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Abstract

A variety of hybrids of Constraint Programming, Arti-
ficial Intelligence and Operations Research techniques
have given impressive results. Three recent approaches
are (i) the use of relaxations in constraint systems, (ii)
non-systematic backtracking to boost the scalability of
constraint solvers, and (iii) non-systematic backtrack-
ing to boost the scalability of branch-and-bound search.
This paper describes a hybrid of all three approaches
that combines non-systematic backtracking, SAT-based
inference and linear relaxation. It is intended for large
MIPs that are hard for reasons of both optimisation and
feasibility. Such problems are of practical as well as
theoretical interest and we expect the hybrid to find
many applications. It is currently under development
and results will be reported at the workshop.

Introduction
Mixed integer programs (MIPs) have many practical ap-
plications yet are among the hardest problems to solve.
The usual approach to such problems is to apply classical
Operations Research algorithm such as branch-and-bound,
branch-and-cut and branch-and-price (Nemhauser & Wolsey
1988), but local search algorithms have also been used
(Brockmann & Decker 2000).

A variety of CP, AI and OR techniques have recently been
integrated into hybrid algorithms, sometimes with impres-
sive results. (Gomes 2000) discusses the rich set of connec-
tions between Constraint Programming (CP), Artificial In-
telligence (AI) and Operational Research (OR), focusing on
approaches for dealing with hard combinatorial problems,
and highlighted the potential synergistic benefits. This pa-
per describes a new hybrid for MIP that combines several
features: the Simplex algorithm to handle real variables,
to detect inconsistency earlier, and to guide variable as-
signment; constraint propagation to locate feasible solutions
quickly; and non-systematic backtracking to boost scalabil-
ity to that of local search. All pairs of these features have
previously been combined successfully; though combining
good heuristics does not always work well, this leads us to
believe that a meta-hybrid of all three will also perform well.
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The aim is to solve large MIPs that combine hard optimisa-
tion with few feasible solutions. The remainder of this sec-
tion provides background material.

Propagation and relaxation
Constraint programming systems use constraint propagation
to eliminate infeasible variable assignments, and is the tool
of choice for combinatorial problems in which feasible so-
lutions are hard to find. Operations Research, on the other
hand, uses more sophisticated cost reasoning to prune search
spaces, and to locate high-quality solutions. The two disci-
plines have complementary strengths and weaknesses, and
their combination can yield results that are superior to either
alone. Many papers have been written in the last few years
on this type of hybrid approach, and here we mention just a
few.

Linear relaxations and propagation are combined in
(Gomes & Shmoys 2002); scalability is improved by restart-
ing the search at intervals, randomised rounding is used as
a value ordering heuristic, and relaxation overheads are re-
duced by applying Simplex only at selected search nodes.
Relaxations and propagation are also combined in (Bosch &
Trick 2002), and relaxation overheads reduced by comput-
ing them only on the most important constraints. (Bokmayr
& Kasper 1998) introduces a unifying framework, branch
and infer, to describe and compare the languages of integer
linear programming and finite domain constraint program-
ming, both from the viewpoint of model building and model
solving. Their framework shows how integer linear pro-
gramming can be extended with symbolic constraints and
how algorithmic techniques from integer programming can
be used in combination with finite domain methods. Branch-
and-check (Thorsteinsson 2001) integrates mixed integer
programming and constraint logic programming, encapsu-
lating the traditional Bender’s decomposition and branch-
and-bound as special cases, and utilising nogood learning.
(Caseau & Laburthe 1995) compares propagation to integer
programming, and they explain why propagation works bet-
ter than integer programming on disjunctive problems. (Ro-
dosek, Wallace, & Hajian 1999) presents (i) an automatic
transformation of CLP programs, (ii) improvements on such
transformations, and (iii) a hybrid algorithm which reduces
the solution space of the problem by using finite domain
propagation and a dual simplex algorithm. In (Hajian et al.
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1998) a finite domain solver is used to compute a feasible
solution as a starting point for Simplex. In (Do & Kamb-
hampati 2000) LP relaxations are used to detect infeasibil-
ity in SAT problems, and to provide seed solutions for SAT
solvers. SAT propagation methods are interleaved with an
incremental Simplex algorithm in (Wolfman & Weld 1999)
to solve SAT problems with metrics. In (Focacci, Lodi,
& Milano 1999) non-linear constraints can be used to pro-
vide lower cost bounds. A survey of combinations of con-
straint programming and optimisation techniques is given in
(Hooker 2000).

