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Abstract

Many distributed problemscan be capturedas distributed
constraintsatishction problems(CSPs)and constraintopti-
mizationproblems(COPs).In this researchye studyan ex-
isting distributed searchmethod, called distributed stochas-
tic algorithm(DSA), andits variationsfor solvingdistributed
CSPsand COPs. We analyzethe relationshipbetweenthe
degree of parallel executiors of distributed processesand
DSAs’ performanceincluding solution quality andcommu
nicationcost. Our experimentakesultsshav thatDSAs’ per
formanceexhibits phasetransition patterns. When the de-
gree of parallel executionsincreasesheyond some critical
level, DSAs’ performane degrades abruptly and dramati-
cally, changingfrom nearoptimalsolutionsto solutionseven
worsethanrandomsolutions. Our experimenal resultsalso
shav that DSAs are generallymore effective and efficient
than distributed brealout algorithmon mary network struc-
tures,particularlyon over-constrainedgtructuresfinding bet-
ter solutionsandhaving lower commurication cost.

I ntroduction

In recentyears,various micro-electro-nechanicalsystems
(MEMS) devices,suchassensorsandactuatorswith some
information processingcapabilitiesembeded within, have
beendevelopedand deplo/ed in mary real-world applica-
tions [9; 10]. Multiagert system(MAS) technolgy can
play critical rolesin large-scalenetworked, embedéd sys-
temsusingsuchsmartdevices,by providing frameworks for
building andanalyzingsuchsystems.Due to the real-time
natureof mary applicatiors andlimited compuationalre-
sourceson the devices, e.g., slov CPUsand small memo-
ries, the key to large-scalereal-timeMEMS is the mecha-
nismthatthe agers useto make viabledistributeddecisions
in restrictedime with limited computationalresouces.
Thereare mary affecting factorsrestrictingwhat agents
atop of MEMS devices cando. Suchfactorsinclude the
communicationreliability anddelay the dynanics of under
lying apgications, the limited computational resouces of
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individual devices andthe requrementof real-timeperfa-
marce. Theseaestrictiondmply thatcomgex method, such
asnegotiation, thatrequre a substantiabmount of compu
tationandcommunication,arenottheright choicesfor dis-
tributedsystemswith resourcdimited devices. The current
adwancesn theMEMS technolgiesandtheirreal-world ap-
plicatiors [9; 10] have manifestedmary suchdistributed
real-time situationswherecomgex problem-sohing meth-
ods are simply infeasilbe or inappopriae. In a resoure-
limited distributed systemthat opeatesin real-time envi-
romments,thereis a needfor simplemethod that have low
overhead oncomputationandcommunication.lt is alsode-
sirablethat suchmethod be ableto provide goad arytime
performarce.

Exanplesof suchsimple,low-overheadmethalsinclude
the fixed point methal [3], distributed brealout [12; 13;
14], and distributed stochasticsearch[2; 4]. Theseap-
proachesaresometimesheonly feasiblemethalsto address
problemsin distributedenvironments,andthey mayalsoin-
creasethe effectivenessand efficiency of overall problem-
solving processesMoreover, they provide agerts with au-
tonany and degree of parallel execuions. Finally, and
mostimportantly, they are simple and requre little com-
putaion and comnunicationresourcs. In short,they are
thechoicesof algorithns for multiagen systemsontmolling
small MEMS deviceswith limited information proessing
capaliities.

In this research,we study distributed stochasticalgo-
rithm (DSA) [4] andits variatiors for solving distributed
corstraintsatisactionproblens (CSPs)anddistributedcon-
straintoptimization problems(COPs).Using DSAs, agents
may have a high degree of autonany, making decisions
probabilistically, mainly basedon local information. The
main differerce amag DSA andits variarts is the degree
of parallelexecutions.We experinmentallyinvestigatehere-
lationshp betweerthe degree of parallelismandthe perfa-
marce of thealgorithms.

