
Real-time Decision Making For Shipboard Damage Control

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta T6G 2H1, CANADA

bulitko@ualberta.ca

David Wilkins
Beckman Institute

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

dcw@uiuc.edu

Abstract

This paper presents a formalism called Time Interval Petri
Nets (TIPNs) and shows their efficacy for model-based envi-
sionment of real-time concurrent interacting processes with
temporal constraints. The TIPN formalism is developed by
extending Petri Nets to Time Interval Petri Nets. The process
of TIPN construction from a state-process domain model is
described. Experimental results in the domain of ship cri-
sis decision-making show five orders of magnitude speed up
over a first-principals numerical physical system simulator in
a complex domain. An advantage of TIPNs is a graphical
network representation that facilitates model construction, re-
finement, and comprehension.
Keywords: Limited Rationality, Real-time Decision Mak-
ing, Petri Nets, Intelligent Systems, Knowledge Acquisition,
Temporal Reasoning, Envisionment-based Control Policies.

1 Introduction
Decision-making systems in artificial intelligence can often
make better decisions when it is possible to envision the
consequences of alternative actions prior to making a deci-
sion (Russell & Wefald, 1991b,a; Korf, 1990). Physical sys-
tem and behavioral system simulators are one approach to
the achievement of envisionment (Shouet al., 2001; Heath,
1996; NIST, 2002). A limitation of this approach in complex
domains arises in real-time decision making, when the time
available for simulation is very limited and there is a high-
cost in not making a quick decision (Bulitko & Wilkins,
1999). This paper shows that Petri Nets (Peterson, 1981;
Murata, 1989; Donatelli & Kleijn, 1999) are suitable for
envisionment for decision-making domains where the mod-
elling of real-time concurrent processes plays a central role
in the reasoning.

This paper is organized as follows. In section 1, the en-
visionment task is motivated using the domain of ship dam-
age control, a classic example of a domain where there is
a need for real-time decision making involving concurrent
processes. In section 3, the knowledge representation and in-
ference mechanism of TIPNs is presented within the context
of a fire spread example that extends the formalism of Place-
Transition Petri Nets (Peterson, 1981) to Time Interval Petri
Nets. Section 4 describes the empirical evaluation, and cov-
ers the degree of speedup, scalability, and accuracy. Section

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

5 highlights methods of TIPN model construction. Section
6 covers related research while section 7 gives a summary
and directions for future research.

2 Real-Time Decision Making and Ship
Damage Control

The proof-of-concept domain used in this study is ship dam-
age control (Wilkinset al., 2001). The decision-making goal
is to manage crises to a ship that involve fire, smoke, flood-
ing, pipe ruptures, hull ruptures, stability, and electrical and
mechanical system deactivation. Toward this end, the main
decision-maker, called a damage control assistant, must de-
termine the nature and extent of the crisis from ship sensors
and human investigators, and must then address the crisis
using a limited number of automated systems and human
repair parties.

The decision-making task is very time critical because the
more time is spent, for example, in determining the exact lo-
cation and size of a fire, the larger the fire will usually be-
come. The decision-making involves reasoning under uncer-
tainty, since current sensors and human investigator reports
are known to be often unreliable during a major crisis.

The decision-making involves dealing with resource
tradeoffs, since the resources such as the number of investi-
gator and repair teams, and suppression methods such as wa-
ter hoses are limited. Finally, there are interactions between
events, such as determining whether to use scarce electricity
to operate fire pumps needed to produce water pressure for
fires, or for air conditioners that cool sensitive equipment.

An envisionment system can provide answers to these key
questions. In the subsequent sections we will present an en-
visionment approach allowing for speed ups of five orders
of magnitude over the existing numerical physical simula-
tors and behavioral “intelligent agent” symbolic simulators
for this domain.

How much speedup is desired? In the domain of ship
damage control, at a given point in time there are usually
about 50 alternative decisions for which it would be helpful
to envision 20 minutes into the future. If the goal is to do the
total envisionment in 5 seconds, this would require an envi-
sionment system that can operate50 ∗ 20 ∗ 60/5 = 12, 000
times faster than real-time. In the experimental evaluation
section, it will be seen that the implemented TIPN system
is able to achieve this speedup even for complex crises. In
other domains it is easy to imagine it being advantageous

From: AAAI Technical Report WS-02-15. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

to envision even more alternatives and even further into the
future.