This work shows that constraint propagation and cost rea-
soning can be profitably combined. Cost reasoning plays
the part of a global constraint, guiding the search to useful
regions of the search space. Constraint handling performs
efficient local reasoning to eliminate infeasible variable as-
signments.

Propagation and local search
The complementary strengths of constraint programming
and local search have also been noted in many papers. Con-
straint programming uses powerful propagation techniques
to prune search spaces, while local search uses constraints in
a relatively naive way. Nevertheless, local search can often
solve much larger problems than backtrack-based constraint
systems. This has led to a variety of hybrids, and we briefly
survey some of these.

A hybrid of the GSAT local search algorithm and the
Dynamic Backtracking algorithm (Ginsberg & McAllester
1994) increases the flexibility in choice of backtracking
variable. Local Changes (Verfaillie & Schiex 1994) is a
complete backtracking algorithm that uses conflict analy-
sis to unassign variables leading to constraint violation, and
a heuristic similar to VH that restores assignments after
backtracking. The timetabling algorithm of (Schaerf 1997)
searches the space of all partial assignments. The Path-
Repair Algorithm (Jussien & Lhomme 1999) is a generalisa-
tion of this approach that includes learning, allowing com-
plete versions to be devised. The two-phase algorithm of
(Zhang & Zhang 1996) searches a space of partial assign-
ments, alternating backtracking search with local search. It
can be tuned to different problems by spending more time
in either phase. (Backer et al. 1997) generate partial assign-
ments to key variables by local search, then pass them to a
constraint solver that checks consistency. Large Neighbour-
hood Search (Shaw 1998) performs local search and uses
backtracking to test the legality of moves. (Crawford 1993)
uses local search within a complete SAT solver to select the
best branching variable.

We should also mention variations on backtrack search
that improve scalability by techniques other than local
search. Iterative Sampling (Langley 1992) restarts a con-
structive search every time a dead-end is reached. Weak
Commitment Search (Yokoo 1994) builds consistent par-
tial assignments, using the min-conflict heuristic to guide
value selection; on reaching a dead-end it restarts and uses
learning to avoid redundant search. Bounded Backtrack
Search (Harvey 1995) is a hybrid of Iterative Sampling and
chronological backtracking, alternating a limited amount of

chronological backtracking with random restarts. (Gomes,
Selman, & Kautz 1998) periodically restart chronological
or intelligent backtracking with slightly randomised heuris-
tics. Limited Discrepancy Search (Harvey 1995; Harvey &
Ginsberg 1995) searches the neighbourhood of a consistent
partial assignment, trying neighbours in increasing order of
distance from the partial assignment.

In the hybrid approach taken in this paper, a backtrack-
based constraint algorithm is modified so that it is non-
systematic. This can be viewed as local search in a space
of consistent partial variable assignments, and demonstrably
scales like more standard local search approaches (Prest-
wich 2000). So far this approach has only been applied
to relatively simple propagation: forward checking on bi-
nary constraints (Prestwich 2002a), unit propagation for
SAT problems (Prestwich 2002c; 2000), and a generalisa-
tion of unit propagation to 0/1 integer programs (Prestwich
2002b). However, its integration with more powerful propa-
gation algorithms and other constraints is being investigated.
Other researchers have applied randomised versions of back-
tracking, but unlike our approach have also aimed to pre-
serve completeness (Lhomme 2002; Lynce & Marques-Silva
2002). Improved scalability is reported for these algorithms,
but it is unclear whether local search-like scalability can be
combined with completeness (except by using exponential
memory).

