From: AAAI Technical Report WS-02-14. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Solving Many-Valued SAT Encodings with Local Search

Felip Manya
Dept. of Computer Science
Universitat de Lleida
E-25001 Lleida, Spain

Carlos Ansoétegui
Dept. of Computer Science
Universitat de Lleida
E-25001 Lleida, Spain

Abstract

In this paper we present MV-SAT, which is a many-valued
constraint programming language that bridges the gap be-
tween Boolean Satisfiability and Constraint Satisfaction. Our
overall goal is to extend the SAT formalism with many-valued
sets and deal with more compact and natural encodings, as
in CSP approaches, while retaining the efficiencies of SAT
solvers operating on uniform encodings. After some for-
mal definitions, we first discuss the logical and complexity
advantages of MV-SAT compared to SAT and other many-
valued problem modeling languages. Second, we define MV-
SAT encodings, and analyze their complexity, for a number
of combinatorial problems: quasigroup with holes comple-
tion, graph coloring, all interval series, and sports schedul-
ing. Third, we describe MV-WalkSAT: a local search strategy
adapted from the Boolean WalkSAT procedure that we have
implemented and that incorporates several heuristics to es-
cape from local minima. Finally, we report on an empirical
evaluation that provides experimental evidence of the com-
petitiveness of the MV-SAT problem solving approach.

Introduction

In recent years we have seen an increasing interest in propo-
sitional satisfiability encodings. The study of search be-
havior of random propositional satisfiability (SAT) formulas
has provided tremendous insights into the hardness nature of
such combinatorial problems, beyond the worst-case notion
of NP-completeness. In particular, such studies have un-
covered an interesting phase transition behavior between an
area in which most instances are solvable and one in which
most of the instances are unsolvable (Cheeseman, Kanefsky,
& Taylor 1991; Mitchell, Selman, & Levesque 1992) — the
critically constrained area, where the hardest instances oc-
cur, coincides with the phase transition.

The identification of very hard instances has in turn led
to the development of fast SAT solvers, which in turn is
making propositional satisfiability a competitive encoding
to solve other NP-complete problems. The approach con-
sists of translating a given problem into propositional sat-
isfiability, solving it with a fast SAT solver and mapping
the solution back into the original problem. Examples of
domains where propositional encodings have been shown

Copyright (© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Carla P. Gomes
Dept. of Computer Science
Cornell University
Ithaca, NY 14853, USA

Ramoén Béjar
Dept. of Computer Science
Universitat de Lleida
E-25001 Lleida, Spain

effective include hardware verification (Marques-Silva &
Guerra 1999; Moskewicz et al. 2001), planning (Kautz &
Selman 1996), and other benchmark problems such as graph
coloring (Selman & Kautz 1993), and the quasigroup com-
pletion problem (Gomes & Selman 1997).

The success of using CSP and SAT solvers to tackle
hard combinatorial problems has been somewhat counter-
intuitive. Traditional wisdom is that designing a search
method working directly on the original problem encoding
should outperform approaches that require a translation via
a generic intermediate format, such as a SAT or a CSP en-
coding. However, this line of reasoning ignores the fact that
generic solvers can benefit from many years of development
by a broad research community. It is not easy to duplicate
this kind of effort for a particular problem domain. More-
over, in generic problem solving approaches, encodings can
compensate for much of the loss due to going to a uniform
representation formalism like CSP or SAT. It is well-known
that different encodings (e.g. dual encodings, redundant en-
codings, encodings that break symmetries) of a same com-
binatorial problem may give raise to very different perfor-
mance profiles.

Let’s consider a concrete example, the problem of find-
ing a completion for a partially defined quasigroup or Latin
square. This problem consists of coloring the n? cells of
an n - n matrix, with n colors, such that there are no rep-
etitions of color in each row and each column. The most
natural way of encoding this problem is a CSP formulation
with n? variables, each variable with a domain of n colors,
and O(n) “all-diff” constraints (each constraint stating that
n variables, in a row or column, need to be assigned differ-
ent values). An efficient SAT encoding uses n? variables and
O(n*) clauses (Achlioptas et al. 2000; Kautz et al. 2001).
In this domain, sophisticated CSP methods have been ex-
plored in detail (e.g., using global consistency measures and
randomization) (Gomes & Selman 1997; Kautz et al. 2001,
Régin 1994; Stergiou & Walsh 1999). Such approaches cur-
rently can handle hard completion problems involving Latin
squares. Nevertheless, despite the tremendous progress on
the CSP side, SAT solvers running on the relatively large
SAT encodings defined in (Kautz et al. 2001) still often out-
perform the CSP approaches. As we will show, using the
constraint programming language we propose in this paper,
we obtain compact and natural encodings of Latin squares

like in CSP, and we reduce dramatically the time that SAT
solvers need to find a solution.

Our research program is aimed at bridging the gap be-
tween propositional satisfiability encodings and constraint
satisfaction formalisms. The challenge is to combine the
inherent efficiencies of SAT solvers operating on uniform
satisfiability encodings with the much more compact and
natural representations, and more sophisticated propagation
techniques of CSP formalisms. Our starting point to achiev-
ing our research objectives is our experience with many-
valued propositional logics and, specifically, with develop-
ing encodings of combinatorial problems and satisfiability
solvers for many-valued clausal forms (see, e.g. (Beckert,
Hihnle, & Manya 1999; 2000; Béjar 2000; Béjar et al. 2001;
Béjar, Hihnle, & Manya 2001; Béjar & Manya 1999a;
1999b; 1999c)). Based on this experience, in this paper
we propose MV-SAT as a new constraint programming lan-
guage between CSP and SAT.

