
Real-time Particle Filters Using Mixtures of Samples Sets

Cody Kwok� Dieter Fox�

�Dept. of Computer Science & Engineering, �Dept. of Statistics
University of Washington

Seattle, WA 98195

Marina Meila�

Abstract

Recently, particle filters have been applied with great success
to a variety of state estimation problems. In many real time
applications, sensor information arrives significantly faster
than the particle filter can process. The prevalent approach to
this problem is to update the particle filter as often as possible
and to discard sensor information that cannot be processed in
time. In this paper we present an alternative approach. Our
real time particle filter makes use of all sensor information
by partitioning sample sets into mixtures of smaller sample
sets. Each small sample set contains as many samples as can
be processed between the arrival of two observations. These
small sets are combined as soon as the total number of sam-
ples in the mixture is sufficiently high. Using efficient sub-
sampling, we determine the mixture weights so as to mini-
mize the KL-divergence between the mixture density and the
true posterior. Thereby, our approach focuses computational
resources on valuable sensor information. Experiments using
data collected with a mobile robot show that our approach
yields drastic improvements over alternative techniques.

Introduction
Estimating the state of a dynamic system from noisy sen-
sor measurements is extremely important in areas as dif-
ferent as speech recognition, target tracking, mobile robot
navigation, and computer vision. Particle filters have been
applied with great success to a variety of state estima-
tion problems (Doucet, de Freitas, & Gordon 2001; Isard
& Blake 1998; Fox et al. 1999; Lenser & Veloso 2000;
Schulz et al. 2001; Vermaak et al. 2002). The success of
particle filters is mostly due to their efficiency and ability
to represent a wide range of probability densities. The key
idea of this filter technique is to represent probability densi-
ties by sets of samples, or particles. The efficiency of parti-
cle filters lies in the way they place computational resources.
By sampling in proportion to likelihood, particle filters focus
the computational resources on regions with high likelihood,
where things really matter.

The application of particle filters under real-time con-
straints (Dean & Boddy 1988; Zilberstein & Russell 1995;
Horvitz 2001) introduces several important research ques-
tions. The sample based representation of particle filters

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is well suited for an any-time implementation: Whenever
an estimate of the system state is needed, sampling can be
interrupted and an approximate estimate can be generated.
Since the variance of the sample based approximation de-
creases with the number of samples, the quality of the so-
lution/estimate increases with the computational resources.
However, due to the dependencies between sample sets at
subsequent time steps, interrupting the generation of sam-
ples too early can result in divergence of the filter. Statis-
tical error bounds provide means for determining the num-
ber of samples necessary to achieve a desired approxima-
tion quality, and the minimum number of samples required
strongly depends on the complexity of the underlying distri-
bution (Fox 2001). This minimum imposes a lower bound
on the computational complexity of the particle filter. How-
ever in many real-time applications, sensor information may
arrive faster than this lower bound, and cannot be processed
fully. Therefore, a key question is how to make optimal use
of the available information given the limited time available.

A prevalent approach to this problem is to update the fil-
ter as often as possible, and to discard sensor information
that arrives during the update process. In this paper we in-
troduce an alternative approach. Instead of discarding sensor
readings, we integrate all of them into proportionally smaller
sample sets. These sets are then recombined into a mixture
distribution that is propagated into the next estimation cy-
cle, which eliminates the problem of filter divergence. Fur-
thermore, in order to minimize approximation error, our ap-
proach places more computational resources on more valu-
able sensor information. This is achieved by weighting the
sample sets inside the mixture.

The remainder of this paper is organized as follows: In
the next section we outline the basics of Bayes filters and
particle filters. Then we introduce our novel technique to
real-time particle filters. An efficient approach to choosing
the weights of the mixture components is described next,
followed by experimental results.