3 Extending Petri Nets to Time Interval Petri
Nets

The knowledge representation and inference methods of
Time Interval Petri Nets (TIPNs) will be introduced within
the context of a simple fire spread example. The process will
be modelled using the knowledge representation and infer-
ence of traditional Petri Nets and then this will be extended
so as to allow handling the complexities of the fire spread
example.

In order to model the process of fire spread with tra-
ditional modelling tools one needs to set up a numerical
simulator to compute combustible material distribution, gas
zones, plumes, heat transfer, wall temperatures, ignition
properties, fire suppressant effects, and so forth (Shouet
al., 2001). Since fire fighting personnel are involved in the
process, another behavioral simulator is needed to model
personnel travel time, human fatigue, communication mis-
takes, injuries, oxygen-breathing apparatus operation, and
many other non-trivial aspects. The inherent complexity of
these types of simulations prevent multiple alternatives ex-
tending, say 20 minutes into the future, from being simu-
lated in a matter of seconds, hence the motivation for the
TIPN Petri Net approach. As with all abstractions of first-
principles models, the TIPN approach is not as accurate, but
it provides sufficient accuracy in a limited amount of time to
support the decision-making.

The process of constructing a TIPN begins with a model
of the qualitative-type patterns augmented with temporal in-
formation that underlie the phenomena in question. Using
this approach, the complex processes outlined in the previ-
ous paragraph are abstracted into the following simple do-
main dependency:

“for any compartment X if X is hot and the fire
boundaries around X are not set then the fire will
spread to a neighbor compartment Y in about 3 to
4 minutes”∗

In the first order predicate logic (FOPC) it can be expressed
as follows (here and below we use the Prolog notation):

ignited(Y,Tnew) :-
hot(X,Told),
not fire_boundaries(X,Told),
neighbor(X,Y),
delay(Tnew,Told,3,4).

We will introduce TIPNs by starting out with a simplified
dependency expressible in propositional logic and moving to
FOPC. This gradual upgrade will be paralleled by the transi-
tion from classical Petri Nets, also known as place-transition
or P/T nets (Peterson, 1981), to Time Interval Petri Nets.

3.1 Place Transition (P/T) Petri Nets

Figure 1 presents the first step in this process. We start out
with no variables and time delays. At this stage we are ex-
pressing merely that“if it is hot and no fire boundaries

all abstractions of first-principles models, the TIPN approach is not as accurate, but it provides
sufficient accuracy in a limited amount of time to support the decision-making.

The process of constructing a TIPN begins with a model of the qualitative-type patterns
augmented with temporal information that underlie the phenomena in question. Using this approach,
the complex processes outlined in the previous paragraph are abstracted into the following simple
domain dependency:

“for any compartment X if X is hot and the fire boundaries around X are not set then the fire will
spread to a neighbor compartment Y in about 3 to 4 minutes”

In the first order predicate logic (FOPC) it can be expressed as follows (here and below we use the
Prolog notation):

ignited(Y,Tnew) :-

hot(X,Told),
not fire_boundaries(X,Told),
neighbor(X,Y),
delay(Tnew,Told,3,4).

We will introduce TIPNs by starting out with a simplified dependency expressible in propositional
logic and moving to FOPC. This gradual upgrade will be paralleled by the transition from classical
Petri Nets, also known as place-transition or P/T nets [Error! Reference source not found.], to Time
Interval Petri Networks.

3.1 Place-Transition Petri Networks
Figure 1 presents the first step in this process. We start out with no variables and time delays. At this
stage we are expressing merely that “if it is hot and no fire boundaries are set then it becomes ignited”.

Hot
No Fire

Boundaries

Ignited

Spread

Figure 1. Step 1: Place-Transition Petri Network corresponding to propositional logic sentence: ignited :- hot,
no_fbs.

The propositional logic sentence ignited :- hot, no_fbs. relates to the Petri Net as follows. Each
large circle (called “place”) corresponds to an atomic sentence. If a small black dot (called “token”) is
present inside the circle then the corresponding atomic sentence is considered to hold. The horizontal
bar (called a “transition”) represents the implication and the arrows (called “arcs”) represent the
preconditions and post effects. Once all preconditions are met (i.e., there are tokens in all relevant
places) the transition “fires”. The process of firing retracts tokens from all enabling places (i.e.,
preconditions) and deposits tokens to the output place (i.e., the effect place). Thus, the tokens can be
said to flow from the enabling places to the output place.

