From: AAAI Technical Report WS-02-15. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Embedded Bayesian Networks: Anyspace, Anytime Probabilistic Inference

Fabio T. Ramos, Fabio G. Cozman and Jaime S. Ide
Escola Politécnica, University of Sdo Paulo
Av. Prof. Mello Moraes, 2231, 05508-900, Sao Paulo, SP - Brasil
fabioram @usp.br, fgcozman @usp.br, jaime.ide @poli.usp.br

Abstract

An important aspect of probabilistic inference in embedded
real-time systems is flexibility to handle changes and limi-
tations in space and time resources. We present algorithms
for probabilistic inference that focus on simultaneous adapta-
tion with respect to these resources. We discuss techniques to
reduce memory consumption in Bayesian network inference,
and then develop adaptive conditioning, an anyspace anytime
algorithm that decomposes networks and applies various al-
gorithms at once to guarantee a level of performance. We
briefly describe adaptive variable elimination, an anyspace
algorithm derived from variable elimination. We present tests
and applications with personal digital assistants and industrial
controllers.

Introduction

What are the basic techniques that would allow embedded
real-time systems to engage in probabilistic reasoning? In
this paper we provide an answer to this question by pre-
senting Bayesian network algorithms that adapt to varying
memory and time resources.

The hallmark of probabilistic inference algorithms for
embedded real-time systems should be flexibility: not just
to be able to produce a solution at any given stopping time,
but also to be able to plan ahead how to use available, possi-
bly scarce, resources, and to quickly respond to changes or
failures in resource allocation; not just to adapt to changes in
memory or time resources, but to adapt to changes in mem-
ory and time resources. To explore these trade-offs, in this
paper we focus on methods that combine conditioning op-
erations with exact and approximate inference, producing
algorithms that are anyspace and anytime.

We start by discussing techniques that reduce memory
consumption in the variable elimination algorithm. Our pur-
pose is both to show what can be done with standard meth-
ods and to discuss some of our assumptions concerning em-
bedded systems. We also describe the EmBayes system, a
very compact inference engine that we have used in real ap-
plications.

We then investigate new ways of thinking about embed-
ded Bayesian networks, either for real-time systems and for

Copyright (© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

non-real-time systems. Our algorithms attempt to first guar-
antee execution with a given memory limit, and then to
explore approximate inference algorithms when time con-
straints are imposed. We present adaptive conditioning,
an algorithm that can work with any given memory con-
straints by decomposing networks and conditioning vari-
ables. Adaptive conditioning splits a network into sub-
networks and selects appropriate algorithms for each sub-
network. We also describe adaptive variable elimination, an
algorithm that complements adaptive conditioning by allow-
ing an embedded system to adapt to varying memory con-
straints during inference.

The distinguishing characteristic of adaptive condition-
ing is that it divides a network into smaller pieces that can
be processed by different algorithms. Although the idea of
using more than one algorithm in a single inference run is
not new (Kjaerulff 1995), we take a more general approach,
and explore the consequences for space and time constraints.
Our approach provides a general framework for probabilis-
tic inference; the vantage point of embedded systems pro-
vides an excellent panoramic view of inference algorithms
and how the various techniques relate and compare to each
other.

We finish by presenting tests and applications with per-
sonal digital assistants and industrial controllers. In the last
section we summarize our results and discuss parallelization
and hardware-based systems.

Embedded and Real-Time Bayesian Networks

Embedded systems are present in devices ranging from mo-
bile phones to industrial controllers. We differentiate be-
tween embedded systems that have real-time requirements
and systems that do not (a hard real-time system fails if ap-
plications do not finish within a prescribed time). We can
view embedded systems as little agents, possibly connected
into a large community.

Today, embedded systems usually have a modest amount
of memory at their disposal; this situation is changing dra-
matically, both due to hardware and software developments.
We can expect that one thing will always be true regarding
“intelligent” embedded systems: computational resources
vary during operation. Memory may be removed due to
hardware failures or maintenance; and memory may be
added physically or through network connections. Embed-

ded systems may also be highly connected and able to share
resources, or very isolated and unable to communicate with
other devices. Finally, timing constraints can also vary from
one inference to the next.