Bayes filters and particle filters
In this section we briefly review the standard Bayes filter and
particle filter (our approach can easily be extended to more
complex techniques such as Rao-Blackwellised particle fil-
ters (Doucet et al. 2000)). Bayes filters address the problem
of estimating the state � of a dynamical system from sen-

From: AAAI Technical Report WS-02-15. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

t−1x

t−1z

tx

tz

t+1x

t+1z

t+1utut−1u

t+2z

t+2x

t+2u (a)

t−1S t+1S t+2StSt t−1p(x | u ,x)t−1 p(x | u ,x)t tt+1 t+1 t+1p(x | u ,x)t+1

p(z |x)t+1 t+1 p(z |x)t+2t+2p(z |x)t tp(z |x)t−1 t−1

(b)

Figure 1: a) Recursive Bayes filter: State �� only depends on the previous state ���� and the control information ����. Observations ��
solely depend on the current state. b) Implementation as particle filter. The state is represented by sample sets ��. The sample set at time
� is generated by drawing samples from the previous set using the control information ����. Observations are integrated by weighting each
sample using the likelihood of the observation ���� � ��� as importance weights.

sor measurements. The key idea of Bayes filtering is to re-
cursively estimate the posterior probability density over the
state space conditioned on the data collected so far. The data
consists of an alternating sequence of time indexed observa-
tions �� and control measurements ��. The posterior at time
� is called the belief �������, defined by

������� � ���� � ��� ����� ����� ���� 	 	 	 � ��� ���

Bayes filters make the assumption that the dynamic system
is Markov, i.e. observations �� and control measurements
�� are conditionally independent of past measurements and
control readings given knowledge of the state �� (cf. 1(a)).
Under this assumption the posterior belief can be updated
efficiently using the following two update rules: Whenever
a new control measurement ���� is received, the state of the
system is predicted according to

�������� ��

�
���� � ����� ����� ���������
���� �(1)

and whenever an observation �� is made, the state estimate
is corrected according to

������� �� � ���� � ������
����� 	 (2)

Here, � is a normalizing constant which ensures that the be-
lief over the entire state space sums up to one. ���� � ���,
the observation model, describes the likelihood of making
observation �� given that the current state is ��. The dynam-
ics of the system are modeled by the conditional probability
���� � ����� �����.

Implementations of Bayes filters mostly differ in the way
they represent densities over the state ��. For example,
Kalman filters are Bayes filters which make the restric-
tive assumption that the posterior can be represented by
Gaussian distributions. Multi hypothesis tracking allows to
represent multi modal state densities (Bar-Shalom & Fort-
mann 1988). Discrete, piecewise constant representations
are able to approximate a wide range of distributions (Koller
& Lerner 2001; Burgard et al. 1996).

Particle filters
Particle filters are a variant of Bayes filters which represent
the belief by sets �� of weighted samples ��

���
� �

���
� �,

distributed according to �������. Here each �
���
� is a

state, and the
���
� are non-negative numerical factors

called importance weights, which sum up to one. The

basic form of the particle filter realizes the recursive
Bayes filter according to a sampling procedure, often
referred to as sequential importance sampling with re-
sampling (SISR) (Doucet, Godsill, & Andrieu 2000;
Doucet, de Freitas, & Gordon 2001).

Resampling: Draw with replacement a random state
� from the set ���� according to the (discrete) dis-
tribution defined through the importance weights

���
���.

This state can be seen as an instance of the belief���������.

Sampling: Use � and the control information ���� to
sample �� according to the distribution ���� � �� �����,
which describes the dynamics of the system.

Importance sampling: Weight the sample �� by the
observation likelihood � � ���� � �

��.

Each iteration of these three steps generates a sample
���� �� drawn from the posterior belief �������. After �
iterations, the importance weights of the samples are nor-
malized so that they sum up to one. It can be shown that
this procedure in fact approximates the Bayes filter, using
a sample-based representation (Doucet, Godsill, & Andrieu
2000). The temporal evolution of particle filters is illustrated
in Figure 1)b).

Real time particle filters
So far we assumed that Bayes filters can be updated when-
ever new sensor information arrives. In many applications
however, the sensor model in (2) cannot be fully evaluated
before the next sensor measurement arrives. More formally,
we assume that observations arrive at intervals � called ob-
servation interval. For a fixed number of samples, the com-
puting/estimation cycle of the particle filter takes �� and is
called the estimation interval. The window size of the filter
is the number of observations � that arrive during one update
of the filter. An estimation interval is denoted by �. Inside
the interval, observations arrive at times ��� � � �� 	 	 	 �. The
state at time �� is denoted by ��� and the corresponding ob-
servation by ��� .