MV-SAT is the problem of deciding the satisfiability of
many-valued CNF Formulas. A many-valued CNF formula
is a classical propositional conjunctive clause form based
on a generalized notion of literal, called many-valued lit-
eral. Given a truth value set T' (|T'| > 2) equipped with
a total ordering <, a many-valued literal is an expression
of the form S : p, where p is a propositional variable and
S is a subset of T' which is of the form {i}, of the form
ti={jeT|j>i}, orof the form |i={jeT|j<i}
for some ¢ € T. The informal meaning of S:p is “p is
constrained to the values in S’

In this paper we first formally define the syntax and
semantics of many-valued CNF formulas, as well as the
many-valued clausal forms so-called signed, regular and
monosigned CNF formulas. Second, we discuss the logical
and complexity advantages of MV-SAT compared to SAT
and other many-valued problem modeling languages. Third,
we present MV-SAT encodings for a number of combinato-
rial problems: quasigroup with holes completion (Achliop-
tas et al. 2000), graph coloring (Selman & Kautz 1993), all
interval series (Hoos 1998), and sports scheduling (Gomes
et al. 1998). We show that some of these problems
have a much concise and natural encoding in our many-
valued formalism than in the Boolean formalism. For exam-
ple, while an efficient SAT encoding of a quasigroup uses
n? variables and O(n*) clauses (Achlioptas et al. 2000;
Kautz et al. 2001), an MV-SAT encoding only uses n? vari-
ables and O(n?) clauses. Fourth, we present MV-WalkSAT:
a local search strategy adapted from the Boolean Walk-
SAT procedure that incorporates several heuristics to escape
from local minima (Basic, Novelty, R-Novelty, R-Novelty+,
G); this algorithms builds on our previous implementa-
tions of Regular-WalkSAT (Béjar 2000; Béjar et al. 2001;
Béjar & Manya 1999c), which is a local search procedure for
the subclass of regular CNF formulas. Nevertheless, and due
to the improvements performed in the current implementa-
tion, MV-WalkSAT is slightly faster than Regular-WalkSAT
even when MV-WalkSAT only considers regular CNF for-
mulas. Fifth, we present detailed experiments on a repre-
sentative sample of computationally difficult benchmarks.
Our results provide experimental evidence of the competi-

tiveness of the MV-SAT problem solving approach. Finally,
we give some conclusions and concluding remarks.

Many-Valued CNF Formulas

Definition 1 A truth value set, or domain, is a non-empty set
T = {i1,i2,... ,in}, equipped with a total ordering <. A
sign is a set S C T of truth values. For each element i of the
truth value set T, let i denote the sign {j € T | j > i},
and let | i denote the sign {j € T |j <i}. A sign S is
monosigned if it is identical to {i} for some i € T. A sign S
is regular if it is identical either to 11 (positive) or to |i
(negative) for some i € T. A sign S is many-valued if it is
monosigned or regular.

Definition 2 A signed literal is an expression of the form
S :p, where S is an arbitrary subset of T and p is a proposi-
tional variable. A many-valued literal is an expression of the
form S : p, where S is a many-valued sign and p is a propo-
sitional variable; in case S is monosigned (regular) we say
that S : p is monosigned (regular). A signed clause is a dis-
Jjunction of signed literals. A many-valued clause is a dis-
Junction of many-valued literals; in case all the literals are
monosigned (regular) we say that the clause is monosigned
(regular), and in case there is either at most one regular pos-
itive literal or at most one monosigned literal we say that
the clause is Horn. A signed CNF formula is a conjunction
of signed clauses. A many-valued CNF formula is a con-
Junction of many-valued clauses; in case all the clauses are
monosigned (regular, Horn) we say that the CNF formula is
monosigned (regular, Horn).

Definition 3 An interpretation is a mapping that assigns to
every propositional variable an element of the truth value
set. An interpretation I satisfies a many-valued (signed) lit-
eral S:p iff I(p) € S. An interpretation satisfies a many-
valued (signed) clause iff it satisfies at least one of its liter-
als. A many-valued (signed) CNF formula I is satisfiable iff
there exists at least one interpretation that satisfies all the
clauses in I'. A many-valued (signed) CNF formula that is
not satisfiable is unsatisfiable.

MV-SAT is formally defined as the problem of decid-
ing the satisfiability of many-valued CNF formulas. In-
deed, many-valued CNF formulas can be seen as the union
of regular and monosigned CNF formulas, which are the
most widely investigated many-valued problem modeling
languages (see, e.g. (Baaz & Fermiiller 1995; Béjar 2000;
Béjar et al. 2001; Béjar, Hihnle, & Manya 2001; Béjar &
Manya 1999a; 1999b; 1999c; Frisch & Peugniez 2001))

Logical and Complexity Aspects of MV-SAT

In this section we present the logical and complexity re-
sults that led us to choose many-valued CNF formulas as
our problem modeling language. In particular, we show
that the Horn-SAT and 2-SAT problems of many-valued
CNF formulas belong to the same complexity class as the
Horn-SAT and 2-SAT problems of the less powerful lan-
guages of monosigned and regular CNF formulas; observe
that not all binary (Horn) many-valued CNF formula can be

expressed either as a pure monosigned or as a pure regu-
lar binary (Horn) CNF formula.! On the other hand, Horn-
SAT is NP-complete for monosigned CNF formulas with
negation (i.e. formed by monosigned literals and negated
monosigned literals), and 2-SAT is NP-complete for both
signed and monosigned with negation CNF formulas. Inter-
estingly, any of such CNF formulas is logically equivalent
to a many-valued CNF formula that has exactly the same
variables and the same number of clauses.