A critical aspect of “intelligent” embedded systems is thus
bound to be the flexibility of reasoning algorithms. We can
classify changes in resources in two categories. We can have
offline changes, in which the inference engine is informed
about the resources before inference starts. We can also have
online changes, in which the inference engine is informed
about changes in resources during an inference run.

There is a natural tension between space and time con-
straints; no algorithm can be expected to produce the same
answers under arbitrary space and time constraints. We sug-
gest that the most relevant approach for embedded systems
is to require that strict space and time constraints are fixed
before any inference; these constraints must be met, possi-
bly with some degradation in answers when time constraints
are too tight, and with the expectation that if more time is
available, answers will improve in quality.

In this paper we assume that memory and time are scarce
and that algorithms must adapt to variations in these re-
sources. The same type of assumption is taken by anytime
algorithms. We suggest that the following definitions are rel-
evant in our context (note that the first definition is slightly
different from the usual meaning of anytime algorithms):

Definition 1 An algorithm is anytime if it can produce a so-
lution in a given time T, and the quality of solutions improve
with time after T

Definition 2 An algorithm is anyspace if it can improve its
performance with increasing space, assuming that the avail-
able space is larger than some minimal amount.

We focus on anyspace algorithms that improve running time
performance with increasing space. Our interest then is
to extend existing trade-offs between space and time (Dar-
wiche 2001; Dechter 1996b) to anyspace anytime methods
according to Definitions 1 and 2.

In this paper we focus on probabilistic reasoning con-
ducted through Bayesian networks. A Bayesian network
represents a joint distribution over a set of variables X =
{Xi,...,X,} through a directed acyclic graph with n
nodes (Pearl 1988). Each node represents a variable X;
and is associated with a conditional distribution p(X;|I1;),
where II; is the set of parents of X; in the graph. The
joint distribution represented by the network factorizes as
[, p(X;|10;). An inference is obtained when we compute
p(Q|E) for query variables Q and evidence variables E.

Variable Elimination in Embedded
Applications

We began our study of embedded systems when we at-
tempted to incorporate probabilistic reasoning into pro-
grammable logic controllers for commercial applications
(we later describe one of these applications). Our first re-
action was to use existing methods with relatively small
Bayesian networks. We assumed that our target systems

would have minimal ability to communicate, so the infer-
ence engine would have to be small (so as to allow down-
loads and remote operations). We also assumed that our in-
ference engine would be a general purpose system, as op-
posed to a very specialized one (Darviche & Provan 1996).

We produced a generic, small, efficient, and easy to
port inference engine by implementing the variable elimi-
nation algorithm (reviewed in (Cozman 2000), also known
as bucket elimination (Dechter 1996a) and peeling (Can-
nings, Thompson, & Skolnick 1978)). Contrary to many
implementations, we do not store junction trees or similar
structures in our engine; we use d-separation to discard un-
necessary variables and compute an ordering for variables
at each inference request. We have concluded that comput-
ing orderings and triangulations with existing heuristics is
an extremely fast procedure that can be repeated at almost
no cost. The simplifications obtained with d-separation are
more effective than the pre-computation of orderings.

We have coded variable elimination so that every in-
termediate result can stay in memory only for the strictly
necessary time; in this manner, memory can be exhausted
only if the size of separators produced by variable elimi-
nation are too large. The algorithm was coded in Java, as
this language can be easily ported among embedded ap-
plications. The resulting system is called EmBayes, and
is extremely compact, occupying less than 30KBytes of
space. The engine is based on the JavaBayes system, as
both use the same coding interfaces; consequently, net-
works can be built and visualized in a friendly graphical
interface using the JavaBayes system (freely distributed at
http://www.cs.cmu.edu/"javabayes). The EmBayes system
is now used in a variety of locations as an effective method
to embed probabilistic reasoning. From our experience with
the EmBayes system, we decided to look for more flexible
inference algorithms. The results of our investigation in this
direction are described in the remainder of this paper.

