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Abstract

Industrial optimization applications must be “robust,” i.e.,
must provide good solutions to problem instances of different
size and numerical characteristics, and must continue to work
well when side constraints are added. In practice, this trans-
lates into problems where no preferred solving techniques
exist and where the search tree is so huge that no method
is expected to find (and prove) optimal solutions. A net-
work design problem recently made public by France Tele-
com is a perfect example of this type of problem. It is also
a perfect candidate for using two techniques: large neighbor-
hood search and portfolios of algorithms. After a successful
first application of these techniques to the problem, attention
was focused on improving performance. First, a specializing
metaheuristic to reduce speculative work was implemented.
Second, the previous implementation was parallelized on a
shared memory multiprocessor machine. New issues arose
as all methods were difficult to parallelize. Multiple paral-
lelization implementations were tried in order to improve the
efficiency of parallel solving with these methods. The result
was then shown to outperform all known CP-based methods.

Introduction
In the design and development of industrial optimization ap-
plications, one major concern is that the optimization al-
gorithm must be robust. By “robust,” we mean not only
that the algorithm must provide “good” solutions to prob-
lem instances of different size and numerical characteris-
tics, but also that the algorithm must continue to work well
when constraints are added or removed. This expectation is
heightened in constraint programming as the inherent flexi-
bility of constraint programming is often put forward as its
main advantage over other optimization techniques. Yet this
requirement for robustness is rarely recognized as the top
priority when the application is designed. Similarly, the
benchmark problem suites that are used by the academic
community generally do not reflect this requirement. In
practice, it has important effects on the reinforcement of
problem formulation, search management, the advantages
of parallel search, the applicability of different optimization
techniques including hybrid combinations, etc.

This paper presents a specific case study in which such
questions have been addressed.
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An extensive benchmark suite, presented in two joint pa-
pers (Le Pape et al. ; Bernhard et al. 2002), has been built
on the basis of real network design data provided by France
Telecom R&D. The suite includes three series of problem
instances corresponding to different characteristics of the
numerical data. In each series, seven instances of different
sizes are provided. In addition, six potential side constraints
are defined, leading to 64 versions of each instance. The goal
is to design an algorithm which provides the best results on
average when launched on each of the 3 ∗ 7 ∗ 64 = 1344
instances with a CPU time limit of 10 minutes. In practice,
the differences between the 1344 instances make it hard to
design an algorithm that performs well on all instances. No-
tice that in the context of the current application, both the
introduction of new technologies and the evolution of net-
work usage can have an impact on problem size, numerical
characteristics, and side constraints. It is believed that an
optimization technique which applies well to all of the 1344
problem instances is more likely to remain applicable in the
future than an optimization technique which performs par-
ticularly well on some instances, but fails to provide reason-
able solutions on some others.

The contribution of this article is the application of new
search techniques to the solving of this network design prob-
lem. CP modeling, basic search, first experiments were the
result of team work and are described in (Le Pape et al. ;
Bernhard et al. 2002).

Robust solving of this problem specifically requires deal-
ing with three kind of difficulties:
Size The size of the problem instances varies substantially.
This is illustrated by the depth of the first solution found by
the CP program. In the cases, the depth is around 30; in
hard cases, it is between 2,000 and 3,000. While exploring
the complete search tree is feasible in the first case because
propagation helps to cut branches of the tree, it is completely
unthinkable in the second case. Moreover, even making a
few mistakes early in the search tree is fatal as no search
procedure can attempt to correct them in 10 minutes.
Selection: Deciding in which order demands are to be
routed is error prone because of the cumulative nature of
the cost. This decision also has major consequences on the
minimization process afterward.
Topology: The side constraints and the numerical data make
each problem instance very different. This makes it difficult
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to design an algorithm efficient on each aspect of the prob-
lem. And in practice, many efforts to improve the algorithm
on one aspect of the problem reduce its robustness as results
are deteriorated on instances that do not contain this aspect.

We decided to attack each difficulty in sequence. The first
technique used was to implement large neighborhood search
(LNS) (Shaw 1998). Furthermore, randomness was intro-
duced at different stages, first in the selection of the fragment
of the whole solution to re-optimize and then in the order the
demands are routed. This aspect improved the robustness of
the methods, especially with regard to the selection of the
demands. Finally, the robustness with regard to the topol-
ogy of the problem was addressed by the implementation
of the portfolio of algorithms paradigm (Gomes & Selman
1997).

