of communication - provided agents are
given powerful deductive machinery based on specific as-
sumptions regarding constraints and possible meeting sites.
With more explicit communication - either by distinguishing
preference from constraint violations or by communicating
a portion of the actual meetings in conflict with a proposal -
the effort required to find an optimal solution can be reduced
by a factor of 3-5 with respect to baseline conditions. This
means that methods (in particular, step-up) that give good-
quality solutions reliably can be made almost as efficient as
simpler methods that do not carry the same guarantees of
quality (Pareto strategy).

As would be expected, tradeoffs appear between effi-
ciency and privacy loss, but these are complicated by the
manner in which information is handled. In fact, by mak-
ing deductions based on modal information, it is possible
to finesse the tradeoffs in some respects. This was found
for information regarding preferences as well as open slots,
when direct information about meetings was communicated.
In contrast to previous work where only a feasible solution
was desired (Wallace, Freuder, & Minca 2002), it was not
possible to avoid a significant amount of privacy loss in the
form of actual meetings. This was undoubtedly because of
the greater number of communications required to find an
optimal solution.

It has already been pointed out that in the present situ-
ation, where preferences are not communicated explicitly,
the existence of more sophisticated methods for determin-
ing preferences will probably have a limited effect on the
pattern of results. The present methods are, of course, com-
patible with such methods and, in fact, they should be quite
general. In addition, the quality of solution returned, espe-
cially with the step procedures, would seem to make this ap-
proach competitive with approaches that involve more elab-
orate conceptions of solution quality (e.g. (Ephrati, Zlotkin,
& Rosenschein 1994)).
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