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Abstract

The effectiveness of Bayesian network construction is a func-
tion of the predictive ability and speed of inference of the re-
sulting network, the effort and expertise required to construct
the network, and the effort and expertise required to under-
stand the network. We empirically evaluate three alternative
methods for constructing Bayesian networks from data, con-
sidering both objective performance measures and subjective
construction cost measures. Empirical results are obtained
for a large real-world medical database. We provide results
comparing network structure laboriously elicited from a do-
main expert to structure automatically induced by two alter-
native structure learning algorithms. The parameters of the
Bayesian network produced by each method are induced us-
ing the Bayesian MAP approach. Additionally, we introduce
the use of classification paths as an aggregation technique to
reduce the size and structural complexity of Bayesian net-
works. Empirical results are obtained both with and without
this complexity reduction technique.

Introduction
Structure-learning algorithms induce statistically predictive
relationships from data. These algorithms have evolved in
response to the tedious and error-prone process of man-
ual knowledge elicitation from experts employed in early
Bayesian network construction efforts. Growth of such algo-
rithms necessitates comparisons of hand-built and machine-
built hypotheses to aid the effective practice of building
Bayesian networks from large real-world databases. An ob-
jective approach for evaluating belief elicitation techniques
in probabilistic models is given in (Wang, Dash, & Druzdel
2001). In this paper we empirically evaluate alternative
structure elicitation methods to provide additional insight
into the effective use of structure learning.

We construct and test three different types of Bayesian
network: (1) the Naive-Bayes network in which n-1 of the
n random variables are conditionally independent of each
other and causally related to the remaining variable, (2) the
Learned-Bayes network whose structure is learned using a
structure-learning algorithm, and (3) the Expert-Bayes net-
work whose structure is elicited from a domain expert. We
evaluate the performance of these three networks in terms
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of their predictive ability and how well they model the tar-
get distribution. Through this empirical analysis, we exam-
ine the performance of each network-construction approach
with respect to the costs of building the network. For each
of the networks, we also model the correlation between the
size of training set and the performance of the network.

While predictive ability is an important performance met-
ric, the effectiveness of Bayesian network construction is ad-
ditionally a function of the speed of inference of the result-
ing network, the effort and expertise required to construct
the network, and the effort and expertise required to under-
stand the network. Models elicited from large data sets tend
to have a high number of nodes and causal relationships, re-
sulting in increased structural complexity. Moreover, in such
networks, only a small subset of variables may be targets for
probabilistic inference. Such huge networks prove to be un-
wieldy for performing fast and efficient inference. Thus, it is
highly desirable to provide techniques that reduce the size of
a network without affecting its scope or performance. Node
aggregation reduces the size and structural complexity of
a network. In this paper, we introduce a node aggregation
technique based on classification paths. In this method, a
subset of nodes chosen for aggregation is replaced with a
single node. This new node contains as its states (domain)
the classification paths induced from the data contained in
the former node. We empirically evaluate this tradeoff be-
tween structural complexity and state expansion.

The empirical studies in this paper are based on a large
data set procured from the Pennsylvania Trauma Systems
Foundation Registry. This data set contains information on
412 features of 148,501 patients admitted to the various
trauma centers of the state of Pennsylvania. Each record
contains clinical information, diagnoses, operative/non-
operative procedures and timestamps, and final patient out-
come. Noise in this large real-world data set was fil-
tered using novel data cleansing techniques discussed else-
where (Doshi 2001). The cleansed data set, discretized using
an entropy-based discretization technique (Fayyad & Irani
1993) and filtered, contains 152 features on each patient. Of
the approximately 22.5 million data points, 70% are missing
motivating a prudent selection of techniques that can handle
a large percentage of missing values. The different prob-
abilistic models in this evaluation are outlined in the next
section.
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Techniques for Constructing Bayesian
Networks

Recent successful commercial applications of Bayesian net-
works (Sahami et al. 1998) have illuminated the importance
of effective network design methods. The use of graphical
representation with well-defined local semantics is an im-
portant component of effective design. However, designing
Bayesian networks in complex domains such as medicine
requires extensive domain expertise. The process of knowl-
edge acquisition has proved to be tedious. These limitations
motivate the current study.