The last part of this article is devoted to the improvement
of the performance of the portfolio of algorithms. The first
part describes improvements of the sequential implementa-
tion of the portfolio of algorithms. The second part describes
the parallelization of these methods and the associated is-
sues.

A Network Design Problem
The benchmark problem consists in dimensioning the arcs
of a telecommunications network, so that a number of com-
modities can be simultaneously routed over the network
without exceeding the chosen arc capacities. The capacity
to be installed on an arc must be chosen in a discrete set and
the cost of each arc depends on the chosen capacity. The
objective is to minimize the total cost of the network.

Given are a set of n nodes and a set of m arcs (i, j) be-
tween these nodes. A set of d demands (commodities) is also
defined. Each demand associates to a pair of nodes (p, q) an
integer quantity Dempq of flow to be routed along a unique
path from p to q. In principle, there could be several de-
mands for the same pair (p, q), in which case each demand
can be routed along a different path. Yet, to condense nota-
tion and keep the problem description easy to read, we will
use a triple (p, q, Dempq) to represent such a demand.

For each arc (i, j), Kij possible capacities Capak
ij , 1 ≤

k ≤ Kij , are given, to which we add the null capacity
Capa0

ij = 0. One and only one of these Kij + 1 capacities
must be chosen. However, it is permitted to multiply this ca-
pacity by an integer between a given minimal value Wmink

ij

and a given maximal value Wmaxk
ij . Hence, the problem

consists in selecting for each arc (i, j) a capacity Capak
ij

and an integer coefficient wk
ij in [Wmink

ij , Wmaxk
ij ]. The

choices made for the arcs (i, j) and (j, i) are linked. If ca-
pacity Capak

ij is retained for arc (i, j) with a non-null co-
efficient wk

ij , then capacity Capak
ji must be retained for arc

(j, i) with the same coefficient wk
ji = wk

ij , and the overall
cost for both (i, j) and (j, i) is wk

ij ∗ Costkij .
Six classes of side constraints are defined. Each of them

is optional, leading to 64 variants of each problem instance,
identified by a six-bits vector. For example, “011000” indi-
cates that only the second constraint nomult and the third
constraint symdem, as defined below, are active.

• The security (sec) constraint states that some demands
must be secured. Secured demands must be routed
through secured arcs.

• The no capacity multiplier (nomult) constraint forbids the
use of capacity multipliers.

• The symmetric routing of symmetric demands (symdem)
constraint states that for each demand from p to q, if there
exists a demand from q to p, then the paths used to route
these demands must be symmetric.

• The maximal number of bounds (bmax) constraint asso-
ciates to each demand (p, q, Dempq) a limit Bmaxpq on
the number of bounds (also called “hops”) used to route
the demand, i.e., on the number of arcs in the path fol-
lowed by the demand.

• The maximal number of ports (pmax) constraint asso-
ciates to each node i a maximal number of incoming ports
Pini and a maximal number of outgoing ports Pouti.

• The maximal traffic (tmax) constraint associates to each
node i a limit Tmaxi on the total traffic managed by i.
Twenty-one data files, organized in three series, are avail-

able. Each data file is identified by its series (A, B, or C) and
an integer which indicates the number of nodes of the con-
sidered network. Series A includes the smallest instances,
from 4 to 10 nodes. Series B and C include larger instances
with 10, 11, 12, 15, 16, 20, and 25 nodes. The instances of
series B have more choices of capacities than the instances
of series A, which have more choices of capacities than the
instances of series C. So, in practice, instances of series B
tend to be harder because the search space is larger, while
instances of series C tend to be harder because each mistake
has a higher relative cost.

Finally, as described in (Le Pape et al. ), we tried to
solve it with three approaches: Constraint Programming us-
ing Ilog Solver, MIP using Ilog CPLEX and Colum Genera-
tion using both. In this article, we focus on the CP approach.

Using a Subset of the Full Benchmark
As the whole benchmark takes 1344 * 10 minutes to run,
which is more than nine days, we first concentrated our ef-
forts on a small subset of the whole set of parameters. We
chose to focus on five problem instances:

B10 000000 An average problem with a best CP-found so-
lution of 20510 and the best known solution of 193951.