We have recently shown in (Ansétegui e al. 2002) that,
given a monosigned or a regular positive unit clause S : p
and a many-valued Horn clause S’ :pV D, the following
inference rule (many-valued positive unit resolution rule)

S:p S':pvD
D

is refutation complete for many-valued Horn CNF formulas.
Since the number of possible resolvents that can be produced
by applying rule (1) to a many-valued Horn CNF formula is
polynomial, we have that many-valued Horn-SAT is poly-
nomially solvable. But we can prove that Horn-SAT is NP-
complete for monosigned with negation CNF formulas: NP-
containment is straightforward to show. The 3-colorability
for an undirected graph G = (V, E) is polynomially re-
ducible to our Horn-SAT problem by taking 7' = {1,2, 3}
and defining the following clauses

(—{1}:u v —{1}:v)A
({2} :u Vv ={2}:0) A 2)
(={3}:u Vv —={3}:v)

for each edge [u,v] € E.

Observe that formula (2) is formed by Horn clauses which
are also binary clauses, and therefore we can conclude that
2-SAT is NP-complete for monosigned with negation CNF
formulas. Moreover, since formula (2) is logically equiv-
alent to the signed CNF formula ({2,3} : uw Vv {2,3} :
v) A ({1,3} ru Vv {1,3}:v) A ({1,2} s uwV {1,2} : v),
we can also conclude that 2-SAT is NP-complete for signed
CNF formulas.

In (Ansétegui et al. 2002) we have shown that, given two
many-valued clauses S : pV Dy and S’ : p V D>, the many-
valued binary resolution rule

S:pvDy S':pVD,
Dy V Dy

is refutation complete for many-valued CNF formulas (and,
of course, for the subclasses of regular and monosigned
CNF formulas). Since the number of resolvents is polyno-
mial when both parent clauses are binary, we have that 2-
SAT is polynomially solvable for many-valued, regular and
monosigned CNF formulas.

ifSNs' =0 ey

ifSNS' =0 3)

!Since monosigned CNF formulas have no notion of polarity,
it makes no sense to define monosigned Horn CNF formulas. The
same happens for arbitrary signed CNF formulas. We have Horn
CNF formulas when we extend monosigned CNF formulas with
negation; in this case, a clause is Horn if it contains at most one
non-negated (positive) monosigned literal.

Rule (3) it is not complete (i) for signed CNF formulas,
and (ii) for monosigned CNF formulas with negation. For
instance, given the truth value set T' = {1, 2, 3}, the signed
CNF formula {1,2} : p A {1,3} : p A {2,3} : p is clearly
unsatisfiable but cannot be proved with that rule. The same
happens if we incorporate negation to monosigned literals:
Observe that {1,2} :pA{1,3}:pA{2,3}:pis equivalent to
—{3}:pA={2}:pA—{1}:p. For obtaining a complete calcu-
lus for that sort of formulas we need the following inference
rules (Murray & Rosenthal 1993):

S1:pV D, Sa:pV Do
(51 ﬂSz)ZpVDl V D,

0:pv D
D “)

Note that, unlike many-valued binary resolution, the lit-
eral resolved upon does not necessarily vanish and a so-
called residue remains. Unfortunately, computing and prop-
agating residues complicates considerably the data struc-
tures, and increases the time needed to apply resolution
rules. For instance, unit propagation can be naturally ex-
tended to many-valued CNF formulas. However, unit prop-
agation —which is the main constraint propagation tech-
nique in satisfiability solvers— needs to consider residues
for signed and monosigned with negation CNF formulas.

The above complexity results remain valid in case the
domain is continuous and all the signs are intervals. They
are also valid in case the domain, say 7' = {i1,i2,... ,in},
is discrete and signs are subsets of 7' of the form

{i, 0541, 0502, 0 5 ljgn)

MV-SAT Encodings

In this section we define MV-SAT encodings, and analyze
their complexity, for a number of combinatorial problems:
quasigroup with holes completion (Achlioptas ez al. 2000),
graph coloring (Selman & Kautz 1993), all interval se-
ries (Hoos 1998), and round robin scheduling (Gomes et
al. 1998). As we will see, MV-SAT encodings for some
of those problems are much compact than SAT encodings.
On the other hand, MV-SAT encodings are much natural
and closer to CSP encodings; in the sense of their capa-
bility to succinctly express different types of constraints,
dealing with domains, and using a similar number of vari-
ables. For instance, suppose we want to encode the con-
straint py =1V ps =3V p3 #4V py # 100 and that the
domain of values is 7' = {1,...,100}. It can be eas-
ily encoded as a many-valued CNF formula as follows:
{1} :ptV{3}:p2VI3:p3V1T5:p3V]99:py.