In the sections below we outline three different methods
for capturing the structural relationships among variables in
our medical data set.

Minimal Structure Configuration
Naive Bayesian networks lie at one extreme in the range of
structural complexities. In a Naive Bayesian network con-
taining n random variables, a single variable is selected as a
class variable and the remaining n-1 variables are presumed
to be conditionally independent of each other given the class
variable.

Such a minimal structure entails little domain knowledge
and is thus very simple to construct. Yet networks con-
structed this way often perform well and have been empiri-
cally shown to be robust to violations of the conditional in-
dependence assumption exhibited in the training data.

Automated Structure Learning
Structure-learning algorithms (Tong & Koller 2001; Hecker-
man, Geiger, & Chickering 1994) induce a well-performing
structure by searching a potentially exponential space of
possible network structures. A structure is found that
closely models the target distribution. A variety of structure-
learning algorithms have been proposed. In this evaluation
we employ a deterministic structure-learning method called
Bound and Collapse (Ramoni & Sebastiani 1997). This
method has the advantages of low computational cost and
good performance on data sets with a large percentage of
missing values such as ours.

Several training sets of 700 cases1 each were randomly
isolated to learn the structure. Multiple training sets were
necessary to test uniformity in underlying predictive rela-
tionships. The learned structures were found to be identical
and a representative was randomly selected for evaluation.
Despite the relatively small size of the training set, an exten-
sive structure was generated and most learned relationships
were validated by the domain expert on our team. The re-
sulting Bayesian network which we call Learned-Bayes is
displayed in Fig 1.

Expert Structure Elicitation
A prevalent technique for constructing Bayesian networks is
to elicit network structure evaluations from a domain expert

1Software limitations restricted the training set size to a maxi-
mum of 700 cases.

or similar source of domain knowledge (such as existing lit-
erature). The flow of knowledge from the domain expert to
the network designer can be a time-consuming process. An
additional source of concern for this technique is that the re-
sulting network is frequently assumed authoritative without
objective evaluation. An expert-elicited structure is expen-
sive to construct, compile and perform inference on. These
added costs are generally believed to come with increased
predictive ability and a closer fit to the target distribution.

Assisted by a Trauma Surgeon and Professor of Surgery 2

we constructed a third structural representation for the
Bayesian network. The structural relationships were based
on familiarity with the domain of the database and pertinent
medical literature. All tasks related to eliciting the structure
such as selection of variables consistent with the data set and
establishing the causal relationships were carried out using
domain knowledge.

Classification as an Aggregation Technique
Bayesian networks constructed from large data sets tend to
have a high number of nodes and causal relationships, re-
sulting in increased structural complexity. Structural com-
plexity in a Bayesian network is a function of the number of
random variables, average number of states in the variables
and the causal relationships present in the network. Struc-
tural complexity impacts the speed of inference as well as
the effort required to understand the resulting network. An
effective way of simplifying any graph-based representation
is node aggregation, replacing a subset of nodes with a sin-
gle node. In this section we discuss reducing structural com-
plexity through node aggregation, in a way that retains the
scope and performance measures of the original Bayesian
network.

We performed node aggregation on the same 24 nodes in
all three networks discussed in the previous section. These
24 nodes correspond to the set of patient prehospital in-
formation. Using C4.5, a popular decision tree genera-
tor (Quinlan 1992) and Patient Outcome as the decision vari-
able, we induced classifications from data contained in this
isolated set of nodes. Each classification path in the result-
ing decision tree, from the root to a leaf node forms a state
in the aggregated Classifications node that replaces the cor-
responding set of nodes and their links in the Bayesian net-
work. Additionally, a leak classification state is also added
to the other mutually exclusive states to account for pre-
viously unseen cases present in test sets. The classifica-
tions tree and the resulting Classifications node are shown
in Fig. 2.