The vast majority of filtering approaches deals with the
problem of limited computational power by simply skipping
sensor information that arrives during the update of the filter
(see e.g. (Fox et al. 1999)). While this approach may work
well in many situations, it is prone to miss valuable sen-

sor information. An illustratiuon of this approach for win-
dow size three is given in Figure 2(a). Using this approach,
two observations have to be skipped during the update of the
sample set.

At first glance, particle filters appear to suggest a very
elegant, any time solution to this problem (Dean & Boddy
1988). One could interrupt the generation of new samples
whenever a sensor measurement arrives. This technique,
depicted in Figure 2(b), adapts the number of samples to
the available time (smaller sample sets are illustrated by the
smaller ellipses). While this approach makes use of all ob-
servations, it is not feasible in general since the error of
the sample based approximation increases as the number of
samples decreases (Doucet, de Freitas, & Gordon 2001). If
the number of samples is too small, the estimate of the par-
ticle filter diverges (Fox 2001).

St1
St2

St3

p(zt1
| xt1

) p(zt2
| xt2

) p(zt3
| xt3

)

St+1 1

St1
St2

St3

p(zt1
| xt1

) p(zt2
| xt2

) p(zt3
| xt3

)

St+1 1

p(xt+11
|xt3

,ut3
)p(xt3

|x t2
,u t2

)

St1
St+1 1

p(zt1
| xt1

) p(zt+1 1
 | x t+1 1

)

p(zt+1 1
 | x t+1 1

)

p(zt+1 1
 | x t+1 1

)

p(xt2
|x t1

,u t1
)

p(xt+11
|xt3

,ut3
w3)

p(xt+11
|xt2,ut23

w2)p(xt+11
|xt1,ut123

w1)

p(x t+11
|xt1

,ut123
)

p(zt3
| xt3

)p(zt2
| xt2

)

(a)

(b)

(c)

Figure 2: Different strategies for dealing with limited computa-
tional power. All approaches process the same number of samples
per estimation interval (three observations). (a) Skip observations.
All samples are used for one set and only every third observation is
integrated. (b) Partition the samples into smaller sets and integrate
each observation. (c) Same as in (b), but sample sets represent
a mixture density. The �� denote the weights of the mixture
components.

We propose an alternative approach which makes use of
the flexible, sample based representation of particle filters
while avoiding the problem of divergence due to insuffi-
cient sample set sizes. The idea of our method is to parti-
tion the sample set into � smaller sample sets, each incor-
porating exactly one of the observations. So, instead of one
sample set at time �, we maintain � smaller sample sets at

��� � � �� 	 	 	 �. We treat such a “virtual sample set”, or be-
lief, as a mixture of the distributions represented in it. The
approach is illustrated in Figure 2(c). Compared to the first
approach, this method has the advantage of not skipping any
observations. The difference to the second approach (Fig-
ure 2(b)) is more subtle. In approach (c), the estimation
interval contains � observations, and � sample sets of size
���. The belief state that is propagated to the next esti-
mation interval is a mixture distribution where each mix-
ture component is represented with one of the � sample sets.
Thus, the belief state propagation is simulated by � � �

�
sam-

ple trajectories, that for computational convenience are rep-
resented at the points in time where the observations are in-
tegrated. In approach (b) however, the estimation interval
equals the observation interval, therefore the belief propaga-
tion is simulated with only ��� samples.

We will now show how to determine the weights of the
mixture belief. The key idea is to choose the weights that
minimizes the KL-divergence between the mixture belief
and the optimal belief. The optimal belief is the belief we
would get if there was enough time to compute the full pos-
terior. For illustration purpose, we will first describe this
approach by only considering observations. The derivation
including the system dynamics will be given in the section
after.

Observations only
Let us restrict our attention to one estimation interval con-
sisting of � observations. The optimal belief ���������
for such an interval results from iterative application of the
Bayes filter update rule (2)

��������� �

��
���

�� ���� � �� ���
����	 (3)

Here the time index � is omitted, and ������� denotes the
belief at the beginnning of the estimation interval.