Observe that for representing negation we use one or two
regular literals, but if we only consider monosigned literals,
we need disjunctions of |N'| — 1 monosigned literals. More-
over, monosigned literals— unlike regular literals— are not
well-suited for dealing with continuous domains. On the
other hand, if we only consider regular literals, we cannot
represent in a compact way disjunctions of positive con-
straints, because a positive constraint, using only regular lit-
erals, has to be represented as the conjunction of two regular
literals. So, encoding a disjunction of positive constraints
using only regular literals produces a CNF formula with an
exponential number of clauses.

Finally, observe that we obtain certain computational ad-
vantages from having an ordering on our truth values. The
reason for this is that we can use data structures that keep
track of intervals or ranges of truth values by storing their
end-points, instead of manipulating only discrete lists of
truth values.

Graph Coloring Encoding

Given an undirected graph G = (V, E), where V is the
set of vertices and FE is the set of edges, the k-colorability
problem is the problem of deciding if there is a function
c¢:V — {1,...,k} such that for each edge [u,v] € FE
we have c¢(u) # ¢(v).

Our MV-SAT encoding of the k-colorability problem for
a graph G = (V, E) employs |V| propositional variables
(SAT encodings use k - |V| variables) and a domain 7' =
{1,...,k} with k elements: there is one variable for each
vertex, and each element of the domain represents one color.
Then, the MV-SAT instance is formed by k& many-valued
clauses for each edge [u, v] € E:

12:uVt2:v
{1}:uv13:uv{l}:oV13:v

Li—1):uvt(+1):uvi@—1):oviiE+1):v

Vk—2):uV ik} :uvi(k—2) 0V {k}:v
lk=1):uvi(k=1):v

The intended meaning of the first clause is that vertex w
and vertex v do not have both color 1, of the second that
do not have both color 2, and so on. Observe that from the
definition of interpretation we can ensure that every vertex
is colored exactly with one color. The number of clauses of
the many-valued encoding is in O(|T| - | E|), where |T| is
the number of colors and |E| is the number of edges. The
simplest SAT encoding for that problem is in O(|V| + |T| -
|E|), where |V| is the number of vertices.

Quasigroups With Holes (QWH) Encoding

Given n colors, a quasigroup, or Latin square, is defined by
an n by n table, where each entry has a color and where
there are no repeated colors in any row or any column; n is
called the order of the quasigroup.

The problem of whether a partially colored quasigroup
can be completed into a full quasigroup by assigning colors
to the open entries of the table is called the quasigroup with
holes problem in case the partially colored quasigroup is ob-
tained from a full quasigroup by “punching” holes into it
(cf. (Kautz et al. 2001) for further details). This way of gen-
erating instances is particularly useful for testing incomplete
SAT solvers because all the instances generated are satisfi-
able, and has the advantage that the hardness can be finely
controlled by the number of open entries in the table.

Our MV-SAT encodings of quasigroup of order n employ
n? propositional variables (like CSP encodings) and a do-
main with n elements: there is one variable per cell, and
each element of the domain represents one of the colors that

can be assigned to the cell. Then, the MV-SAT instance is
formed by a set of clauses that state that each row and each
column is a permutation of n colors.

We consider two encodings of permutation, one is
monosigned (i.e. literals only contain monosigned signs)
and the other regular (i.e. literals only contain regular signs).
Given a vector v = (vi,...,U,), the first basic encod-
ing (P1) that represents that v is a permutation of n elements
is defined as follows:

Foreacht € {1,---,n} we define the clause

{t}:v1 V-V {t}:up;

and the second basic encoding (P2) is defined as follows:
For each ¢,j (1 < ¢,j < n) such that i < j, and for each
t € {1,---,n}, we define the clause

=1 VT (E+1) o, VI({E—1):o; VI(E+1) vy

The quasigroup SAT encodings defined in (Kautz et al.
2001) employ n? propositional variables while our MV-SAT
encodings only employ n? variables; the number of clauses
is in O(n*) for the SAT encoding and the MV-SAT encod-
ing that uses P2 for representing permutation, but the MV-
SAT encoding that uses encoding P1 reduces dramatically
the number of clauses: it only employs 2n? clauses. We call
the encoding with P1 monosigned encoding, the one with P2
regular encoding, and the redundant encoding with both P1
and P2 the hybrid encoding.

All Interval Series Encoding

The All Interval Series (ALS) problem of size n is formulated
as follows: find two vectors s and v, such that

1. s=(s1,...,8y) is a permutation of {0,1,... ,n — 1}.

2. v=(|sa—s1|,|s3—52|,-.. ,|Sn—5n—1]) is a permutation
of {1,2,... ,n—1

Our MV-SAT encoding of the AIS problem of size n uses
2n — 1 variables (like CSP encodings) and a domain with n
elements: there are n (n — 1) variables for vector s (v), and
each element of the domain represents one of the values that
can be assigned to the elements of vectors s and v. Then,
an MV-SAT instance is formed by (i) a set of clauses that
state that s is a permutation of {0, 1,...,n—1}; (ii) a set of
clauses that state that v is a permutation of {1,... ,n — 1};
and (iii) a set of clauses that state that v; = |s;+1 — s;| for
each i, where 1 <i < n.

The clauses of (iii) are defined as follows: For
each two different z,y € {0,1,... ,n — 1} and for each
i (1 <14 < n— 1), we define the clause

llz—-1):s; VT (z+1):sV
Jy—1D st VT (y+1):si01 V{z}:v,

where z = |z — y|.