Adaptive Conditioning

The algorithm described in this section, which we call adap-
tive conditioning, attains a high level of control regarding
space and time constraints. As mentioned previously, our
goal is to guarantee execution given hard limits on space
and time, and also guarantees anytime behavior if neces-
sary. The algorithm can trade time and space in several
dimensions, essentially by interleaving conditioning oper-
ations with standard inference methods.

The basic idea of adaptive conditioning is to divide a net-
work in several sub-networks so as to enforce strict memory
constraints, and to run different algorithms in each network
so as to attend to timing constraints. Networks are decom-
posed so that separators are guaranteed to be smaller than
some given limit, and inference algorithms are distributed
among sub-networks so as to obtain anytime behavior when
needed. Decomposition of networks is accomplished by
conditioning variables.

Many algorithms have used conditioning to trade space
and time. For example, conditioning is employed in
the super-bucket and the conditioning-plus-elimination al-
gorithms by Dechter (Dechter 1996b); we actually use

the ideas of conditioning-plus-elimination (described later),
when we discuss the possibility of online changes in re-
sources. The algorithm that is most similar to adaptive con-
ditioning is recursive conditioning, where a network is recur-
sively split until single-node networks are processed (Dar-
wiche 2001). One obvious difference between recursive and
adaptive conditioning is that the latter does not attempt to
reach single-node networks, instead leaving the option of
selecting algorithms for multi-node sub-networks. We could
understand adaptive conditioning as an algorithm that con-
structs a partial dtree! over sub-netwoks and runs different
inference algorithms in each sub-network. Even though this
mental picture may be helpful, the algorithms are different
both in purpose and in design. Not only we want to have
anytime inference when necessary, but our goal is to guaran-
tee execution under hard memory constraints; consequently,
adaptive conditioning focuses on restricting separator size,
not on obtaining balanced execution with respect to time.
The dtree that we could build on top of our sub-networks
certainly does not have minimum height, nor is it required;
the rationale is that a network is split only when memory is
exhausted, and in those circumstances the caching facilities
provided by dtrees are not meaningful. While recursive con-
ditioning always tries to find a “balanced” decomposition
that guarantees worst-case O(n exp(wlogn)) time, adap-
tive conditioning only decomposes when necessary, reach-
ing worst-case O(n exp(n)) time (where n is the number of
variables and w is the width of the elimination ordering).
Note that adaptive conditioning is more stringent regard-
ing memory, and degrades to a brute-force approach in the
worst-case. If time constraints are required, adaptive condi-
tioning resorts to anytime behavior.

Active conditioning receives a request for an inference
and a description of available resources: maximum allow-
able memory and maximum time spent to produce first re-
sults (with an understanding that, if more time is available,
quality of results will improve). We assume that space con-
straints are specified in terms of the maximum allowable
separator size, as this is the critical value in inference. Adap-
tive conditioning is designed to operate in two phases. First
the algorithm plans the operations that will be executed. The
second phase is then the actual execution of inference oper-
ations. We present the offline planning phase in the next
subsection, and then describe the execution phase. In the
last subsection we discuss methods that allow the algorithm
to run the online phase even when the available memory de-
creases during execution.

Planning Phase

The planning phase of adaptive conditioning receives re-
source constraints and must: (1) decide where to split net-
works (in cases when memory is scarce), by conditioning
variables; (2) distribute inference algorithms among the sub-
networks (in cases when time constraints are present); (3)
organize caching of intermediate results in cases where a
network split leaves memory unused.

!The binary tree that represents the recursive splits in recursive
conditioning.

Figure 1: Decomposition of a junction tree in three sub-
networks. Clusters are ovals; separators are rectangles. Con-
ditioning variables are not capitalized.