Motivating Application and M odel

In atypical applicationin the avionicsdoman in which we
areinteresteda large numter of sensorsand actuatos are
mouwnted on the surfaceof an object, suchas an aircraft's
wing. Suchobjectsmay be damag@d dueto excessve ex-
terior disturtancesuncer certainconditions. The sensors



and actuatos are arran@d in grid structuresin which the
neighboring sensorandactuatos arefixed. To detectpos-
sibledamagesselectedactuatorgeneatesignals,in aform
of vibrations, to their neightorhaods. The sensorswithin
a neigtborhood thendetectpossibledamags at their loca-
tions by measuing the frequenciesandstrengthof the sig-
nals. Two restrictionson the systemmale the prodem of
damag detectiondifficult. First, the sensorsaandactuatos
operae on limited enegy souces,i.e., batteries.Therefae,
the setof signalingactuatorswhich are called ping nodes,
mustbe assmallaspossibleaslong asit maintainscover-
ageof theoverall area.Secongtwo signalswhosestrengtis
areabove a certainthreshdd at a sensodocationwill inter-
ferewith eachother This constrainttherdore, requiresthat
the signalingactionsof two ovellappingping nocesbe syn-
chronzedsothatnointerfeiing signalswill be geneatedat
asensofocationatary time.

We are developing a large-scaleagentsystemfor this
damag detectim application In our systemwe embedan
agentin eachsensorandactuatorto controlits sequene of
actions.Theseembeded,distributedagerts thencollabaa-
tively detectpossibledamaye to the areathe sensorscover
usinga smallamoun of enegy andwith alow real-timere-
sponsdime. We needo make oursystenscalabléo accom-
modae the restrictedresource®n the uncerlying hardware
andto meetthereal-time requirement. Therebre, we male
the agens asautonanousaspossibleby distributing all the
decisionmakingfunctionalitiesto individual units. Simple,
low-overhea method arethenadoped to reducecommnu-
nicationcostsandto speedup decisionmakingproaesses.

Thisdamaedetectiorprodem canbecapturedy acon-
straint model. Schediing the signaling actiities of the
ping nodescanbeformuatedasadistributedgragh coloiing
prodem. A color herecorrespondgo atime slotin whicha
ping nodesendsout signals. The numter of colorsis there-
forethelengthin time unitsof ascheduleTheprodemis to
find a shortesschedie suchthatthe pingng signalsdo not
interfere with oneandherin orderto incresedamayedetec-
tion respons¢ime andredice theamoun of wastedeneny.
The problemis equivdent to finding the chromatic number
of a given constraintgraph which correspadsto the min-
imal worst-casaesponsdime anda coloring of the graph
within theoverall systenresponseime.

In short, this damag detectionprablem is a distributed
constraim satisfiction/opimization prablem with variables
and constraintdistributed amorg agents. Collectively the
agentsfind a solutionto minimize an objectve function,
whichis the numkber of violatedcorstraintsin our study

Distributed Stochastic Search

Distributed stochasticalgorithm (DSA) is uniform [11], in
thatall processesare equalandhave no identitiesto distin-
guishoneanotler. It is alsosynchrmousin prindple [11],
in that all processeproceedin synchonizedstepsandin
eachstepit sendsandreceves (zeroor more) messageand
thenperfamslocal computations,i.e., changng local state.
Notethatsynchraizationin DSA is notcrucialsinceit can
beachiered by a synchonizationmechaism [11].

Algorithm 1 Sketchof DSA, exeautedby all agerts.

Randanly chooseavalue
while (notermindion conditionis met)do

if (anew valueis assignedjhen

sendthe new valueto neighbors

end if

collectneigtbors’ new values|f ary

selectandassignthe next value(SeeTablel)
end while

| Algo. | A>0 [C,A=0]noC,A=0|

DSA-A || vwithp - -
DSA-B || vwithp | vwithp -
DSA-C || vwithp | vwithp v with p
DSA-D v vwithp -
DSA-E v v with p v with p

Table1: Next valueselectionin DSAs. Here C standsfor

corflict, A is the bestpossibleconflict reduction between
two stepsyp thevaluegiving A, andp aprobability to chang

thecurrentvalue whichrepiesentgshedegreeof pardlel ex-

ecutims,and“-” meanso valuechang. Noticethatwhen
A > 0 theremustbeaconflict.