We have considered the monosigned encoding (P1) to
represent that vectors s and v are permutations of natural
number because it allow us to obtain better experimental re-
sults. In this case, the MV-SAT encoding uses only O(n)
clauses for encoding permutations while the SAT encoding
uses O(n?) clauses.

Round Robin Timetabling Encoding

The round robin timetabling problem for n teams (n even)
is the problem of constructing an sports league such that:

1. There are nn/2 fields, and the season lasts n — 1 weeks.
Every team plays one game in each week of the season.
Every two teams play each other exactly once.

Each week, every field is scheduled for one game.

A

No team plays more than twice in the same field during
the season.

The meeting between two teams is called a game and
takes place in a slot; i.e., in a particular field in a particular
week. An n-team round robin timetable contains n(n—1)/2
slots and slots are filled in with games. A game is repre-
sented by a pair of teams (1, t2).

Our MV-SAT encoding of the n-team round robin prob-
lem uses n - (n — 1) propositional variables and a domain
with /2 elements: there is a variable for every combination
team—week, and each element of the domain represents one
of the fields that can be assigned to a team in a particular
week. Then, an MV-SAT instance is defined is as follows:

1. Every team plays one game in each week of the season.
This constraint is satisfied because an interpretation as-
signs exactly one field to every combination team—week.
Nevertheless, we have to add clauses for ensuring that
there are no more than two teams assigned to a particu-
lar slot: For each three different teams ¢, ¢, t3, for each
week w, and for every field f, we define the clause

V=1 :pE VA(f+1):p v
V=D p VI(f+1)ip vV
V=0 p VI(f+1):p

2. Every two teams play each other exactly once. For each
two teams t1, to such that £; < ts, for each two different
weeks wy, wy, and for each two fields f,, f», we define
the clause

(fl 1) Ptl () p?il \4
L(fi—1): Ptz T(L+1): pgl \
(fo=1) i VI (ot ipPV

(2 =1) i V(2 +1) iy
3. No team plays more than twice in the same field over the
course of the season. For each team ¢, for each field f,
and for each three different weeks wq, wo, w3, we define
the clause

V=1 :p VI (f+1):p v
V=1 :p2 VT (f+1):p*V
V=1 p2V(f+1):p?

The number of clauses of our pure regular encoding is
in O(n®), like the number of clauses for the best known
Boolean encoding of the problem (Béjar & Manya 2000).
It is possible to define both SAT and MV-SAT encodings
with a number of clauses in O(n*), but their performance
profile is much worse than encodings in O(n®).

procedure MV-WalkSAT

Input: a many-valued CNF formula [', MaxChanges, MaxTries and w

Output: a satistying interpretation of I, if found
for ¢ := 1 to MaxTries
I := arandomly generated interpretation for I';
for j := 1 to MaxChanges
if I satisfies I' then return [;
C':= an unsatisfied clause of I';
S:={(p,k)|S:peCkeS}
w = min ({broken((p, k),T) | (p,k) € S});
p’ = a variable from {p | broken((p,k),T) = u, (p, k) € S};
k' := avalue from {k | broken((p’,k),T) = u, (p', k) € S};
ifu>0then
w1 th probability w
p’ := a variable from the set {p | (p, k
k' := a value from the set {k | (p', k)
end if
I := I with the truth assignment of p’ changed to k';
end for
end for
return “no satisfying interpretation found”;
Figure 1: The MV-WalkSAT procedure

) €Sh
€S}

MYV-SAT Solvers

To obtain competitive problem solving approaches we need
both suitable encodings and fast solvers. In our research
program we are designing and implementing complete and
incomplete solvers for MV-SAT. Concerning systematic
search, we are currently implementing Mv-Satz (Ansétegui
et al. 2002), which is an extension of Satz (Li & Anbulagan
1997). Our preliminary results are quite promising, at least
for the benchmarks proved so far. Mv-Satz is, to our best
knowledge, the first complete many-valued solver that could
compete with state-of-the-art Boolean solvers.

Concerning local search, there exists two efficient many-
valued extensions of WalkSAT (Selman, Kautz, & Co-
hen 1994): NB-WalkSAT (Frisch & Peugniez 2001), deal-
ing only with monosigned CNF formulas; and Regular-
WalkSAT (Béjar 2000; Béjar et al. 2001; Béjar & Manya
1999c¢), dealing only with regular CNF formulas.

In this paper we describe MV-WalkSAT — the pseudo-
code is shown in Figure 1—, which is a local search solver
for many-valued CNF formulas that we have recently imple-
mented, and that builds on Regular-WalkSAT. MV-WalkSAT
incorporates monosigned literals in addition to regular liter-
als.