Let ������� denote the belief resulting from integrating
only the � � �� observation within the estimation interval.
�������� � �, the belief resulting from mixing the individ-
ual beliefs �������, can be computed by

�������� � � �
��

���

� �������

�
��

���

� �� ���� � �����
���� (4)

where � � � and
�

� � � �. The �� are the normalization
constants resulting from each observation integration. The
mixing weights � reflect the “importance” of the respective
observations for describing the optimal belief. The idea is to
set these weights so as to minimize the approximation error
introduced by the mixture distribution. More formally, we
determine the mixing weights � by minimizing the KL-
divergence (Cover & Thomas 1991) between ������ and
������

�
� � ������

���

���	
������ � ����	
��������

� ������
���

�
	
������ � �� ��

	
������ � ��

	
�������
���(5)

In the above we denoted� � � �
��

��� � � �� � �
�	. Before we describe an efficient algorithm for optimizing
these weights, we show how to consider the system dynam-
ics.

Observations and dynamics
To compute the optimal belief under consideration of the
system dynamics, one has to perform � belief updates using
both (1) and (2):

	
�������� �

�
� � �

�
���� � ��� � ��� � �

��
���

�� ����� � ���� ����� � ����� � ����� � �

	
������� ������ ���� � � � � � ���� (6)

Here � denotes a time in the future. The time index �� rep-
resents the previous estimation interval �� �. In essence,
(6) computes the belief by integrating over all trajecto-
ries through the estimation interval. The probability of
each trajectory is determined using the control information
����� ��� � 	 	 	 � ��� , and the likelihoods of the observations
along the trajectory.

The mixture belief including dynamics is given by

	
�������� �

��
���

��

�
� � �

�
���� � ��� � ���� �

�� ����� � ����

��
	��

����� � ����� � ����� � �

	
������� ��������� � � � ���� (7)

Here, too, we integrate over all trajectories. In contrast to
(6), however, each trajectory selectively passes through only
one of the � observations in the estimation interval. We will
now turn to the problem of finding the weights of the mixture
belief.

Optimizing the mixture representation
Minimizing the KL-divergence
Optimizing the weights of mixture approximations is often
done using EM (Poland & Shachter 1993) or (constrained)
descent using the gradient (Jaakkola & Jordan 1997). Unfor-
tunately, running several iterations of EM or using any other
iterative method is too expensive in our case. Therefore, we
are going to use a simple heuristic, that requires at most �
gradient computations. The heuristic exploits the convexity
of the KL divergence which guarantees, under mild techni-
cal conditions, that our problem (5) has exactly one solution.

Denote by ��� the criterion to be minimized in (5). We
will compute its gradient in a few selected points and then
use a linear interpolation scheme to approximate the mini-
mum of � in the domain � .

The gradient of � is given by

��

��

� � �

�
������� ��	

����������

���������

� (8)

where � � �� 	 	 	 �.
Let us denote by �� ��� respectively the corners and

the middle point of the domain �

� �
 � � 	 	 	 � 	 	 	 ��� � � �� 	 	 	 �
�

��� �
 �
�

�
�

	 	 	 	 	 	 �
�
�

(9)

We compute the gradients at these points, �� �
����,
���� �
������. Then we compute an approximate min-
imum along each line segment �� ��� and finally we take
the arithmetic mean of these minima to be our approxima-
tion to the global minimum of J in the domain � .

MCMC gradient estimation
The computation of the gradients in (8) requires integration
over all possible states � and the computation of the different
beliefs for each of these states, each in turn requiring the
computation of up to � integrals (see (4), (6), and (7)). This
is clearly too expensive to compute in our case. We solve
this problem by Monte Carlo approximation.

First, we generate trajectories using the previous belief
(represented by a mixture of weighted sample sets) and
the control information ����� ��� � 	 	 	 � ��� . To do so, we
draw a sample ���� from a sample set ����� of the previ-
ous estimation window with probability given by the previ-
ous mixture weights 	 . This sample is moved forward in
time by drawing a new sample ����� from the distribution
������� � ��� � ���� at each time step ��� � � �� 	 	 	 � � �. To
simulate forward movement past the current time horizon ��
(for which we have no control information) we “blur” the
last sample set by convolving it with a kernel whose width
depends on the most recent control values ��� .