Theideaof DSA andits variatiors is simple[2; 4]. After
aninitial stepin which the agerts pick randan valuesfor
their variables they go through a sequene of stepsuntil a
termiration conditian is met. In eachstep,an agentsends
its current stateinformation, i.e., its variadde valuein our
caseo its neighboringagentsdf it chargedits valuein the
previous step,andreceves the stateinformation from the
neichbors. It thendecides often stochasticallyto keepits
currentvalueor changdo anew one.Theobjectvefor value
chamgingis to possiblyrediceviolatedconstraintsA sketch
of DSAisin Algorithm 1.

The mostcritical stepof DSA is for an agentto decide
the next value, basedon its current stateand its believed
statesof the neightoring agents.If the agentcanna find a
new valueto improve its currentstate,it will notchangets
currentvalue. If thereexists sucha valuethatimprovesor
maintans statequality, the agentmay or may not chang to
thenew valuebasedn astochasticscheme.

Tablel listsfive possiblestratgiesfor valuechang, lead-
ing to five variationsof the DSA algorithm. In DSA-A, an
agen will charge its value only whenthe statequality can
beimproved. DSA-B is the sameasDSA-A excep thatan
agen may alsochang its valueif thereis a violated con-
straintandchangimy its valuewill notdegradestatequality.
DSA-B is expectedto have a betterperfamancethanDSA-
A sinceby reactingstochasticallyvhenthecurren statecan-
notbeimproveddirectly (A = 0 andthereexistsa corflict),
the violated constraim may be satisfiedin the next stepby
the value charge at one of the agentsinvolved in the con-
straint. Thus,DSA-B will chargevaluemoreoftenandhas
ahigherdegreeof parallelactionsthanDSA-A.

Furthermore, DSA-C is more aggessve than DSA-B,
chamging valueevenif the stateis at a local minimawhere



thereexist no conflict but anothervalue leadingto a state
of the samequality asthe current one. An agentin DSA-C
maymove to suchanequalguality valuein the next step. It

is hopedthatby moving to anotter value,anagentgivesup
its currert valuethatmayblock ary of its neightorsto move
to a betterstate. Therdore, the overall quality of the algo-
rithm may improve by introducingthis equal-aality action
at a singlenode. The actualeffeds of this move remainto

be examired,whichis oneof the objectives of thisresearch.

Parallelto DSA-B andDSA-C,we havetwo moreaggres-
sive variatiors. DSA-D (DSA-E) exterds DSA-B (DSA-C)
by allowing an agentto move, deterministically to a new
valueaslong asit canimprove the current state(A > 0).
Thesevariatiors make anagentmoregreedy self centered
in thatwhereverthereis agoodmove, it will takeit.

Notice that the level of activities at an agen increase
from DSA-A, to DSA-B andto DSA-C, andfrom DSA-D
to DSA-E. Thelevel of actvities alsoreflectsthe degreeof
parallelexecuiionsamory neichboring processesWhenthe
level of local actwvities is high, sois the degree of pardlel
execuions.

To changehedegreeof parallelexecuions,anagentmay
switch to a different DSA algoithm, or changethe praba-
bility p thatcontrds the likelihoad of updating its value if
the agentattemptsto do so. This prabability contiols the
level of activities atindividual agentsandthe degreeof par
allel executionsamongneighoring proesses.One major
objectie of this researchs to investigde the effectsof this
contrd paraneterontheperormarce of DSA algoithms.