B10 100111 A problem where the first solution may be-
come very difficult to solve if the heuristic is not robust
enough. The best CP-found solution is 28083, the best
known solution is 25534, found by CPLEX and a MIP
formulation.

C10 100011 A problem where the first solution may be-
come very difficult to solve if the heuristic is not robust
enough. The best CP-found solution is 18925, the same
as the best known solution.
1This solution is not actually found, but inferred from a found

solution of a more constrained variation of the problem. In this
case, when the problem is more constrained, the search space is
much smaller, thus allowing the solvers to find a better solution.



C12 000000 A problem where column generation gives
much better solutions. CP finds 40099 and column gener-
ation finds 37385.

C25 100000 A huge problem where CP is currently the only
technique finding feasible solutions2. The CP solution is
149500 and the best known solution is 109293.

We believe this selection, while totally arbitrary, will al-
low us to conduct fruitful experiments. In the end, we will
use the best of the breed method on the complete benchmark
to evaluate how it performs.

We will display each set of results3 in this order in an
array:

20510 28083 18925 40099 145900
In order to take into account the randomness involved in

these results, we will display one standalone run for each
experiment that we will choose as representative of the mul-
tiple runs.

And as a goal, we will always compare to the best known
results:

19395 25534 18925 37385 109223

Breaking Barriers with Randomization and
Large Neighborhood Search

Using Randomization and Large Neighborhood
Search
Our first addition to the standard CP framework was a large
neighborhood search schema (Shaw 1998). Starting from
an instantiated solution stating routes for each demand, we
chose to freeze a large portion of this solution and to re-
optimize the unfrozen part.

The unfrozen part was chosen using the following algo-
rithm: Given a number n of visits and size, the total number
of visits, we compute the ratio ρ = n/size. Then we iterate
on all demands and freeze them with a probability (1 − ρ).
Throughout the rest of the paper, the number n will be fixed
to 30.

Then we loop over the optimization part, each time with
a new neighborhood.

Using a Different Implementation of Fast Restart
We chose to follow the guidelines in (Gomes & Selman
1997). We decided to implement a fast restart strategy,
which was implemented in two different ways.

• The first implementation relied on the Discrepancy-
Bounded Depth First Search (DBDFS) procedure (Beck
& Perron 2000) with a maximum discrepancy usually set
to 1.

• The second implementation used the search techniques
implemented by O. Lhomme in (Lhomme 2002). The
idea is to kill the right branch at each binary choice point
with a probability p (set to 93% throughout this paper).
2This will change when the MIP of the column generation ap-

proach is improved.
3Each sequential run was conducted on a Pentium III 1.13 GHz

running Windows XP, using Microsoft Visual Studio.NET C++
Compiler.

We believe all these fast restart implementations are better
than those based on a restart after a given number of back-
tracks (or failures) as they will more uniformly search the
search tree while the previous schema based on Depth First
Search will concentrate on the bottom of the search tree.

The first method (DBDFS) gave the results:

20760 27414 18925 39738 140738

The second method (amortized) gave the results:

20188 27592 18925 40099 138929

As we can see, no method strictly dominates the other and
they both improve previous results by a small margin.

Using a Change in the Instantiation Order
As described in (Le Pape et al. ), the instantiation order be-
tween demands is fixed using heuristic weights associated
with each demand. We tried to give a random order over de-
mands, hoping that this would correct mistakes in the fixed
instantiation order. We believe that the fixed instantiation
order, while quite efficient, makes some big mistakes in first
routing big unconstrained demands. This means that small
critical demands will be routed afterward on a network al-
ready full of traffic.

The DBDFS method was judged best using this improve-
ment and gave the results:

20778 27417 18925 36603 140922

As we can see, this method gives a significant improve-
ment in the fourth test (C12 000000) which is significantly
better than the column generation approach. There is a de-
terioration in results on the fifth test. The amortized search
does not benefit much from this change.

Using a Portfolio of Algorithms
While working on the routing of each demand, it appeared
that each modification we made that dramatically improved
the solution of one or two problem instances would deteri-
orate in a significant way the solution of one or two other
instances.