It is worth noting that unlike in Bayesian Networks, where arcs represent conditional
dependencies, and in Artificial Neural Networks, where arcs indicate signal transmission, arcs in Petri
Networks indicate event preconditions and don’t carry numeric values. However, in all of these
formalisms current state of the modeled system is represented by the current state of all the nodes.

 3

Figure 1: Step 1: Place-Transition Petri Net-
work corresponding to propositional logic sentence
ignited :- hot, no fbs.

are set then it becomes ignited”.
The propositional logic sentence

ignited :- hot, no_fbs. relates to the Petri
Net as follows. Each large circle (called “place”) corre-
sponds to an atomic sentence. If a small black dot (called
“token”) is present inside the circle then the corresponding
atomic sentence is considered to hold. The horizontal
bar (called a “transition”) represents the implication and
the arrows (called “arcs”) represent the preconditions and
post effects. Once all preconditions are met (i.e., there are
tokens in all relevant places) the transition “fires”. The
process of firing retracts tokens from all enabling places
(i.e., preconditions) and deposits tokens to the output place
(i.e., the effect place). Thus, the tokens can be said to flow
from the enabling places to the output place.

It is worth noting that unlike in Bayesian Nets, where arcs
representconditionaldependencies, and in Artificial Neural
Nets, where arcs indicate signal transmission, arcs in Petri
Nets indicate event preconditions and don’t carry numeric
values. However, in all of these formalisms current state of
the modelled system is represented by the current state of
the nodes.

3.2 Colored Petri Nets
There are several aspects of the fire spread example that
the representation described in the previous section cannot
model. One such aspect is an inability to model explicit
context. This section shows how this limitation is over-
come by allowing the introduction of compartment vari-
ables and time stamps. The addition of these variables
to our propositional statement makes it into the first-order
predicate calculus. In our evolving example, the variable
T will express time while the variableX will take its val-
ues over the set of compartments. Our sentence becomes
ignited(X,T) :- hot(X,T), no_fbs(X,T) .

Correspondingly, the Petri Net model is upgraded with
so-called “colors” (Jensen, 1997). Colors are arbitrary

∗Setting fire boundaries on a compartment involves cooling
down the walls of the compartment to prevent the fire spread.

3.2 Colored Petri Networks
There are several aspects of the fire spread example that the representation described in the previous
section cannot model. One such aspect is an inability to model explicit context. This section shows how
this limitation is overcome by allowing the introduction of compartment variables and time stamps.
The addition of these variables to our propositional statement makes it into the first-order predicate
calculus. In our evolving example, the variable T will express time while the variable X will take its
values over the set of compartments. Our sentence becomes ignited(X,T) :- hot(X,T),
no_fbs(X,T). Correspondingly, the Petri Net model is upgraded with so-called “colors” [Error!
Reference source not found.]. Colors are arbitrary data tags attached to the tokens. The data includes
compartment data (e.g., “3-370-0-E”) and time stamps (e.g., “[2:32, 3:14]”). Time stamps are represented
with intervals accounting for the temporal uncertainty of the predicate’s becoming true. The extended
representation is illustrated in Figure 2. By extending the Petri Net in such a way, we gain the ability to
use a single network for modeling many different compartments, similar to using a single algorithm to
compute square root of many different numbers.

3.3 Time Interval Petri Networks
The model described in the previous section is able to model explicit context but cannot model
temporal delays, which is vital in domains that model time-critical decision making. In FOPC this can
be addressed it by adding an extra predicate delay(TimeOld, TimeNew, MinimumDelay,
MaximumDelay). Within the TIPN formalism this is handled by the addition of a delay interval to the
transition as shown in Figure 3. As the tokens move through the transition their time stamps get
appropriately adjusted. Now our TIPN model has the ability to adjust time stamps of the tokens
passing through the transitions. So in the example above, we can easily model that fire spread takes
between 3 and 4 minutes.