The termination condtions and methodsto detectthem
arecompex issuesof their own. We will adopta termina-
tion detectionalgorithm [11] in a laterstage.In our current
implemenation,we terminateDSAs aftera fixednunberof
steps. This simple deternination methal senesthe basic
needof thecurren researchi.e., experimentallyinvestigat-
ing the behaior and performarce of thesealgorithms, the
maintopic of this paper

Experiment Setup

In our expaiments, we useddifferent networks, includ-
ing grids, which appearin our motivating applicatio, and
grapls and trees. We consideed gragh coloring prab-
lems, by varying the conrectiity of the structuresandthe
numter of colorsused,we are ableto geneate uncercon-
strainedgritically constrainec&ndoverconstraied prablem
instances. In the following discussionsye will focus on
grid andgraphstructurs.

We geneate grids of various sizes,including 20 x 20,
40 x40 and60 x 60 grids,andusedifferentnumker of colors,
rangirg from two to eight. In orderto studyhow DSAswill
scaleupto largeprablems,we simulateinfinitely large grids.
We remore the grid boundariesby conrectingthe nodeson
thetopto thoseonthebottomaswell asthenodesontheleft
to thoseontheright of thegrids. We alsochang thedegree
of constrainedessy changig thenumter of neightorsthat
anoce mayhave. For example,onadegreek = 4 grid, each
nodehasfour neighbors,oneeachto thetop, thebottom the
left andthe right. Similarly, on adegreek = 8 grid, each
nodehaseightneighors,oneeachto thetop left, topright,

bottan left andbottam rightin addition to thefour neigtbors
inak = 4 grid.

We generée graphs with 400and800 nodes andaverage
nock conrectiity equalto k = 4 andk = 8. A graphis gen-
eratedby addirg edgedo randanly selectecpairsof noces.
Thesetwo typesof grapls are usedto make a corresjpn-
derceto thegrid structuesof £ = 4 andk = 8 mentionel
befae. We alsogeneatedrandan treeswith depthfour and
averagebrancling factorsk = 4 andk = 8.

The distributed algoithms were simulatedon one ma-
chire using a discreteevent simulation method [12]. In
this metha, an agentmaintainsa stepcownter, equivaent
to asimulatedclock. The counteris increasecy oneafter
the agenthasexecutedonestepof computation,in which it
sendsts stateinformation,if necessaryecevesneighors’
messagesndcarriesoutlocal compuation. Theoverall so-
lution quality is measuregdat a particulartime poirt, by the
totalnumberof constraims violated,andthe commurication
costis measuredby thetotal numker of messagesent.

Phase Transitions

DSAs are stochastic,in that they may behae differently
even if all corditions areequal. We are interestedn their
typicd or statisticalbehaior atanequilibrium whenthebe-
havior of the algorithms doesnot seemto chang dranati-
cally from onestepto thenext. We arespecificallyinterested
in therelatiorshipbetweenthedegreeof parallelexecutions,
cortrolled by the probability p (cf. Tablel), andthe perfa-
marceof thealgorithms,including their solutionqualityand
communicationcosts.

It turns out that the perfomanceof DSAs may expeli-
encephasetransitionson someconstraintstructuresvhen
the degree of parallelismincreases. Phasetransitiors re-
fer to a phenomemn of a systemin which someglobal
properties changerapidly and dramaticallywhen a con-
trol or order paraméer goes acrossa critical value [1;
6]. A simpleexanple of a phasetransitionis waterchang
ing from liquid to ice whenthetempeaturedrops below the
freeZng point. For the prodem of interesthere the system
property is DSAs performance(solution quality and com-
muricationcost)andtheorderparaneteris the probability p
thatcontiols thedegree of parallelexecutionsof theagents.

Phase transitions on solution quality

We expeimentally investigate DSAs’ phasetransitionbe-
havior on grids, randan grapls andtrees. Startingfrom
rancbm initial colorings, we let the algorithms run for a
large nunmberof stepsto thepointwherethey seento reach
an equilibrium, i.e., the overall cololing quality doesnot
charge significantly from one stepto the next. We then
measue the solutionquality, in termsof the nunmberof con-
straintsviolated.In our experiments we measure¢heperfa-
marce at 1,00 steps;longerexecutions,suchas5,00 and
10000stepsexhibit almostthe sameresults.