The underlying framework condensed in Classifica-
tions node follows the information gain heuristic employed
by decision tree generators. Thus, the conditional indepen-
dence information encoded in the original structure is re-
placed by an entirely different framework. This substitution
however, retains the scope of the model: findings accepted
by this new node are identical to those entered in the re-
placed set of nodes, since the states of the new node are in-
duced from the training data set itself. The new findings,

2Co-author John Clarke, M.D.



Figure 1: The structure of the Bayesian network on the left was learned using the Bound and Collapse technique. On the
right, we can observe the reduction in structural complexity in the top portion of the same network due to the aggregation.
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Figure 2: Graphical representation of the decision tree con-
sisting of the important classification paths. The nodes of the
decision tree represent the variables aggregated. Traversing
the tree from left to right, each path from root to the leaf
is labelled as c1,c2,....,c16. These labels alongwith the leak
classification (cL) appear as states of Classifications node.

composed of a conjunction of the former findings, are clas-
sified into the appropriate path ie. state of the aggregation

node. The nodes to be aggregated should (1) not be targets
for probabilistic inference since the original nodes can no
longer be queried individually, (2) be linked to atleast one
other node selected for aggregation, and (3) be of peripheral
interest in understanding and evaluating the network. Fur-
thermore, information exhibited by nodes selected for ag-
gregation should preferably belong to the same subdomain.
For the aggregation in our example, we selected all variables
pertinent to patient prehospital information.

By employing an effective decision tree induction
method, the increase in complexity due to the enlarged state
size is mitigated by the reduction in complexity due to ag-
gregation. We are currently investigating a theoretical for-
mulation for this tradeoff. In the next section, we empir-
ically evaluate this tradeoff between structural complexity
and state expansion.

Performance Comparison
In previous sections, we outlined three basic network struc-
ture construction alternatives: (1) Naive-Bayes, which has
minimal structure and is easy to construct; (2) Learned-
Bayes, whose structure is automatically learned from data
using a structure-learning algorihtm; and (3) Expert-Bayes,
whose structure is elicited from domain knowledge. In the
following empirical studies we additionally, in all three net-
works, replace a selected subset of nodes with a single node
whose states represent the classification paths induced from
data contained in the replaced variables. This step helps in
further reducing the structural complexity.

We objectively evaluate the performance of these net-
works both in terms of predictive ability and how well they
model the target distribution. In addition to this objective



empirical analysis, we also discuss both a subjective and an
objective measure of the costs of constructing each of the
three models.

Evaluating the Cost of Construction
As mentioned earlier, the effectiveness of a Bayesian net-
work construction method includes the effort and expertise
required to determine network structure. To model this cost
we use the following two mutually independent metrics:

1. Amount and expertise of the domain knowledge required
– Acquiring and representing domain knowledge is a te-
dious and expensive process requiring both domain exper-
tise and Bayesian network construction skills. The three
structure-construction methods differ widely in the degree
of required domain knowledge.

2. Structural complexity – Structural complexity is a func-
tion of the number of random variables, the average num-
ber of states, in the variables, and the causal relation-
ships present in the network. We are currently exploring
a more precise definition of structural complexity based
on well-known graph-theoretic and Bayesian network-
specific properties.
Networks exhibiting complex structures require greater
compilation and inference time. Hence complicated struc-
tures generally lead to a greater cost of construction and
evaluation.

A useful classification of the alternative network
structure-construction methods is possible using these met-
rics. Constructing a Naive-Bayes network requires no do-
main knowledge beyond choosing the class variable. Also,
the structure of Naive-Bayes is the simplest since it involves
the minimum number of links.3 Constructing a Learned-
Bayes network may require partial domain knowledge de-
pending on the structure-learning algorithm. Scoring-
based algorithms (Cooper & Herskovits 1991; Herskovits &
Cooper 1990) generally require a partial ordering of the vari-
ables whereas algorithms using conditional independence
tests (Chow & Liu 1968) do not. Additionally, causal re-
lationships are limited to those exhibited by the given data
set. The structure of an Expert-Bayes network is completely
elicited from domain knowledge. The extent of expertise re-
quired is application-specific, but is generally far more than
that required by the previous two methods. Furthermore,
during the process of construction, variables are linked us-
ing domain knowledge even though such relationships may
not be exhibited by the available data. Hence typically, such
networks suffer from far more structural complexity than the
previous two networks.