In the evolving Petri net representation, it is still not easily possible to specify the spatial aspect
of fire spread. In other words, we are in the need to adjust not only the time stamps but also the colors
of the tokens passing through the transition. This can be achieved by attaching an “output operator” to
the transition’s arcs leading to its output places. In Figure 4 we will simply attach a box labeled
“Neighbors” to the arc leading to place “Ignited”. The operator will spread the fire from any
compartment X to its neighbor Y. In FOPC the parallel effect is achieved through introducing an extra
predicate neighbor/2: ignited(Y,T’) :- hot(X,T), no_fbs(X,R,T), delay(T,T’,3,4),
neighbor(X,Y).

Hot
No Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

Figure 2. Step 2: Time Interval Petri Network corresponding to first-order predicate logic sentence: ignited(X,T)
:- hot(X,T), no_fbs(X,T).

 4

Figure 2: Step 2: Time Interval Petri Network cor-
responding to first-order predicate logic sentence:
ignited(X,T) :- hot(X,T), no fbs(X,T).

data tags attached to the tokens. The data includes com-
partment data (e.g.,3-370-0-E) and time stamps (e.g.,
[2:32, 3:14]). Time stamps are represented with in-
tervals accounting for the temporal uncertainty of the pred-
icate’s becoming true. The extended representation is illus-
trated in Figure 2. By extending the Petri Net in such a way,
we gain the ability to use asingle network for modelling
manydifferent compartments, similar to using a single algo-
rithm to compute square root of many different numbers.

3.3 Time Interval Petri Nets
The model described in the previous section is able to han-
dle explicit context but cannot model temporal delays, which
is vital in domains of time-critical decision making. In
FOPC this can be addressed it by adding an extra predi-
catedelay(TimeOld, TimeNew, MinimumDelay,
MaximumDelay) . Within the TIPN formalism this is han-
dled by the addition of a delay interval to the transition as
shown in Figure 3. As the tokens move through the tran-
sition their time stamps get appropriately adjusted. Now
our TIPN model has the ability to adjust time stamps of the
tokens passing through the transitions. So in the example
above, we can easily model that fire spread takes between 3
and 4 minutes.

In the evolving Petri net representation, it is still not easily
possible to specify the spatial aspect of fire spread. In other
words, we are in the need to adjust not only the time stamps
but also the colors of the tokens passing through the transi-
tion. This can be achieved by attaching an “output operator”
to the transition’s arcs leading to its output places. In Fig-
ure 4 we will simply attach a box labelled “Neighbors” to
the arc leading to place “Ignited”. The operator will spread
the fire from any compartment X to its neighbor Y. In FOPC
the parallel effect is achieved through introducing an extra
predicateneighbor/2 :

ignited(Y,T’) :-
hot(X,T),

Hot
No Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

[3,4]

Figure 3. Step 3: our model is extended with temporal delays. In this case the transition “Spread” gets a delay interval
associated with it: [3,4]. The corresponding FOPC sentence is this: ignited(X,T’) :- hot(X,T),
no_fbs(X,T), delay(T,T’,3,4).

3.4 TIPNs with Negation Operator
At this point both our models (TIPN and FOPC) are very close to what we originally desired.
Currently, however, tokens always get retracted as the transition fires. This does not correspond to the
reality as the fact that fire spreads from compartment X to compartment Y does not render
compartment X cold (i.e., not hot). This drawback can be addressed by introducing so-called double-
ended arcs (Figure 5). They work just like regular arcs except the corresponding enabling tokens get to
remain in their places. The reader might have also noticed that we currently have no way to express
negation but through introducing negated concepts (atoms) such as “No Fire Boundaries Are Set”. It
would be more convenient to represent negation explicitly with a different type of arc. We will call
these “negation arcs” and mark them with a tilde in our graphic diagrams. In the FOPC we will simply
add Boolean negation: ignited(Y,T’) :- hot(X,T), not fbs(X,R,T), delay(T,T’,3,4),
neighbor(X,Y).

Hot
No Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

<Compartment>
Neighbors

[3,4]

Figure 4. Step 4: just like delay interval [3,4] increases passing tokens’ timestamps, arc operator “Neighbor” affects
the color of tokens. It will spread fire from one compartment to another. In the FOPC the parallel effect is achieved
through introducing an extra predicate neighbor/2: ignited(Y,T’) :- hot(X,T), no_fbs(X,R,T),
delay(T,T’,3,4), neighbor(X,Y).