We varied the degree of parallelexeautions,the probabil-
ity p in Table1, andexamired the qudity of the colorings
thatDSAscanprovide. Thesolutionquality indeedexhibits
phae-transitiorbehaior on grid andgraph structuresasthe
degreeof parallelismincreases.
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Figure2: Solutionquality phasetransitionson grids; &k = 8
using4 colors(left) and5 colors(right).

Grids We generatd prableminstance®f gridswith vari-
oussizesasdescribedn Section. Figurel shaws thetotal
numters of constrain violations after 1,00 stepsof the al-
gorithms using two colorson 20 x 20 grids with £k = 4
(Figurel(left)) andk = 8 (Figurel(right)). Eachdatapoint
of thefigureis averagedover 1,000 randan initial colotings.
Notethattheresultsfrom largergrids,suchas40 x 40 grids,
follow almostidentica patternsasin Figurel.

Thefigures shawv thatDSAs’ phasetransitionbehaior is
contrdled by the degree of parallelism,exceg DSA-A on
gridswith £ = 4. Thetransitionsaretypically very sharp.
For exampe, as Figure 1(left) shavs, the solution quality
of DSA-B andDSA-C decrasesabrupily anddramatically
whenthe prolability p increaesabove 0.8. More impor-
tantlyandsurprisindy, afterthetransition thesolutionqual-
ity is evenworsethana randan coloring. The averag so-
lution quality of randam colorings correspndsto the point
p = 0 onthe DSA-B andDSA-C cunesin thefigure. This
indicatesthat the degree of parallel execuions should be
contrdled unde a certainlevel in orderfor thealgorithns to
have a goodperformarce. Furthernore, thetransitionsstart
earlierfor DSA-D andDSA-E. Although DSA-A, the most
conserative algoithm, doesnot shav phasetransitionson
gridsof k = 4, its averag solutionquality is muchworse
thanthatof DSA-B, becaseit maybeeasilytrappedn local
minima.

The degree of parallelismandthe constrainedessof the
undelying network structuresalso interplay Grids with
k = 4 are2-cdorablewhile gridswith k¥ = 8 arenot, and
arethusoverconstraied. Theresultsshavn in Figurel in-
dicatethatthe phasetransitionsappearsooneron overcon-
strainedproblemsthanonuncderconstrairdprodems.Even
themostconserative DSA-A alsoexpeiiencesaphasdran-
sitionwhenk = 8. The mostaggressie ones, DSA-D and
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Figure 3: Solutionqudity phasetransitiors on 2-colaing
grafs; k = 4 (left) andk = 8 (right).
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Figure 4. Solutian quality phasetransitionson grapts; & =
8 using4 colors (left) and5 colors(right).

DSA-E, alwaysperfoms worsethana rancdm coloting on
this overconstraind grid.

A coloiing problem becomeseasierif more colors are
used,sinceit is lessconstraied to find a satisficingcolor
in thenext step.However, thephase-trasition behaior per
sistseven whenthe numter of colorsincreases. Figure 2
shaws theresultson grids with k£ = 8 using4 and5 colors.
Notice that the curvesin the 4-color figure andthe curves
for 3 colors(not shavn here)follow similar patternsasin
thecasefor 2 colorsin Figurel(right).

Graphs The phaetransitionsof DSAs persiston grafhs
aswell, andfollow similar patternsasin thegrid casesWe
corductedexperimentson randan graghs, with prodemin-
stancegieneratedsdescribedn Section. Figure3 showvs
the resultson graghs with £ = 4 andk = 8 using2 col-
ors,andFigure 4 the resultson graphs with ¥ = 8 using4
and5 colors. Eachdatapoint is anaverageof 1,000randan
instancesThesolutionquality is alsomeasuredfter 1,00
stepsof exeautions. As all the figuresshaw, the phaseran-
sitionson randanm grapts have similar patternsasthoseon
grids. Therefae, the discussion®n the gridsapplyin prin-
cipleto randan graghs. We needto mentian thaton graghs,
themostaggessve algoithms,DSA-D andDSA-E, do not
perform very well uncer all degreesof parallelexecutions.
This, combired with the resultson grids, leadsto the con-
clusionthatDSA-D andDSA-E shoud notbeused.