Relaxation and local search

As in constraint programming, the surprisingly good scal-
ability of local search has been noted in operations re-
search. It has been successfully applied to many OR prob-
lems, but hybrids seem to be relatively rare. (Pesant &
Gendreau 1996) use branch-and-bound to efficiently ex-
plore local search neighbourhoods. (Meyer 2000) inte-
grates branch-and-bound into local search. (Meyer 1998)
presents an approach that relies on repair-based search and
a generic method for an exhaustive enumeration of repair
steps, for solving partial constraint satisfaction problems ex-
haustively; this combines advantages of local search and ex-
tended branch-and-bound algorithms.

Non-systematic backtracking has also been applied to
branch-and-bound. The problem of finding a low-
autocorrelation binary sequence (LABS) is discussed in
(Prestwich 2000). Previously, the only algorithm able to find
optimal LABS was a branch-and-bound algorithm using a
relaxation to compute lower bounds for the cost function.
Several local search algorithms found large near-optimal
solutions but failed to find even small optimal solutions.
The hybrid performed local search in the state space of the
branch-and-bound algorithm, found optimal solutions sig-
nificantly faster, and found the best-known sequence of a
certain size. Though this is the only such algorithm so far,
we believe that the same technique will work with linear re-
laxations, yielding a local search algorithm for MIP that uses
Simplex to prune its search space. However, in the next sec-
tion we go further by adding constraint propagation.



Propagation, relaxation and local search
We now describe how to combine the three hybrid ap-
proaches discussed above into a new hybrid for MIP prob-
lems.

SAT
The starting point is the standard DLL (Davis-Logemann-
Loveland) backtracking algorithm for SAT (propositional
satisfiability). DLL interleaves backtracking with an infer-
ence rule called unit propagation, which can be viewed as
constraint propagation. (Some versions of DLL add other
inference rules.) Many modern systematic SAT solvers are
versions of DLL, a recent and very fast example being Chaff
(Moskewicz et al. 2001). Backtrack-based search some-
times scales poorly to large problems, but non-systematic
search is a useful alternative. Though incomplete it often
finds solutions far more quickly. A well-known local search
algorithm for SAT is WSAT.

However, local search algorithms typically do not use
unit propagation, making them unsuitable for some highly
structured problems. This has motivated hybrid algorithms,
including CLS (Prestwich 2002c; 2000) which is a non-
systematic backtracking algorithm implemented for SAT
as well as other problems. CLS scales like WSAT on a
common benchmark (satisfiable random 3-SAT from the
phase transition region) and performs well on highly struc-
tured problems, though WSAT is superior on other problems
(Prestwich 2000).

ILP
SAT problems are known to be difficult for solution by
branch-and-bound, though their encoding as 0/1 integer pro-
grams is trivial, motivating the adaptation of the SAT ap-
proach to OR problems. DLL has been generalised to ILP,
with good results on a variety of problems (Barth 1995).
Because of the success of local search on SAT problems,
the WSAT local search SAT algorithm has also been gener-
alised to ILP, again with good results (Walser 1997). CLS
was recently generalised to ILP (Prestwich 2002b) and per-
formed well on several problems. At the time of writing
it has found the best-known solutions for several large in-
stances of the Social Golfer problem; it matches the per-
formance of the best-known algorithm for generating bal-
anced incomplete block designs; it ranks approximately 6th
of 33 algorithms tested on SAT-encoded hardware verifica-
tion benchmarks; and it finds round-robin schedules beyond
the reach of branch-and-bound (though it is not competitive
with other algorithms on this problem).

The CLS implementation for ILP is called Saturn. It is
described in (Prestwich 2002b) but here we give some de-
tails necessary for describing the new hybrid. Saturn begins
like a standard backtracker by selecting a variable using a
heuristic, assigning a value to it, performing constraint prop-
agation where possible, then selecting another variable; on
reaching a dead-end (a variable that cannot be assigned any
value without causing domain wipe-out) it backtracks then
resumes variable selection. Constraint propagation occurs
in a linear constraint

∑n
i=1 wili ≤ d as follows. Any cur-

rently unassigned variable in the constraint whose weight is

greater than d− s, where s is the sum of the weights of cur-
rently assigned literals, can have a domain value removed:
0 (false) if the literal is positive and 1 (true) if it is nega-
tive. This is a simple generalisation of the SAT propagation
rule, which occurs when every literal but one has an assigned
variable and is false, and where all weights are 1. A simple
implementation trick speeds up execution: in a preprocess-
ing phase before search begins, sort the variables in each
constraint into order of decreasing weight. Then as soon as
we find a variable in a constraint whose weight is no greater
than d − s we can ignore the rest of the variables in that
constraint.