The first goal of the planning phase is to choose the best
decomposition of the network given constraints in separa-
tor size. The problem of finding the best decomposition is
known to be NP-hard (Wen 1990). An heuristic method that
conforms to our requirements is: build a bucket tree (or a
junction tree) and split the clusters of variables at those sep-
arators that exceed given space constraints. The variables in
these separators are conditioned, and consequently the orig-
inal network is divided into smaller pieces. Figure 1 shows
a junction tree and a division in three sub-networks.

In general, conditioning variables need not be separators.
We say that conditioning variables form cutsets; after all
sub-networks are generated, adaptive conditioning can find
arbitrarye cutsets for the sub-networks (Darwiche 2001). A
cutset for variables X’ is a set of variables C such that if ev-
ery X; € C is observed, variables X' are independent of all
other variables in the network. Cutsets contain the parents
of variables in X' that are not in X'.

It is then necessary to assign inference algorithms to
each one of these sub-networks. We divide algorithms
in two classes, exact and approximate. Exact algorithms
could be further divided into clustering-based methods
and conditioning-based methods. Approximate algorithms
can involve Monte Carlo simulation (importance sampling,
Gibbs sampling) or various deterministic techniques (struc-
tural simplifications, partial summations). Several approx-
imation algorithms have an anytime character; we have

opted to always use Gibbs sampling in our implementa-
tion. A more sophisticated implementation could be to select
among approximation algorithms; it is interesting to note
that Monte Carlo methods usually work well when proba-
bilities are not extreme, while deterministic approximations
tend to work better when probabilities are extreme — this
criterion can guide the choice of approximations in sub-
networks.

We chose to use an exact method that combines clustering
and conditioning. The last subsection briefly describes adap-
tive variable elimination, an algorithm that uses previous
ideas to guarantee inference results even when space con-
straints change during execution. Every sub-network runs
adaptive variable elimination if time constraints are not im-
posed. To be able to select algorithms with time constraints,
it is necessary to obtain an estimate of running times. For
each sub-network, we run adaptive variable elimination once
(that is, for one of the values of the conditioning variables).
We can easily compute how many times each sub-network
must be processed, and so we obtain an estimate of total run-
ning time. When the estimated running time exceeds the re-
quired limits, we switch to approximations. Here a decision
must be made, because we can either run exact inference for
some sub-networks and approximate inference for others, or
we can run exact and approximate inferences for different
values of the conditioning variables. In our implementation
we always assign a single algorithm to each sub-network;
the strategy is to assign exact algorithms to as many sub-
networks as possible, selecting first the sub-networks that
are “closer” to the query variables. We expect “closer” sub-
networks to be more influential, as suggested by the analysis
of loopy-propagation algorithms (Weiss & Freeman 1999).

After we process each sub-network once, we can exam-
ine the new separators and check whether we have available
memory. It is possible that a split reduces drastically the size
of separators and then space may become abundant. When
this happens, the free memory can be used for caching re-
sults so as to reduce time spent in inferences. The same
caching techniques developed for recursive conditioning can
then be employed (Darwiche 2001).

Execution Phase

A network may be split in several sub-networks during the
planning phase. We have to process each one of these sub-
networks in the execution phase, when inferences are actu-
ally produced; sub-networks are processed conditioned on
their cutsets. The following theorem shows the operations
that must be performed.

Theorem 1 (Adaptive Conditioning) Ler C be a set of
variables over network N that, when observed, make
the network disconnected into sub-networks N with i =
1,2,...,n, and let Q be a set of variables in N for which
we want to compute marginals. Then,

Pr¥(Q =) [[P (QiCi). e
c

where PrN (Q) is the probability of Q in the network N,
Q; is a subset of Q that is in N and C; is a subset of C that
is in Nj.

Figure 3: The Bayesian Network N decomposed into three
sub-networks.

The theorem is an immediate generalization of the basic
theorem of recursive conditioning (Darwiche 2001); the dif-
ference is that recursive conditioning always splits in two
sub-networks at a time, and consequently keeps only two
terms in the summations. Adaptive conditioning may in-
stead divide a network at once in many sub-networks. The
proof of the theorem follows from the fact that PrV (Q) =
S e PrV (Q, C), and the fact that the cutset C leads to a
decomposition of the form [, PrVi (Q;, C;).