Our next step is to obtain ������
 � and ��������
 �. To
estimate ������
 � we weight each trajectory by ����� � ����
then perform summation and normalization on a grid over
�
 . The use of the grid speeds up computation by replacing
the computation of a �-dimensional integral with just one
dimension. ��������
 � is estimated by a summation on the
same grid, after having incorporated all the � observations
in each trajectory.

Finally, the gradient is estimated by formula (8) where
the integral is replaced by summation on the grid. Note that
��������
 �� is either one of ������
 � or their arithmetic
mean so no extra integration is necessary to obtain its values.

The function GRADIENT in the next subsection encapsu-
lates the whole approximation process.

In this scheme, the computation of the mixing weights �

requires propagating a sample set through all the observa-
tions. This in fact implements a particle filter at a time scale
� times smaller than the original one. Therefore, we cannot
afford to use a large number of samples for this estimation.
The number of trajectories generated, ��, should be signif-
icantly smaller than the “regular” number of samples ���.
In our experiments we use an �� that results in a time spent
estimating the mixing weights of about 1% of the total esti-
mation time.

Our gradient estimation method is necessarily noisy, so
it is essential to provide sampling distributions that (1)

wi

wmid

gmid

gi

wi
*

~

~

(a)
gmidg1

w1 w2

w3

g3

wmid

g2

g1

g3

gmid

gmid

g2

~

~

~
~

~

(b) w1 w2

w3

wmid

w*

w*
w*

1

2

(c)

Figure 3: (a) Finding the minimum ��� along segment �����
 by linear interpolation. (b,c) Illustration of the APPROXIMATE-MIN al-
gorithm for � � 	. (b) The gradients in the corners and middle are projected onto the segments that connect the middle with the corners.
(c) Along segments �����
� �����
 the minima ��� � �

�
� are computed. The approximation of the global minimum �� is the middle of

��
�
��
�

. The projected gradient has no zero on the third segment �����
 so that no ��� is computed.

Path of the robot

Box

Figure 4: Map and path of the robot used for the experiments.

cover all the regions where the estimated distributions
����� ������ are non-zero; and (2) recycle randomness(),
i.e.use the same random bits in evaluating the diverse sce-
narios of incorporating one or another of the observations.
The simple trajectory generation algorithm described above
satisfies this requirement, but is “wasteful of samples” since
many trajectories will be weighted very low by the observa-
tions. We are considering replacing this method with a more
efficient one in future work.

The mixture weights optimization algorithm
The algorithm can be summarized as follows:

Algorithm APPROXIMATE-MIN
Input GRADIENT�� a function that approximates
���

compute ���� � GRADIENT�����
for � � �� �� 	 	 	 �

compute �� � GRADIENT���

project ��� ���� on the line segment �� ���

obtaining ��� ����

if �� � �� ���� � �

there is a minimum �
� of � inside �� ���

we approximate it linearly as in figure 3a)
else if �� � �� ���� � �

the minimum of � is beyond the end of the
segment, do nothing

else if �� � �� ���� � �

the minimum �
� of � along �� ��� is at �

else if �� � �� ���� � �
impossible, � is convex

form the set �� containing all the �
� computed in the cycle

compute � � �
����

�
����

�
�

Output �

Figure 3 illustrates the algorithm. Note that if ���� � �

on some segment �� ���, it means that there is no min-
imum of � along the segment, so that the gradient at the
opposite end need not be computed. As the gradient ����

will always have a negative projection on at least one seg-
ment, it means that in practice we need to compute at most
�� � corner gradients. We have omitted this from the above
algorithm for the sake of clarity.

Another remark is that in our calculations,
� represents
the “unconstrained” gradient, i.e the gradient of � without
taking into account the constraints. This simplification is
justified by the fact that we further project this gradient onto
segments contained in the admissible domain � which has
the effect of implicitly satisfying the constraints.

Experiments

In this section we evaluate the effectiveness of our algorithm
against the alternatives, using data collected from a mobile
robot in a real-world environment. Figure 4 shows the setup
of the experiments: the robot was placed in the corridor and
moved up and down with a constant velocity of 30 cm/sec.
The corridor (�� � �	���, all doors closed) is symmetric
except for a single obstacle on its side, and this obstacle can
only be detected by the robot’s sonar sensors. The robot is
only allowed to use the 4 sonar sensors installed on either
side of its body. The robot is successfully localized if it is
��� sure that it is within ��� and �� degrees of the true
position, i.e. the sum of importance weights of the samples
in this region is greater than 0.8.