 5

Figure 3: Step 3: our model is extended with temporal de-
lays. In this case the transition “Spread” gets delay interval
[3,4] associated with it. The corresponding FOPC sentence
is this: ignited(X,T’) :- hot(X,T), no fbs(X,T),
delay(T,T’,3,4).

no_fbs(X,R,T),
delay(T,T’,3,4),
neighbor(X,Y).

3.4 TIPNs with Inhibitory Arcs
At this point both our models (TIPN and FOPC) are very
close to what we originally desired. Currently, however, to-
kens always get retracted as the transition fires. This does
not correspond to the reality as the fact that fire spreads from
compartment X to compartment Y does not render compart-
ment X cold (i.e.,not hot). This drawback can be addressed
by introducing so-called double-ended arcs (Figure 5). They
work just like regular arcs except the corresponding enabling
tokens get to remain in their places. The reader might have
also noticed that we currently have no way to express nega-
tion but through introducing negated concepts (atoms) such
as “No Fire Boundaries Are Set”. It would be more conve-
nient to represent negation explicitly with a different type of
arc. We will call these “inhibitory arcs” and mark them with
a tilde in our graphic diagrams. In the FOPC we will simply
add Boolean negation:

ignited(Y,T’) :-
hot(X,T),
not fbs(X,R,T),
delay(T,T’,3,4),
neighbor(X,Y).

The evolving example is now complete. This concludes the
introduction of Time Interval Petri Nets by use of a detailed
example.

4 TIPN Experimentation
The issues of practical applicability of TIPNs as an envision-
ment module include: (a) the degree of speed-up over tradi-
tional numerical simulators, (b) TIPN scalability, and (c) the

Hot
No Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

[3,4]

Figure 3. Step 3: our model is extended with temporal delays. In this case the transition “Spread” gets a delay interval
associated with it: [3,4]. The corresponding FOPC sentence is this: ignited(X,T’) :- hot(X,T),
no_fbs(X,T), delay(T,T’,3,4).

3.4 TIPNs with Negation Operator
At this point both our models (TIPN and FOPC) are very close to what we originally desired.
Currently, however, tokens always get retracted as the transition fires. This does not correspond to the
reality as the fact that fire spreads from compartment X to compartment Y does not render
compartment X cold (i.e., not hot). This drawback can be addressed by introducing so-called double-
ended arcs (Figure 5). They work just like regular arcs except the corresponding enabling tokens get to
remain in their places. The reader might have also noticed that we currently have no way to express
negation but through introducing negated concepts (atoms) such as “No Fire Boundaries Are Set”. It
would be more convenient to represent negation explicitly with a different type of arc. We will call
these “negation arcs” and mark them with a tilde in our graphic diagrams. In the FOPC we will simply
add Boolean negation: ignited(Y,T’) :- hot(X,T), not fbs(X,R,T), delay(T,T’,3,4),
neighbor(X,Y).

Hot
No Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

<Compartment>
Neighbors

[3,4]

Figure 4. Step 4: just like delay interval [3,4] increases passing tokens’ timestamps, arc operator “Neighbor” affects
the color of tokens. It will spread fire from one compartment to another. In the FOPC the parallel effect is achieved
through introducing an extra predicate neighbor/2: ignited(Y,T’) :- hot(X,T), no_fbs(X,R,T),
delay(T,T’,3,4), neighbor(X,Y).

 5

Figure 4: Step 4: just like delay interval [3,4] increases
passing tokens’ time stamps, arc operator “Neighbor” affects
the color of tokens. It will spread fire from one compartment
to another. In the FOPC the parallel effect is achieved
through introducing an extra predicate neighbor/2 :
ignited(Y,T’) :- hot(X,T), no fbs(X,R,T),
delay(T,T’,3,4), neighbor(X,Y).

Hot
Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

~
<Compartment>

Neighbors

[3,4]

Figure 5. Step 5: We finish the extension process by adding two new arc types: negation arcs marked with tilde and
double-ended arcs. The corresponding FOPC clause is this: ignited(Y,T’) :- hot(X,T), not fbs(X,R,T), delay(T,T’,3,4),
neighbor(X,Y).

The evolving example is not complete. This concludes the introduction of Time Interval Petri Networks
by use of a detailed example. The next section provides a formal representation of the TIPN formalism.