MV-WalkSAT tries to find a satisfying interpretation for a
many-valued CNF formula I" performing a greedily biased
walk through the space of possible interpretations. It starts
with a randomly generated interpretation I. If I does not
satisfy T, it proceeds as follows: (i) it randomly chooses
an unsatisfied clause C, (ii) it chooses a variable-value pair
(p', k') from the set S of pairs (p, k) such that C is satisfied
by the current interpretation I if the truth value that I as-
signs to p is changed to k, and (iii) it creates a new interpre-
tation I’ that is identical to I except that I'(p’) = k'. Such
changes are repeated until either a satisfying interpretation
is found or a pre-set maximum number of changes (Max-

instance WalkSAT MV-WalkSAT R-Novelty+ MV-R-Novelty+
w flips time || w flips | time || w flips | time w flips | time
DSIC125.5 || 13 | 4.41-10% | 69.10 || 14 | 8.91-10° | 32.58 || 11 | 11.2-10° | 13.22 || 47 | 2.5-10° | 9.33
DSJC250.5 || 15 | 2.16-10% | 104.30 || 16 | 5.16-10° | 63.74 || 12 | 4.75-10° | 21.36 || 47 | 1.6-10° | 18.02
Table 1: Experimental results for the graph coloring problem (DIMACS instances: DSJC125.5.col (17 colors) and
DSJC250.5.col (29 colors)). The parameter h of R-Novelty+ and MV-WalkSAT was set to 15. Mean time in seconds.
order 33 order 36
algorithm || w flips | time || w flips time
WalkSAT || 30 [9.41-10° | 21.49 || 22 | 89.61-10° | 255.52
MV-WalkSAT || 20 | 1.63-10° | 3.09 || 18 | 10.59 - 10° 18.78

Table 2: Experimental results for QWHs of order 33 and 36 in the peak of hardness. Mean time in seconds.

Changes) is reached. This process is repeated as needed, up
to a maximum of MaxTries times. In step (ii), MV-WalkSAT
calculates, for each pair (p, k) in .S, the number of broken
clauses; i.e. the number of clauses that are satisfied by I
but that would become unsatisfied if the assignment of p is
changed to k. If the minimum number of broken clauses
found (u) is greater than zero then it randomly chooses,
with probability w, a pair (p', k') from S, or it randomly
chooses, with probability 1 — w, a pair (p', k') from those
pairs for which the number of broken clauses is u. If u = 0,
then it randomly chooses a pair from those pairs for which
u = 0. Apart from this basic heuristic, we have also incorpo-
rated more advanced heuristics to escape from local minima
such as G, Novelty, R-Novelty, and R-Novelty+ (Selman,
Kautz, & Cohen 1994; McAllester, Selman, & Kautz 1997,
Hoos 1998).

As in Regular-WalkSAT, MV-WalkSAT uses specialized
incremental data structures for handling changes in the value
of flip counters. Updating the value of flip counters is the
key point of the algorithm, because every time the algorithm
performs a flip, lots of flips counters can be affected. When
aregular literal S : p, that has |.S| flips that satisfy p, appears
in a clause affected by a flip, the algorithm keeps track of the
updating needed to be performed in the |S| flips with a sin-
gle operation. Because S is either of the form | : or 15 :,
all these flips can be described with a starting truth value
and a direction. So, the algorithm uses a special counter
that indicates an updating that should be performed to all
the | S| flips. The same counter is used to accumulate fur-
ther updates to the same set of flips. Later on, when the
flip selection function needs to consult the value of the flip
counters of p, their actual value is updated using the infor-
mation accumulated in the special counters. MV-WalkSAT,
in addition to these these data structures incorporates spe-
cific mechanisms for handling monosigned literals, getting
a final worst-case time complexity of O(|C|) when process-
ing a clause with |C/|, regular or monosigned, literals.

Actually, due to the improvements performed in the cur-
rent implementation, MV-WalkSAT is slightly faster on
regular CNF formulas than the last version of Regular-
WalkSAT (Béjar et al. 2001). On the other hand, MV-
WalkSAT performs less flips than NB-WalkSAT when solv-

P(flips < x)

LBLAALL L
MV-WalkSat
WalkSat ————

08 [~

06 [~

02—~

(I EEETT R

P(time <x)

LA R
MV-WalkSat
| WalkSat ————

e

o L vmm
10000 100000 1e+06 1e+07

flips

1e+08

ol
0.01

1
time

10 100

Figure 2: RLDs (left) and RTDs (right) on the median instance for
order 33

P(flips < x)

T
MV-WalkSat
WalkSat ————

08 -

06 [~

04 |~

02 |-

o
Y RS I I

P(time < X)

0.8 -

0.6

0.4

0.2

T T
MV-WalkSat
WalkSat ————

i BT | Y

o T
10000 100000 1e+06 1e+07 1e+08
flips

1e+09

o
0.01 0.1

1

10
time

100 1000 10000

Figure 3: RLDs (left) and RTDs (right) on the hardest instance for
order 33

ing a monosigned instance (at least for the problems we have
tried) because it uses a slightly different way of picking the
next variable to flip: MV-WalkSAT first chooses a variable
from among those in the clause and then chooses one of the
values that appear with that variable, whereas NB-WalkSAT
simply chooses from among all the literals in the clause.
The cost of performing a flip is approximately equal in
NB-WalkSAT and MV-WalkSAT. NB-WalkSAT incorpo-
rates the basic heuristic, but not G, Novelty, R-Novelty, and
R-Novelty+. Since MV-WalkSAT incorporates more heuris-
tics to escape from local minima, and gives slightly better
results on both regular and monosigned CNF formulas, we
have solved pure regular and pure monosigned encodings
with MV-WalkSAT in our empirical evaluation.