So, we have to compute PrVé (Q;, C;) for each network
N; and for each different instantiation of variables in C.
Note that the number of inferences grows exponentially with
the number of variables in C.

As an example, consider the network N in Figure 2. This
network is decomposed into three sub-networks by condi-
tioning on C and B. The Figure 3 shows the result of this
decomposition. In this figure the dashed nodes represent
conditioned variables that were added in each sub-network.

In this example, if we want the marginal probabilities
of £ and F', we have to compute the following probabil-
ities: Pr\1 (C'| B' = V), Pr\> (FE |C'=¢,B' = 1)
and PrVs (B). Suppose all variables were binary. We have
to compute Pr\1 (C'| B' = ') twice, we have to compute
PrN: (B} | C' = ¢, B' = b') four times and we have to
compute Pr™¥# (B) only once.

Figure 4 presents the steps that are executed to produce in-
ferences, following the operations in Theorem 1, and possi-
bly using caches to store intermediate results. As we can see
in the pseudocode, we can attain linear space in the number
of nodes if caching is not used. The computational complex-

Adaptive conditioning — Execution phase

AC(T)

01. result + 0

02. for each instantiation of variables in cutset do
03. result < result+ MULTI(T)

04. return result

MULTI(T)

0l. result < 1

02. for each sub-network in T do

03. if cache[E] is nil then

04. result « result-éngnce (E)
05. cache[E] « éngnce (E)

06. else

07. result < result-cache[E]

08. return result

Figure 4: Pseudocode for the execution phase of adaptive
conditioning.

ity for this algorithm is affected by the number of inferences
that we have to perform in each sub-network, which in turn
depends on the number of variables in the cutset:

Theorem 2 Given a Bayesian network with n variables and
a cutset of width w. that decomposes the network into wy,
sub-networks, the number of inferences performed by adap-
tive conditioning is O (wy, - exp (w.)).

Adaptive Variable Elimination

We consider now the possibility that, during the execution
phase, memory is suddenly reduced. What can be done
in those sub-networks that are running exact inference? A
simple solution is to run exact inference algorithms based
on clustering, but resort to conditioning operations if mem-
ory problems occur — this is the idea of the conditioning-
plus-elimination algorithms suggested by Dechter (Dechter
1996b). We adopt this idea.

In our implementation of adaptive conditioning, we
use a conditioning-plus-elimination scheme for every sub-
network that can run exact inference. We call the scheme
adaptive variable elimination, as it is based on variable
elimination. The idea is simple: if suddenly there is no more
space to allocate separators, then variables in intermediate
buckets are conditioned; computation will take more time as
it uses less space.

Experiments and Applications

In this section we show how adaptive conditioning handles
realistic networks by analyzing different constraints on time
and space. We also present a real application to ilustrate how
adaptive conditioning can be used.

We have implemented adaptive conditioning in the Java
language, using the EmBayes package (described previ-
ously) as the underlying inference engine for exact infer-
ence. When approximate inference is required, we use
Gibbs sampling. We tested the algorithm with simulated
and real networks; the simulated networks were generated

Separators Weight in Alarm Network
35 T T T T T T

Maximum weight allowed = 32

30 q

o
o
T
I

o

Maximum weight allowed = 20

N
=]
T
I

Maximum separator weight
&
T
I

o+
10 Maximum weight allowed =9
+ ++ R e
HH+ ++Ht+ ++H+
°r + + + + + +
+ + + + + 4+

Inferences in Alarm Network

Figure 5: Results of the decomposition.

using an iterative procedure for producing random directed
acyclic with adequate properties graphs (Melancon, Dutour,
& Bousquet-Melou 2001). Code for adaptive conditioning
and for random network generation is available from the au-
thors.