Table 1 summarizes the construction costs involved for
each of the three networks.

Empirical Results
In this section we analyze the performance of the various
Bayesian networks. For each method, we trained the pa-
rameters of the networks with varying sizes of training sam-

3The number of links required for a Naive-Bayes network is
one less than the number of variables.

ples and tested with varying sizes of holdout samples (test
sets). Both the training and test sets were drawn from the
same distribution. For learning the parameters of each of
the three models, we used the Bayesian MAP approach us-
ing Dirichlet functions as prior probability distributions. We
used Beta functions in cases of nodes with only two states.
Assuming the prior distributions to be Dirichlet generally
does not result in a significant loss of accuracy, since pre-
cise priors aren’t usually available, and Dirichlet functions
can fit a wide variety of simple functions. The parameter
learning algorithm also makes the assumption that the con-
ditional probabilities being learned are mutually exclusive.
This assumption does not penalize predictive performance
when there are a large number of cases (data). In addition
only nodes for which the current case in consideration sup-
plies a value (finding) and supplies values for all its parents
have their probability tables updated. The complete algo-
rithm appears in (Spiegelhalter et al. 1993). We used predic-
tive ability, average log loss and the Brier Score to compare
performance. Our training sets ranged in size from 41,769
cases to 104,420 cases, as follows:

Training Sets (TR 1-4): 41769, 62654, 83359, 104420 cases

Test Sets: 22041, 44081 cases

Using the network-construction techniques introduced
previously, five Bayesian networks were constructed from
the same set of random variables. The test procedure con-
sisted of entering findings for 52 nodes that comprise pa-
tient prehospital data, constructing a junction tree for infer-
ence (Spiegelhalter, Dawid, & Cowell 1993) and using Pa-
tient Outcome as the query node.

Standard statistical metrics formed the basis for evaluat-
ing the performance of each of the networks. We give the
metrics and resulting plots below.

Error rate For each record in a test set, from the calcu-
lated distribution on the query node, the state with the high-
est probability was compared with the true state provided by
the test record. The error rate thus measures the predictive
ability of the network by calculating the percentage of the
cases in a test set for which the network predicted a wrong
value on the query node. The line plots for the error rate
calculated for each combination of training and test sets for
each of the five networks are displayed in Fig 3.

The Naive-Bayes as well as the Naive-Bayes-Classfn ex-
hibit a poorer predictive ability (higher error rate) compared
to the Learned-Bayes and the Expert-Bayes networks. The
error rates of all networks for both the test sets increase with
larger sizes of the training sets. This behavior can be ex-
plained due to the predictive bias present in our data set that
induces overfitting. Approximately 92% of the patients in
our training sets are alive with only 7% dead. Hence initial
training sets have few dead patients. As the size of the train-
ing sets increase, the network gets trained to predict more
patients alive resulting in an increase in the number of alive
mispredictions (false positives).

Rather than simply comparing the most likely predicted
state to the true state, the next two metrics consider the ac-
tual belief levels of the states in determining how well they
agree with the value in the test set. These measures are there-



Table 1: Summary of the construction costs for the networks.

Type of Network Metric-based Evaluation Cost
Naive-Bayes No domain knowledge required Least expensive

Minimal structural complexity
Learned-Bayes Minimal domain knowledge required Expensive

Some structural complexity
Expert-Bayes Most domain knowledge required Most expensive

Most structural complexity
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Figure 3: Line plots displaying error rate on the two test
sets for the various configurations. Suffix Classfn indicates
network configurations with the aggregation node.

fore not very sensitive to the predictive bias present in our
data set, and model more accurately the predictive ability
of our networks. For detailed reference on these measures
see (Morgan & Henrion 1990; Brier 1950). The error plots
conclusively show the poorer predictive power of the Naive-
Bayes configurations. Thus and for lucidity, we exclude the
Naive-Bayes networks in further analysis.