Experimental Results

In this section we present in detail the experimental inves-
tigation we have conducted in order to compare the perfor-

Table 4: Experimental results for round robin problem.
Mean time in seconds.

mance between SAT and MV-SAT local search algorithms
when solving the combinatorial problems described above.
In our experiments we used approximately optimal noise pa-
rameters (w), and a very high cutoff value in order to get a
solution in every try. We performed 200 tries for every in-
stance. For all the benchmarks we report on results using the
basic heuristic of WalkSAT and MV-WalkSAT, and also re-
port on results using the best performing heuristic we have
found for every benchmark among G, Novelty, R-Novelty,
and R-Novelty+. All the experiments were performed on 1
GHz Pentiums III with 512 Mb of memory.

For graph coloring instances, we considered two chal-
lenging instances taken from the DIMACS repository that
are beyond the reach of complete SAT solvers. We found
that the best performing encoding is the pure regular encod-
ing described above. Table 1 shows results for WalkSAT
and MV-WalkSAT with the basic heuristic and R-Novelty+.
The table shows the mean solution times (since we are deal-
ing with local search methods, the means are well-behaved,
i.e., no large outliers). The results show that MV-WalkSAT
slightly outperforms WalkSAT, both in terms of time and
number of flips. The difference in terms of time is less sig-
nificant. This is because the cost of performing flips is some-
what larger for MV-WalkSAT.

For the QWH domain, we have compared the perfor-
mance of WalkSAT and MV-WalkSAT when solving in-
stances at the hardness peak of the phase transition (Kautz
et al. 2001). Table 2 shows results for quasigroups of or-
der 33 and 36; we considered 100 instances of each or-
der. We found that the basic heuristic of MV-WalkSAT, to-
gether with the monosigned encoding, is the best approach
for the QWH domain. For SAT, we used the best performing
heuristic (basic) and encoding (so-called 3-D in (Kautz ez al.
2001)). We observe that the MV-WalkSAT clearly outper-
forms WalkSAT. Also, note that, in this domain, SAT based
approaches outperform standard CSP approaches (Achliop-
tas et al. 2000; Kautz et al. 2001).

Although the average complexity of solving instances
from a problem domain distribution gives us a valuable in-
formation about the difficulty of the problem, the complexity

size WalkSAT MV-WalkSAT R-Novelty MV-R-Novelty

w flips time || w flips | time || w flips time || w flips | time

14 5] 211-10° 9.03 || 5 4.1-10° 19 10] 75-10° 361 || 11 | 0.8-10° | 0.62

16] 4] 134-10° | 59.03 || 4| 4.29-10° | 21.8 8 5-10° | 27.62 8| 4.7-10° | 451

18] 3]63.73-10° [35854 || 3 26.33-10° | 145.6 6] 24.7-10° | 160.05 7 12.07-10° | 24.18

Table 3: Experimental results for the all interval series problem. Mean time in seconds.

n WalkSAT/G MV-WalkSAT/G of solving individual instances obtained with the same pa-
w flips time || w flips time rameters can vary drastically from instance to instance. So, a
16 || 14 | 30.2-10° | 4098 || 4| 2.3-10° 1092 more detailed analysis requires a study of the complexity of
18 1 12 1 261.2-10°% | 45258 || 2 | 27.0-10° | 14987 solving individual instances. To do so, we have constructed

empirical Run-time distributions (RTDs) and Run-length
(number of flips needed) distributions (RLDs) for Walk-
SAT and MV-WalkSAT when solving the same instance.
The methodology followed has been the one used in (Hoos
1998). We have focused our attention on the median in-
stance and the hardest instance of a given test-set. Here we
present results for the test-set of quasigroups of order 33.
Figure 2 shows the RLDs and RTDs for MV-WalkSAT and
WalkSAT on the median instance. These empirical RLDs, in
the cumulative form shown, give the probability that the al-
gorithm finds a solution for the instance in less than the num-
ber of flips of the x—axis (similarly in the RTDs). We ob-
serve that MV-WalkSAT strictly dominates WalkSAT; i.e.,
the probability of finding a solution with MV-WalkSAT in
less than x flips is always greater than the probability of
finding a solution with WalkSAT. MV-WalkSAT dominates
the WalkSAT in the run time. Figure 3 shows the same re-
sults but for the hardest instance of the same test-set. We
observe a similar relative difference between the run time
performance of the two algorithms.

Table 3 shows results for the AIS problem using an hybrid
encoding with monosigned and regular clauses, and Table 4
for the round robin problem using a pure regular encoding;
these are the best performing encodings we have found. We
see a dramatic reduction on both time and flips when using
the MV-SAT encodings. The basic heuristic of both Walk-
SAT and MV-WalkSAT was not able to solve the round robin
instances after 24 hours; we solved the instances with heuris-
tic G. This fact, together with the good results obtained for
AIS with R-Novelty, highlight the importance of not limit-
ing our investigation to the basic heuristic as has been done
so far for NB-WalkSAT. As a byproduct, we have also pro-
vided experimental evidence that NB-WalkSAT can be used
to solve combinatorial problems other than the graph color-
ing instances of (Frisch & Peugniez 2001).

Conclusions

In this paper we have shown that MV-SAT is a very com-
petitive problem solving approach that allows us to model
combinatorial problems in a concise and natural way like in
CSP, and at the same time to develop fast solvers operat-
ing on uniform encodings like in SAT. Our results provide
experimental evidence that MV-SAT outperforms SAT on a
range of hard combinatorial problems. The improvement
in performance is due to both suitable encodings and fast

solvers that incorporate advanced heuristics to escape from
local optima. As a constraint programming language, MV-
SAT combines the advantages of monosigned and regular
encodings by allowing us to deal with pure monosigned and
pure regular, as well as with hybrid encodings. Our next step
to improve MV-SAT is to develop CSP-like constraint prop-
agation techniques, to consider continuous domains, and to
incorporate global constraints such as “all-diff”.