Trees Thereis no phasetransitionobsered on randan
treesin our tests. All DSAs perfom poaly on 2-colaing,
in comprisonwith their perfaomanceon grids andgraghs.
This seemdo be counteintuitive sincetreeshave the sim-
pleststructures amongall thesenetwork structurs. Oneex-
plarationis thatDSAsmaybeeasilytrappel into local min-
ima. Sincetreesarealways2-colaable,we areableto easily
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Figure 5: Commurication phasetransitionson grids with
k = 8 using4 colors (left) and5 colors(right).

createdocal minimain which nore of DSAscanescape.

Phase transitions on communication

We have so far focusedon DSAs’ solutionquality without
payirg ary attentionto theircommunicationcosts.Commu-
nicationin asensonetwork hasaninheriteddelayandcould
beunrelialle in mary situations.Therdore, comnunication
costof a distributedalgoiithm is anintegral partof its over-
all perfomance.lt is desirableo keepcomrmnunicationcost
aslow aspossible.

In fact,thecommunicationcostof a DSA algorithm goes
handin-hard with its solutionquality. Recallthatanager
will sendamessagéo its neighlorsatfterit changdits value
(cf. Algorith 1 andTablel). In DSA-A, DSA-B andDSA-
D, anagentmay charge its value if thereis a conflict, and
will notdosoif it is currerly ata stateof alocal minimum,
while in DSA-C andDSA-E,anagentmay probabilistically
changits valueatalocalminimum state.Therdore,in gen-
eral the commnunicationcostat a nodewill go down if the
agentmoves to a betterstate,andgo up othewise. As are-
sult, theoverall commnunicationcostwill alsofollow similar
trends.If thesolutionquality of DSA improvesovertime, so
doesits communicationcost. Therefae, thecomnunication
costis alsocontrdled by the degree of parallelexecutions
of the agents. The higher the parallel probability p is, the
highe thecommuicationcostwill be.

We verified this predictian by experimentson grids and
grapts, usingthe sameprablem instancesas usedfor ana-
lyzing solutionquality. Figure5 shavs the comnunication
coston grids with & = 8 using4 colors (left) and5 col-
ors(right) after 1,0 steps.Compaing thesethesefigures
with thosein Figure2, it is obviousthatsolutionquality and
communicationcostfollow identicalpatterrs. Furthemore,
thecommunicationcoston graphg(na shavn here)follows
similar patternsasthoseon grids.

SinceDSAs’ commurication costfollows their solution
quality, in therestof the paperwe will simply considr so-
lution qudity.

Anytime Performance

Although thephase-tansitionresultsarethedeterninantsin
chossinga DSA algoiithm thatcanreachstablestatesthey
do not, however, revealhow DSAswill perfam duringthe
processesof reachimg stablestates. We considerarnytime
perfamanceof DSAsin this section.
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Figure 6: DSA-A ongrids k£ = 8; 2 colors(left) and5 colors
(right).
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Figure 7: DSA-B ongrids k = 8; 2 colors(left) and5 colors
(right).

Anytime featuesareimpottant for a systemin dynamic
environmentsin which it may be disastrougo wait for the
systemto reachstablestates. This is particdarly true for
ourdamagealetectiorsensonetworks sinceit is desirale to
respmd to damage assoonaspossible. Theiefore,we are
interestedn anytime distributedalgorithms,i.e., algoithms
that canbe stoppedat anytime during their executions and
areableto provide feasibleandhigh-quality solutiors atthat
poirt. Fortunately DSAs canbe usedfor this pumpose.