This was the perfect case to apply portfolios of algorithms
(Gomes & Selman 1997).

Simple Implementation of Portfolio of Algorithms
Our first implementation of the portfolio of algorithms tech-
nique was made using a round-robin schema. Each large
neighborhood search loop would be made using one algo-
rithm, with each algorithm chosen in a round-robin way. To
implement different algorithms, we examined the routing of
each demand. As described in (Le Pape et al. ), for each
demand, we compute a shortest path from the source to the
sink (of the unrouted part of the demand). The last arc of
this shortest path is then chosen and a choice point is cre-
ated. The left branch of the choice point states that the route
must use this arc and the right branch states that this arc is
forbidden for this route. This selection is applied until the
demand is completely routed.

This method was changed by computing different kinds of
penalties on the cost of each arc and by choosing different



combinations of standard cost and penalties. This allowed
us to create different algorithms by applying different coef-
ficients to each component of the cost of one arc.

One again, the DBDFS method was better and gave the
results:

20524 27498 18925 38805 131323

This method is most useful for the fifth test, where only
the additional algorithms (which are not efficient on the
other problems) are able to go below the 135000 barrier.

Specialization Schema on a Portfolio of Algorithms
While attractive, this implementation of a portfolio of algo-
rithms tends to waste a lot of resources. Let us imagine that
we have n algorithms and that only one algorithm can im-
prove our routing problem, then we spend (n − 1)/n of our
time in a speculative and unproductive way.

We then decided to implement a specialization mecha-
nism. Given n algorithms Ai, we use an array of integer
weights wi. Initially, each weight is set to 3. We then choose
one algorithm against its weight probability (wi)/(

∑
j wj).

In the event of the success of a LNS loop, the weight of the
successful algorithm is increased by 1 (with an upper bound
arbitrarily set to 12). In case of repeated failure of an algo-
rithm (in our implementation, 20 consecutive failures), the
weight wi is decreased by 1 (with another arbitrarily chosen
lower bound of 2).

The result is a specializing schema which concentrates on
the successful algorithms for a given problem.

The first method (DBDFS) gave the results:

19627 27249 18925 37495 125327

The second method (amortized) gave the results:

19605 28219 18925 36429 125327

As we can see, this specialization schema is very effec-
tive. Every test benefits from this approach. And in this
approach, there is no clear winner between the DBDFS ap-
proach and the amortized one.

Parallelizing the Portfolio of Algorithms
Given the success of the previous sequential methods, we
decided to use our Pentium III 700MHz quad processor.

A Brief Introduction to Parallel Solver
ILOG Parallel Solver is a parallel extension of ILOG Solver
(Solver 2001). It was first described in (Perron 1999). It
implements or-parallelism on shared memory multiproces-
sor computers. ILOG Parallel Solver provides services to
share a single search tree among workers, ensuring that no
worker starves when there are still parts of the search tree to
explore and that each worker is synchronized at the end of
the search.

First experiments with ILOG Parallel Solver are described
in (Perron 2002) and (Bernhard et al. 2002). Switching from
the sequential version to the parallel version required a mini-
mal code change of a few lines, and so we were immediately
able to experiment with parallel methods.

Simple Parallelism
The first parallelization of our LNS + random search was
very simple. We simply used the usual API of ILOG Parallel
Solver and with minor changes to the sequential code (less
than five lines of code), we were able to implement parallel
LNS + random + portfolio of algorithms.

The first method (DBDFS) gave the results:

19960 27357 18598 36963 126530

The second method (amortized) gave the results:

20057 27627 18598 37583 125327

These results are a bit disappointing. If we do simple
math, 4 * 700 MHz = 2.8 GHz (compared to 1.13 GHz).
We expected better results. In fact, we have a degradation in
the first and second test results, a breakthrough in the third
where we improve the best known solution, a small improve-
ment in the fourth test, and a small degradation in the fifth
one.

Deeper investigation showed that parallelization was inef-
ficient as, on average, only 2 out of 4 processors were used
at a time. For the first method, this is a consequence of the
degenerated nature of the search tree as a DBDFS search
procedure with a maximum number of discrepancies of 1
builds a very special tree where load balancing is not very
efficient. For the second method, the search tree is different
but produces only a few active choice points, thus leading to
poor parallelization results.