Tests with real networks

We describe here tests with two real networks: Alarm and
Munin. We evaluate the decomposition of Alarm; that is,
we evaluate how the actual maximum separators compare to
the prescribed space limits. For this test we decomposed the
Alarm network in sub-networks and performed inferences
using adaptive variable elimination for each sub-network
and for all variables. As we see in Figure 5, when we have
a low memory constraint (the first column), the maximum
separator weight produced was often smaller than the limit.
This indicates that we still have memory to use, and so we
could use caching. For the last column in this figure, the
separators are very close to the limit in several inferences.

In the next test we have used the network Munin to eval-
uate how the time complexity increases with the size of cut-
sets. For the worst case, adaptive conditioning takes expo-
nential time in the cutset width. Figure 6 shows the cutset
width against the maximum separator weight allowed for the
variable with the biggest separator, displaying the expected
exponential behavior.

The car-wash maintenance system

We describe an application of embedded Bayesian networks
that has employed the algorithms presented in this paper.
Our application was the automatic diagnosis, for mainte-
nance and fault detection purposes, of car-wash machines.
A car-wash system is composed of three towers: the first
tower showers the car with water and shampoo; the second
brushes the car; the third tower dries the car. A PLC (Pro-
gramable Logic Controller) is typically responsible for con-
trolling these towers, turning electric motors and valves on
and off, and at same time receiving information from sen-

x10* Separators x Cutset Width in Munin Network
10 T T T

Maximum separator weight
o
T
i

I
[5 10 15 20 25
Cutset Width

Figure 6: Time-space trade-off for exact inferences.

? Wet_Car
Nrt) car

Dryer_Sensor~ Brush_Sensor Witer, Sensor/End_Line_Sensor

Water” Problem: ghampoo_Problem

— Z—— ater | L_Shampoo L_Dryer

Water Valve_Pfob o Waer - V—Sh_Brok NDR‘“W V_pryer ok ||
i v

\V/y © ‘ >
O‘z — | /“N6_Dryer,
— O | Sensor_Problem
Mixer/Problem M Lav | SN
| |
M_Mist V_Mist

M_Drier M_Mov_Wat M_Mov_Brush M_Mov_Dryer

Figure 7: Network for the car-wash system.

sors. The whole system contains about 20 devices, all of
them exchanging information with the PLC. The system is
simple when compared to a complete industrial plant, but it
is difficult to conduct diagnosis on it — any device can fail
and sensors are quite rough. We developed a Bayesian net-
work for maintenance and fault detection by analyzing the
system’s fail tree and studying its operating characteristics;
the network contained 27 nodes and is shown in Figure 7.

Instead of storing the Bayesian network in the PLC, we
decided to use a personal digital assistant (the simplest Palm
IITe) to conduct diagnosis. We built an interface between the
Palm and the PLC (a model produced by Siemens AG), so
that the data in the PLC could be transferred to the Palm.
Figure 8 shows the Palm and PLC exchanging informations
during the diagnosis process. Variables like water pressure,
shampoo level or voltage applied in a motor are observed
and then the inference engine indicates the most probable
cause of failure. The inference system was easy to handle
and made good use of minimal computing resources. Some
of the inference requests demanded considerable processing
time (sometimes reaching thirty seconds), but memory, the
most scarce resource, was not exahusted. As industrial PLCs
were not able to receive Java programs, we could not down-
load the engine and run adaptive conditioning directly on the

Figure 8: Palm getting information from PLC.

PLC. As PLCs become more sophisticated, we can imagine
different configurations where the Palm only downloads net-
works for inference, or where the Palm and the PLC interact
in a more intelligent and cooperative way. Adaptive condi-
tioning could then be used directly in PLCs, where memory
resources are minimal and can change during operation.

Conclusion

Adaptive conditioning is a combination of many ideas, with
a design that is driven by a specific model of how probabilis-
tic reasoning should be used in embedded systems. Adaptive
conditioning is based on the desire to guarantee maximum
flexibility in the specification of hard space and time con-
straints, while resorting to anytime behavior when needed.
The distinguishing characteristic of the algorithm is the fact
that various inference algorithms are distributed so as to sat-
isfy various resource constraints. The algorithm can be pre-
sented as a convergence point where exact and approximate
algorithms can coexist, while different types of time/space
trade-offs can be formulated. For example, the algorithm
suggests a simple way to combine Monte Carlo algorithms
with exact inference — an idea that has been implemented
somewhat differently previously, by applying Monte Carlo
algorithms to clusters of variables (Kjaerulff 1995).