Grids We usedthe samesetof 1,000prodem instances
andexpeimentalcondtions asin the previous section.For
eachDSA algorithm, we chosefour degrees of parallelism,
p=0.05p=03,p=0.6 andp = 0.95. Theresultson
grids with £ = 8 using2 colorsand5 colors areincluded
in Figures6 to 9. We plotted the resultsusing logarith
mic scaleson boththenumbe of steps(thehorizantal axes)
andthe numter of violations (the vettical axes)in orderto
closelyexaminethe arytime progiesse®f thealgoithms.

Recallthat DSA-A is the mostconserative of the DSA
family. As depictedin Figure6, in generala highe degree
of parallelismshouldbe choseraslong asdoing sowill not
putthe algorithm into a degradedregion. As shavn in Fig-
ure 6 for instancep = 0.6 is preferedoverp = 0.3 and
p = 0.05. Ovenall, amiddlerange p, e.g, p = 0.6, seemgo
beagoodparaméerto use.

Now considettheresultsof DSA-B, whichis moreactive
thanDSA-A. Theresultsarein Figure7. The phasetransi-
tion pointappearsarourd p = 0.55 onk = 8 gridsusing2
colars (cf. Figurel(right)). Thearytime performarcewhen
pis beyondthephaseransitionpoint,p = 0.6 andp = 0.95,
is alsonot competitize. In both casesn Figure7,p = 0.3
gives the bestanytime perfamance althoudn they all reach
optimal solutionsafter a long run. Notice thaton the less
corstrainedgrids (¢ = 8 and5 colors), DSA-B is ableto
reachtheoptimalstateqFigure 7).
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As discussedtbefae, DSA-C behaesthesameasDSA-B
whenusing?2 colorson the grids. Whenusing5 colors,the
perfamanceof DSA-C with p = 0.05 is compatilke with
thatwith p = 0.3 before the first 100 steps(Figure 8(lett)).
Moreover, DSA-C with p = 0.05 reacheghe optimal so-
lution, indicating a smallerdegree of parallelismis a better
choice.

Now we cometo DSA-D andDSA-E.DSA-D andDSA-
E behaethesameusing? colors. Figure9 shavstheresults
of DSA-D andFigure8(right) theresultsof DSA-E using5
colors. All theresultsin the figuresindicae thatin these
two aggressie algoithms, the lower the degree of pardlel
execuions,thebetter

Graphs The arytime performarce of DSAs on rancbm
graplsin principlefollows similar patternsasthoseongrids.
Again, DSA-C and DSA-E are not very competitive on
grapts,sowe donotincludetheirresultshere.ln Figuresl0
and11, we show theresultsof DSA-A, DSA-B and DSA-
C onrandan grapls. Thearytime periormane of DSA on
grapls have similar behaior asthaton grids.

In summay, a balancebetweerthe inheritedaggessve-
nessof a DSA algoiithm andits degreeof parallelismmust
be maintainedin order to achierze a good arnytime perfor-
manceaswell asa god final solutionqudity. The more
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Figure 10: DSA-A (left) and DSA-B (DSA-C) (right) on
grapls £ = 8 and2 colors.
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Figure 11: DSA-A (left), DSA-B (middle) and DSA-C
(right) ongrapls k = 8 and5 colors.

corsenative a DSA algorithm is, the highe the degreeof
pardlelism canbe. Ourresultsalsoshav thatthe two most
aggessve algoiithms, DSA-D andDSA-E arenot effective
andshouldnot beusedin thesecases.

Trees Ontrees,DSAsarenoteffective. As we briefly ex-
plained in Section, they may be easily trappedinto local
minima. The algorithns usually do not find optimal solu-
tions,evenif they exist.

Comparison with DBA

The remainng questionis how DSAs conparewith other
distributed algorithis. The closestcompeting algorithmis
distributed brealout algoithm (DBA) [12; 13; 14] thathas
almostall the desiredfeatures. We compae DSAs with
DBA in this section.