The novel feature of Saturn is the choice of backtracking
variable: the variables selected for unassignment are cho-
sen randomly, or using some other heuristic that does not
preserve completeness. As in Dynamic Backtracking (Gins-
berg 1993) only the selected variables are unassigned, with-
out undoing later assignments. Because of this resemblance
we call this form of backtracking incomplete dynamic back-
tracking. Unlike Dynamic Backtracking this algorithm is
not complete, and we must sometimes force the unassign-
ment of more than one variable. We do this by adding an
integer noise parameter B ≥ 1 to the algorithm and unas-
signing B variables at each dead-end. The only tricky part
of the implementation concerns the combination of incom-
plete dynamic backtracking and constraint propagation. We
omit these details, which are documented elsewhere.

MIP
For our MIP hybrid we add the Revised Simplex algorithm
to Saturn. We anticipate no implementation difficulties: the
hybrid will use an efficient, non-incremental version so that
the linear relaxation can be computed at any point during
search. The inputs are the constraints and the current set of
variable assignments, and the output is either a flag stating
that the current assignments are inconsistent, or a set of real-
valued assignments to the unassigned variables.

It remains to decide when to apply Simplex. Care must
be taken to avoid reduce overheads: in two recent hybrids of
Simplex with constraint systems, Simplex was found to be
expensive compared to the cost of constraint propagation.
Best results were obtained in (Gomes & Shmoys 2002) by
applying it only at selected points in the search tree, and in
(Bosch & Trick 2002) by applying it only to the most impor-
tant constraints. The latter technique is problem-dependent:
for a given problem it must be decided which are the most
relevant constraints. Instead we adapt the former technique
to the CLS search algorithm as follows.

At the start of the search, Simplex is first computed to ob-
tain a real value for each variable; these are used probabilis-
tically to select 0/1 values for assignment. This randomised
rounding approach (described in (Gomes & Shmoys 2002))
replaces the usual CLS value ordering heuristic, which sim-
ply aims to restore most previous assignments where possi-
ble. Variables are then selected and values assigned to them
(guided by randomised rounding), applying constraint prop-
agation after each assignment. On reaching a dead-end B
selected variables are unassigned. So far the algorithm is
simply Saturn, apart from the use of randomised rounding.



However, after unassigning B variables we reapply Simplex:
if it detects inconsistency then a further B unassignments are
made and Simplex is reapplied, and so on until no inconsis-
tency is detected; then the algorithm starts to assign values to
variables again, guided by the newly-computed real values.

Note that although the algorithm may temporarily move
into regions that are LP-inconsistent, it immediately backs
out of them; and the use of randomised rounding improves
its chances of avoiding such regions. Note also that as well
as controlling noise, B also controls how frequently Simplex
is called: the larger the value of B the fewer calls will be
made before LP-consistency is re-established. This is far
cheaper than interleaving Simplex with variable assignment,
and is analogous to the technique of only applying it up to
a certain depth in the search tree. If the value of B is well
chosen then Simplex may be called not much more than once
per dead-end.

Discussion
Because non-systematic backtracking algorithms can scale
like local search (Prestwich 2000) we claim that our new
hybrid is in fact a local search algorithm. Its advantage over
most local search approaches is that constraint propagation
and Simplex are used to prune the search space, yielding
a very tight integration of relaxation, propagation and local
search.

We will initially apply the new hybrid to two problems: a
pure ILP problem to evaluate the effects of Simplex on the
existing algorithm, and a MIP problem to compare the new
hybrid with other MIP approaches. The new hybrid is not
yet implemented so this paper describes what we hope to
achieve. We will present experimental results at the work-
shop.
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