Acknowledgements

This research was partially funded by the DARPA con-
tracts F30602-00-2-0530 and F30602-00-2-0596, by project
CICYT TIC2001-1577-C03-03, and by the Intelligent In-
formation Systems Institute, Cornell University, funded by
AFRL/AFOSR (F49620-01-1). The first author is supported
by a doctoral fellowship of Intelligent Software Components
(iSOCO).

References

Achlioptas, D.; Gomes, C. P.; Kautz, H.; and Selman, B.
2000. Generating satisfiable problem instances. In Proc. of
AAAI-2000.

Ansétegui, C.; Béjar, R.; Cabiscol, A.; Li, C.-M.; and
Manya, F. 2002. Resolution methods for many-valued CNF
formulas. In Fifth International Symposium on the Theory
and Applications of Satisfiability Testing, SAT-2002.

Baaz, M., and Fermiiller, C. G. 1995. Resolution-based
theorem proving for many-valued logics. Journal of Sym-
bolic Computation 19:353-391.

Beckert, B.; Hihnle, R.; and Manya, F. 1999. Trans-
formations between signed and classical clause logic. In
Proceedings, 29th International Symposium on Multiple-
Valued Logics (ISMVL), 248-255.

Beckert, B.; Hihnle, R.; and Manya, F. 2000. The 2-SAT
problem of regular signed CNF formulas. In Proceedings,
30th International Symposium on Multiple-Valued Logics
(ISMVL), 331-336.

Béjar, R., and Manya, F. 1999a. A comparison of system-
atic and local search algorithms for regular CNF formulas.
In Proc. of ECSQARU’99, 22-31. Springer LNAI 1638.

Béjar, R., and Manya, F. 1999b. Phase transitions in the
regular random 3-SAT problem. In Proc. of ISMIS’99,
292-300. Springer LNAI 1609.

Béjar, R., and Manya, F. 1999c. Solving combinatorial
problems with regular local search algorithms. In Proc. of
LPAR’99,33—43. Springer LNAI 1705.

Béjar, R., and Manya, F. 2000. Solving the round robin
problem using propositional logic. In Proc. of AAAI-2000.
Béjar, R.; Cabiscol, A.; Ferndndez, C.; Manya, F.; and
Gomes, C. P. 2001. Capturing structure with satisfiabil-
ity. In Proc. of CP-2001, 137-152. Springer LNCS 22309.
Béjar, R.; Hihnle, R.; and Manya, F. 2001. A modular re-
duction of regular logic to classical logic. In Proceedings,

31st International Symposium on Multiple-Valued Logics
(ISMVL).

Béjar, R. 2000. Systematic and Local Search Algo-
rithms for Regular-SAT. Ph.D. Dissertation, Universitat
Autonoma de Barcelona.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991.
Where the really hard problems are. In Proc. of IJCAI-91.
Frisch, A. M., and Peugniez, T. J. 2001. Solving non-
boolean satisfiability problems with stochastic local search.
In Proc. of IJCAI-2001.

Gomes, C. P, and Selman, B. 1997. Problem structure in
the presence of perturbations. In Proc. of AAAI-97.
Gomes, C. P; Selman, B.; McAloon, K.; and Tretkoff,
C. 1998. Randomization in backtrack search: Exploiting
heavy-tailed profiles for solving hard scheduling problems.
In Proc. of AIPS-98.

Hoos, H. H. 1998. Stochastic Local Search — Methods,
Models, Applications. Ph.D. Dissertation, Department of
Computer Science, Darmstadt University of Technology.
Kautz, H. A., and Selman, B. 1996. Pushing the enve-
lope: Planning, propositional logic, and stochastic search.
In Proc. of AAAI-96.

Kautz, H. A.; Ruan, Y.; Achlioptas, D.; Gomes, C. P.; Sel-
man, B.; and Stickel, M. 2001. Balance and filtering in
structured satisfiable problems. In Proc. of IJCAI-2001.
Li, C. M., and Anbulagan. 1997. Look-ahead versus look-
back for satisfiability problems. In Proc. of CP’97.
Marques-Silva, J. P., and Guerra, L. 1999. Algorithms for
satisfiability in combinational circuits based on backtrack
search and recursive learning. In Proc. of XII Symposium
on Integrated Circuits and Systems Design (SBCCI).
McAllester, D.; Selman, B.; and Kautz, H. 1997. Evidence
for invariants in local search. In Proc. of AAAI-97.
Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard and
easy distributions of SAT problems. In Proc. of AAAI-92.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In 39th Design Automation Conference.

Murray, N. V., and Rosenthal, E. 1993. Signed formulas:
A liftable meta logic for multiple-valued logics. In Proc. of
ISMIS°93, Trondheim, Norway, 275-284. Springer LNAI
689.

Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. In Proc. of AAAI’'94.

Selman, B., and Kautz, H. A. 1993. Domain-independent
extensions of GSAT: Solving large structured satisfiability
problems. In Proc. of IJCAI-93.

Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proc. of AAAI-94.
Stergiou, K., and Walsh, T. 1999. The difference all-
difference makes. In Proc. of IJCAI’99.