In the following discussions, our real-time algorithm is
denoted by �� . We compare it against particle filter with
skipping observations ���(Figure 2a), and with insufficient
samples ���(Figure 2b). Furthermore, to gauge the effi-
ciency of our mixture weighting, we also obtained results

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l L
oc

al
iz

at
io

n

Sample Set Size

Figure 5: Localization success rates for different sample set sizes. The robot localizes very reliably in this environment given 5000 or more
samples, but degrades quickly with less.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l L
oc

al
iz

at
io

n

Window Size (k)

PF_s
PF_i

RT
RT_u

Figure 6: Localization success rates for different window sizes. Larger window size means less samples per observation interval. The real
time particle filters outperform others, with the mixture weighted variant maintaining 90% success rate most of the time.

for our real-time algorithm without weighting, and we de-
note this variant ��.

The experiment is set up as follows. First, a fixed sample
set size � is chosen. We then vary the number of sample
sets � in a window, which implies changing the number of
samples ���� that can be generated per observation interval.
If � increases, less samples can be generated for each ob-
servation interval, and �� , �� and ��� increases their
estimation intervals to maintain � . ��� will skip �� � ob-
servations. ��� will have smaller sample set sizes which are
equal to ����, but will still integrate all the observations.

It should be noted that � has to be chosen carefully be-
cause we want to make sure changes in sample set sizes af-
fects the algorithms, which isn’t always the case. Figure 5

shows the localization success rate of a particle filter with
different sample set sizes in this map. Using more than
5000 samples, the particle filter has more than adequate sam-
ples and will almost always localizes successfully. With less
than 5000 however, its performance degrades noticably. We
therefore choose � � ����.

In the first experiment we compare the localization suc-
cess rate of the algorithms on different �’s. Each data point
consists of 40 runs, each run has different start positions in
the path shown in Figure 4, and different random seeds. The
success rate is simply the percentage of runs in which the
robot successfully localizes, defined in the beginning of this
section. The result of this experiment is shown in Figure 6.
The superiority of �� and �� over ��� and ��� sug-

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

T
im

e
to

 L
oc

al
iz

e
(s

ec
on

ds
)

Window Size (k)

RT
RT_u

Figure 7: Time taken by real time particle filters to localize. Mixture weighting helps convergence, shown by the shorter time required by
�� .

gests that, by spreading out samples into smaller sets, par-
ticle filters can maintain their performance given less com-
putational resources. Among the original filters, ��� ś suc-
cess rate degrades more drastically than ��� due to the fact
that it has less and less samples in a set with increasing �,
leading to bigger estimation errors and eventually localiza-
tion failures. ��� also performs badly at higher � because it
skips � � � observations, which means it is likely to ignore
important observations (the box in our map). �� main-
tains a consistent success rate and degrades slowly. Since
the smaller sample sets in �� are unweighted, the impor-
tant observations become “diluted” when there are more sets
in a window. �� counters this effect by mixture-weighting
the sample sets, and is capable of maintaining a success rate
of over 90% most of the time.

In the second experiment we compare the time required
by the real time particle filters to localize. For �� and ��
we compute the time required to reach localization success
with different �’s. Each data point is again generated from
40 different runs. The results, shown in Figure 7, suggests
that �� localizes faster than �� on average. This demon-
strates that by putting more resources on important observa-
tions, mixture weighting enables faster convergence.

Conclusions
In this paper we tackled in the context of particle filters the
problem of making near-optimal use of the information pro-
vided by the sensors, under the constraint of limited com-
puting resources. Our solution is to divide our sample set
between all available observations and then to represent the
current state of belief as a mixture of the posterior beliefs
that would result from taking into account each observation
alone. Next we optimize the mixing weights in order to be as
close to the true posterior distribution as possible. Our op-
timization method is a very efficient heuristic that produces
significant improvements in a robot localization task.