Some ideas used by adaptive conditioning are related
to parallelization of Bayesian network inference, where
decomposition into sub-networks is important (Kozlov &
Singh 1996; Pennock 1998). Adaptive conditioning can be
easily parallelized; in particular, it can be applied to embed-
ded systems acting as a community and able to share re-
sources.

The pursuit of embedded probabilistic reasoning certainly
opens some interesting directions for research. Algorithms
such as adaptive conditioning can be seen as a first step in
letting automated Bayesian reasoning become prevalent in
our surrounding environment. One of the most effective
ways to allow devices, big and small, to be endowed with
probabilistic reasoning would be to create hardware circuits
that can perform Bayesian inference. In particular, approx-
imate inference could be greatly facilitated by the introduc-
tion of random-number generation circuits. Such are the
ideas that we intend to pursue in the future.

Acknowledgments

We thank Marsha Duro from HP Labs, Edson Nery from
HP Brasil, and the Instituto de Pesquisas Eldorado for par-
tially funding the research. The second author was par-
tially funded by a grant from CNPq, and the third author

was funded by a grant from FAPESP. The third author con-
tributed with the Gibbs sampling code used in tests, while
the first two authors developed the algorithms described in
this paper.

References

Cannings, C.; Thompson, E. A.; and Skolnick, M. H. 1978.
Probability functions in complex pedigrees. Advances in
Applied Probability 10:26-61.

Cozman, F. G. 2000. Generalizing variable elimination in
Bayesian networks. In Workshop on Probabilistic Reason-
ing in Artificial Intelligence, 27-32. Sao Paulo: Tec Art.

Darviche, A., and Provan, G. 1996. Query DAGs: A prac-
tical paradigm for implementing belief-network inference.
In Proceedings of the Twelfth Conference on Uncertainty in
Artificial Intelligence, 203—210. San Francisco, California,
United States: Morgan Kaufmann.

Darwiche, A. 2001. Recursive conditioning. Artificial
Intelligence 126(1-2):5-41.

Dechter, R. 1996a. Bucket elimination: A unifying frame-
work for probabilistic inference. In XII Uncertainty in Ar-
tificial Intelligence Conference, 211-219. San Francisco,
California, United States: Morgan Kaufmann.

Dechter, R. 1996b. Topological parameters for time-space
tradeoff. In Proceedings of the Twelfth Conference on Un-
certainty in Artificial Intelligence, 220-227. San Francisco,
California, United States: Morgan Kaufmann.

Kjaerulff, U. 1995. Combining exact inference and Gibbs
sampling in junction trees. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence. San
Francisco, California, United States: Morgan Kaufmann.

Kozlov, A. V., and Singh, J. P. 1996. Parallel implementa-
tions of probabilistic inference. Computer 29(12):33-40.

Melancon, G.; Dutour, I.; and Bousquet-Melou, M. 2001.
Random generation of directed acyclic graphs. Electronic
Notes in Dicrete Mathematics, Euroconference on Combi-
natorics, Graph Theory and Applications special issue.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, Cali-
fornia: Morgan Kaufmann.

Pennock, D. M. 1998. Logarithmic time parallel Bayesian
inference. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, 431-438. Morgan
Kaufmann.

Weiss, Y., and Freeman, W. T. 1999. Correctness of be-
lief propagation in Gaussian graphical models of arbitrary
topology. Technical Report CSD-99-1046, CS Department,
UC Berkeley.

Wen, W. X. 1990. Optimal decomposition of belief net-
works. In Proceedings of the 6th Conference on Uncer-
tainty in Artificial Intelligence, 245-256. Morgan Kauf-
mann.