Again, we only consideedgridsandgrapts in our expe-
iments,becage on treesDSA cannd compée with DBA,
which finds optimal solutiors in O(n?) stepson treeswith
n nodes. We alsoleft out DSA-D andDSA-E sincethey are
not competitive. We chosethe bestparanetersfor the other
DSAs. We usedthe sameset of 1,00 prablem instances
usedbefore

Figure 12 shavs the comparison resultson grids with
k = 8 using 2 colorsand5 colors. With 2 colors (Fig-
ure 12(eft)), DSA-A with p = 0.6 hasaslightly betterper
formancethanDBA in thefirst 100 steps,but corvergesto
worsestateghanDBA in along run. DSA-B (alsoDSA-C)
hasworseperformarce thanDSA-A andDBA in abaut the
first 20 steps,but doesbetterafterwards. It reacheamuch
betterstateghanDBA after1,000steps.With 5 colors (Fig-
ure 12(ight)), DBA-A with p = 0.6 hasa godl initial per
formancebut doesheworstattheend.DSA-Bwith p = 0.3
hasworsearytime performarcethanDBA, butis ableto find
optimal solutionsafter 220 steps. DBA failed to find opti-
mal solutionmong 2.5% of the 1,00 trials. DSA-C with
p = 0.05 is notcompetitize in this case.

As shown in Figure 13, the resultson grapls are similar
tothatongridsin Figure12. Oneexceptiois thatongraghs
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Figurel2: BestDSAsversusDBA ongrids k = 8; 2 colors
(left) and5 colors (right).
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Figurel13: BestDSAsvs. DBA ongrapts £ = 8; 2 colors
(left) and5 colors (right).

with 5 colors, DBA findsoptimalsolutiors attheend.
Theresultspresentedn this sectionshav that DSA-B is

thebestof the DSA family. It is alsocompditive, especially

for finding goad or optimal solutiors with along execution.

Related Work and Discussions

The basicidea of distributed stochasticsearchmust have
beenarownd for sometime. A similarideawasusedin dis-
tributed belief upcate [8]. The ideawas directly usedfor
distributedgraphcoloring in [2; 4]. DSA-B considerednere
is the sameas CFPin [4]. However, [2; 4] failed to re-
veal phaseransitionsdiscussedn this paper Theideawas
alsostudiedusingspinglassesnodels[ 7] wherephasdran-
sitionswere characterize. Phasetransitionsin distributed
constrain prodem solvingwasalsoreportedn [5].

Thisresearclextends the existingwork in mary different
ways. It proposestwo variatins to the basicDSA. It sys-
tematically studiesobseration-tased,distributed stochas-
tic searchfor distributed coodinationand provides an ex-
perimertal, quditative analysison the relatiorship amag
thedegreeof pardlelism, prodem constrairdnesssolution
quality and overall systembehaior suchas phasetransi-
tions. It also demamstratesthat phasetransitionsexist in
mary different prodems and problem structuresand they
persistwhenthe degree of parallelismchangesNotice that
the phase transitiors consideed in this paperare differ-
ent from phasetransitionsof gragh coloring problens [1].
Herewe studiedthe phase-tansitionbehaior of distributed
searchalgorithms, which needsnot be phasetransitionsof
thecoloring prablemswe consideed.

Conclusions

Motivatedby realapplicatiors of multiagentsystemsn sen-
sornetworks, we studiedlow-overheadlistributedstochas-
tic algorithms (DSAs) for solvingdistributedconstraintsat-

isfactionandoptimization problens. We specificallyinves-
tigatedthe relatiorshipamorg the degreeof parallelexecu

tions, constraindnessof undetying problems, and DSAs’

behavior andperfomance In additionto shaving thephase
transitiors of solution quality of DSAs on different con-
straintnetwork structurespur expaimentalresultsalsolead
to two condusions. First, a very high degree of parallelex-

ecutimns may not be helpful. Very oftenit mayleadto de-
gereratedsystemperfamance An algorithmhaving a vety

high degreeof parallelexecutionsmayevenproduceresults
worsethanrandon solutiors. Seco, a moderée degree
of parallelexeautions may be ableto provide high quality

global solutions. Indeed, DSA-B outperforns distributed
bre&out algorithm on mary overconstraineghrablems.
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