So far we have used a fixed sample size � and a fixed
window size �. The next natural step is to adapt these two
“structural parameters” to further speed up the computata-
tion. For example, by the method of (Fox 2001) we can
adaptively reduce the sample size � after localization has
taken place, which in turn would allow us to reduce the win-
dow size �. More complex strategies involving the confi-
dence level of (Fox 2001) are also possible.

Note also that our approach has a broader scope than
than particle filtering, applicable with minor modifications
to Bayesian estimators in general. In this context, similar-
ity with the method described in (Boyen & Koller 1998) be-
comes noticeable. Their work also uses mixtures to compute
a tractable approximation to a belief state that is propagated
through time. It optimize the mixture representation by pro-
jecting onto the true posterior. However, they only update
the mixture weights, while our mixture components arise
naturally from integrating the observation. We are motivated
by real-time constraints that are not present in (Boyen &
Koller 1998) and our mixture representation is not restricted
to one observation interval, but rather spans an entire esti-
mation interval.

References

Bar-Shalom, Y., and Fortmann, T. 1988. Tracking and
Data Association. Mathematics in Science and Engineer-
ing. Academic Press.

Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In Proc. of the Conference
on Uncertainty in Artificial Intelligence (UAI).

Burgard, W., Fox, D., Hennig, D., and Schmidt, T. 1996.
Estimating the absolute position of a mobile robot using
position probability grids. In Proc. of the National Confer-
ence on Artificial Intelligence (AAAI).

Cover, T. M., and Thomas, J. A. 1991. Elements of Infor-
mation Theory. Wiley Series in Telecommunications. New
York: Wiley.
Dean, T. L., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proc. of the National Conference
on Artificial Intelligence (AAAI), 49–54.
Doucet, A., de Freitas, J., Murphy, K., and Russell, S.
2000. Rao blackwellised particle filtering for dynamic
bayesian networks. In Proc. of the Conference on Uncer-
tainty in Artificial Intelligence (UAI).
Doucet, A., de Freitas, N., and Gordon, N., eds. 2001. New
York: Springer-Verlag.
Doucet, A., Godsill, S., and Andrieu, C. 2000. On sequen-
tial monte carlo sampling methods for Bayesian filtering.
Statistics and Computing 10(3).
Fox, D., Burgard, W., Dellaert, F., and Thrun, S. 1999.
Monte Carlo Localization: Efficient position estimation for
mobile robots. In Proc. of the National Conference on Ar-
tificial Intelligence (AAAI).
Fox, D. 2001. KLD-sampling: Adaptive particle filters and
mobile robot localization. In Advances in Neural Informa-
tion Processing Systems (NIPS).
Horvitz, E. 2001. Principles and applications of continual
computation. Artificial Intelligence 126. Special issue on
Tradeoffs under Bounded Resources.
Isard, M., and Blake, A. 1998. Condensation – conditional
density propagation for visual tracking. International Jour-
nal of Computer Vision 29(1):5–28.
Jaakkola, T., and Jordan, M. 1997. Improving the mean
field approximation via the use of mixture distributions. In
Learning in Graphical Models. Kluwer.
Koller, D., and Lerner, U. 2001. Sampling in factored
dynamic systems. In Doucet et al. (2001).
Lenser, S., and Veloso, M. 2000. Sensor resetting local-
ization for poorly modelled mobile robots. In Proc. of the
IEEE International Conference on Robotics & Automation
(ICRA).
Poland, W., and Shachter, R. 1993. Mixtures of gaus-
sians and minimum relative entropy techniques for model-
ing continuous uncertainties. In Proc. of the Conference on
Uncertainty in Artificial Intelligence (UAI).
Schulz, D., Burgard, W., Fox, D., and Cremers, A. B. 2001.
Tracking multiple moving targets with a mobile robot using
particle filters and statistical data association. In Proc. of
the IEEE International Conference on Robotics & Automa-
tion (ICRA).
Vermaak, J., Andrieu, C., Doucet, A., and Godsill, S. 2002.
Particle methods for bayesian modelling and enhancement
of speech signals. IEEE Transactions on Speech and Audio
Processing. Accepted for publication.
Zilberstein, S., and Russell, S. 1995. Approximate rea-
soning using anytime algorithms. In Natarajan, S., ed., Im-
precise and Approximate Computation. Dordrecht: Kluwer
Academic Publishers.