Logarithmic Loss The following formula is used to cal-
culate the log loss at the query node.

Log Loss = ΣN−log(Pc)
N

where,
Pc: Probability predicted for the correct state c.
N: Number of cases in the test set.
For a correct prediction Pc = 1 and hence the Log Loss

evaluates to zero. For non-zero Log Loss, lower values im-
ply better performance. In Fig 4, we give log losses calcu-
lated for each combination of training and test sets.
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Figure 4: Line plots displaying log loss for the various con-
figurations.

Brier Score This measure also referred to as the Quadratic
Score is calculated using the following expression.

Brier Score = ΣN (1−2∗Pc)+Σj=1..n(Pj)
2

N
where,
Pj : Probability predicted for state j.
n: Number of states of the query node.
Other notations are similar to those employed in the cal-

culation of Log Loss. Similar to Log Loss, lower values of
Brier Score also imply better performance by the network.
The line plots for the performance of the configurations us-
ing Brier Score as the metric are given in Fig 5.

For each of the three configurations, both Log Loss and
Brier Score values decrease with increasing sizes of the
training set indicating an improving fit of the target distri-
bution. The lower values for Learned-Bayes suggest a better
performance compared to Expert-Bayes. We are currently
testing the difference in performances for statistical signif-
icance. Furthermore, networks without the classifications
node did not perform significantly better than networks with
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Figure 5: Line plots displaying Brier score values for the
various configurations.

the node present, indicating that this form of aggregation
does not alter the performance of the network. Duration
of the testing phase for Bayesian networks with aggrega-
tion averaged 25% less than the testing phase for Bayesian
networks with no such aggregation.

Conclusion and Future Work
A prevalent technique for constructing Bayesian networks is
to elicit network structure evaluations from a domain expert.
For example, in a domain such as medicine, a physician-user
may be unwilling to apply the results of a system to patient
care if the structure of its knowledge representation can not
be investigated and understood. This expensive practice may
introduce a misleading confidence in the optimality of the
network. An expert-elicited network is often assumed au-
thoritative without objective evaluation. Furthermore, hand-
built models are believed to have a better predictive ability
and a closer fit to the target distribution.

The advent of powerful structure-learning algorithms pro-
vides a viable alternative to the process of eliciting the
structure from a domain expert. In this paper we provide
a method that combines the use of automated structure-
learning algorithms with a method to simplify the resulting
network so that it is easier to evaluate and use.

We constructed and tested five network configurations
that are the product of three different structure-construction
schemes. The inexpensive Naive-Bayes has no structure
at all, the absence of which significantly lowers its predic-
tive ability. The Expert-Bayes falls slightly short in com-

parison to the Learned-Bayes. In addition, we introduce a
node aggregation technique that reduces structural complex-
ity while retaining the scope and performance of the original
networks. The reduction in structural complexity translated
into a substantial gain in inferencing time. Duration of the
testing phase for Bayesian networks with aggregation aver-
aged 25% less than the testing phase for Bayesian networks
with no such aggregation. In addition, the performance of
the aggregated networks remained unaffected.

Through a subjective analysis we also gain insight into the
comparatively higher costs involved in constructing models
using the traditional method of eliciting knowledge from ex-
perts.

One weakness of our evaluation is the reliance on a sin-
gle medical expert to aid in the construction of the Expert-
Bayes network. We plan further studies involving multi-
ple medical experts. We also intend to consider multiple
nodes for inference to avoid the misleading notion of our
task being one of classification. Similarly, expanding the
range of structure-learning algorithms in future experiments
may provide further insight into the choice of a structure-
construction scheme. Furthermore, we are investigating a
theoretical formulation for use of classification as an aggre-
gation technique. Finally, we understand that the domain
of trauma is inherently complex and may not facilitate ef-
ficient construction of hand-built models. Thus our results
may only tenuously extend to other domains.
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