Concurrent Use of a Portfolio of Algorithms
As shown in the previous section, parallelizing the special-
ization schema gives poor results. We then decided to inves-
tigate another kind of parallelization. We implemented the
original portfolio of algorithms design where each method
was run in parallel. Furthermore, in order to hide latency
and idle workers, we decided to use more algorithms than
processors (6 algorithms on a 4-processor box).

The first method (DBDFS) gave the results:

20326 27573 18598 36507 126530

The second method (amortized) gave the results:

20173 24940 18925 36582 126530

The results, compared to the previous test, are equiva-
lent in the DBDFS approach and improve the amortized ap-
proach. Study of the computer workload revealed that ap-
proximately 60% of the total computing power is used at
any given time. This is a little better than the previous naive
implementation, but this implementation has a serious flaw
- it is not scalable. In fact, it will not be efficient if, for ex-
ample, there are more processors than different algorithms
in use.

Multipoint Large Neighborhood Search
Therefore, we decided to implement a last schema, which
combined ideas from the two previous implementations.
We implemented multipoint LNS with specialization. This
means that at each LNS loop, the algorithm is chosen us-
ing the specialization schema. The instantiation order of the



demands is chosen randomly, but in the same way for each
worker. However, each worker works on a different frag-
ment of the whole problem to re-optimize, using different
randomly chosen parts. Furthermore, in order to hide la-
tency, we use a few more workers than processors (7 work-
ers and 4 processors).

The first method (DBDFS) gave the results:

20021 25382 18448 36191 123628

The second method (amortized) gave the results:

19855 25412 18592 35931 122190

This last implementation is the best so far. It combines
excellent results, scalability, and robustness. The load was
constant between 90% and 100% during the whole search
process.

Furthermore, the choice of 7 workers is optimal as we can
see in the results with 8 processors (first line) and 6 proces-
sors (second line):

20344 25449 18448 36905 127764
20177 26120 18925 36457 128177

Application to the Complete Benchmark
We then decided to compare the simple parallelism approach
to the approach used in (Le Pape et al. ). We compared the
sum of all the results and the Mean Relative Error (MRE) on
6 instances of the problem using the 64 parameter values.

The following table indicates the results of sequential CP
+ local search (first line), parallel CP + local search (second
line), and parallel CP + LNS + specialization (third line).

B10 B11 B12 C10 C11 C12
Sum 1626006 3080608 2571936 1110966 2008833 2825499
MRE 10.57% 15.12% 10.07% 5.77% 11.30% 13.97%
Sum 1592778 2967717 2535516 1085266 2005714 2777129
MRE 9.18% 13.13% 9.35% 3.66% 11.29% 12.91%
Sum 1552054 2815979 2413371 1079480 1865869 2526719
MRE 6.46% 7.23% 3.98% 2.73% 4.00% 2.69%

The figures speak for themselves. They demonstrate a sig-
nificant improvement in terms of robustness thanks to the
combination of parallelism, LNS, randomness, and portfo-
lios of algorithms. These results should be further improved
by the implementation of concurrent multipoint LNS.

Conclusion and Future Work
The contributions of this article can be summarized as fol-
lows. First, the use of randomness and portfolios of algo-
rithms is very important, especially in the context of robust-
ness, as shown in this industrial benchmark. The use of these
techniques leads to significant improvements.

The second aspect is linked to the implementation of these
search methods. We believe every implementation of fast
restart should benefit from both the DBDFS and the amor-
tized approaches. We have also shown that parallel effi-
ciency is greatly improved by the combination of the spe-
cialization mechanism and the multipoint concurrent imple-
mentation.

Finally, we think that future improvements will come
from additional structures in this random approach. Fu-
ture work could explore the choice of the fragment to re-
optimize. This choice could, for example, benefit from ad-
ditional information extracted from the previous solution.

Fragments could also be constructed in a more structured
way. But we are aware that any simple selection schema will
not increase the robustness of our program. As many failed
experiments have taught us, nothing but the most sophis-
ticated ideas will be more robust than the simple random-
based implementations.

And finally, we would like to experiment these ideas on
computers with more processors: 8, 16 and even 32.
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