4 TIPN Knowledge Representation and Inference
Petri Nets have been known for their solid mathematical foundation [Error! Reference source not
found., Error! Reference source not found.]. Following this tradition, we now formally introduce Time
Interval Petri Networks. In the definitions, we have adhered to Jensen’s CP-nets definitions [Jensen97]
on the similar subparts. The formal description of TIPNs begins with the basic concepts and then
defines the concept of enablement.

Definition 1. A Time Interval Petri Network (TIPN) is a tuple <Σ, P, T, A, AT, PC, TM, TD, AE, PI>
where:

♦ Σ is the set of color sets (i.e., token identifier types);

♦ P is the set of places;

♦ T is the set of transitions;

♦ A is the set of arcs. It is required that P∩T = A∩T = A∩P = ∅.

♦ AT is the arc type function mapping A to (P×T×Atypes×ArF)∪(T×P×Atypes×ArF). Here Atypes is the set of
possible arc types: Atypes = {regular, negated, double-ended}. ArF is the set of all totally recursive
[Rogers67] arity functions. Each such function would be defined in terms of the colors and
timestamps of the tokens residing in the input places, and would map the values to an integer. So
AT takes an arc as an input and returns the arc’s properties as a 4-tuple: <place, transition, arc_type,
arity_function> (for the input arcs) or <transition, place, arc_type, arity_function> (for the output arcs).

♦ PC is the place color function which restricts the type of colors for any tokens the place can hold.
Formally: PC : P Σ.

♦ TM is the matching function defined on the transitions and specifying what parts of token
identifiers have to match in order for the transition to be enabled. Formally: TM : T 2Σ.

♦ TD is the transition time delay function which affects the token time intervals as they pass through
the transition. Formally: TD : T Timei, where Timei is the set of time intervals: Timei = {[tb,te] |
tb,te∈R+ & tb≤te}.

♦ AE is the arc expression function that assigns operators to the output arcs (i.e., the arcs that
originate at a transition and end at a place). Formally: AE: Ao RF where RF is the set of all

 6

Figure 5:Step 5: We finish the extension process by adding
two new arc types: inhibitory arcs marked with tilde and
double-ended arcs. The corresponding FOPC clause is this:
ignited(Y,T’) :- hot(X,T), not fbs(X,R,T),
delay(T,T’,3,4), neighbor(X,Y).

accuracy of envisionment. To provide one data point regard-
ing these issues, a series of experiments were conducted in
the domain of ship board damage control.

Figure 6 shows a fragment of the TIPN model used to
model ship damage control. Other TIPN models of a simi-
lar complexity can be found in (Bulitko, 1998, 2000). This
particular fragment models fire spread including the actions
of the crew to address the fire spread. Other TIPN frag-
ments model aspects of ship damage control such as flooding
and firemain management. The ship is broken into compart-
ments or spaces. The fire spread places ship compartments
in one of the following states: normal, engulfed, destroyed,
extinguished, and flooded. Damage control personnel are
based off designated compartments called stations.

The TIPN shown in Figure 6 takes as input the follow-
ing variables: “low pressure” indicating an insufficient water
pressure in the firemain sea-water pipe network, “high tem-
perature alarm” indicating a specific alarm going off, “fire”
indicating a fire report for a particular set of compartments,
“FBS” indicating the fact that fire boundaries are on a com-
partment, “Granted permission to flood” indicating that the
captain allowed to flood a compartment, “FF in progress”
representing fire fighting efforts in progress in a compart-
ment, “Available personnel” listing all unengaged damage
control personnel. These variables describe the state of the
system. The second category of the variables refer to the
actions whose effects we seek to envision. These include:
“investigate” representing the action of checking an apart-
ment for fire, “fight fire” order, “flood” compartment order,
“SFB” standing for “set fire boundaries on a compartment”,
and “request permission to flood” a compartment from the
captain.

The results of envisionment are represented via the fol-
lowing output variables: “investigation complete” refers to
the fact of completing a compartment investigation, “fire
out” represents the extinguished state of a compartment,
“flooded” indicates a flooded compartment, “destroyed”
compartment state refers to the complete burn-out, “ex-
ploded” compartment state indicates an explosive combus-
tion in a compartment, “vital space lost” means that a critical
compartment will be destroyed by an explosion, and “occu-
pied personnel” stores the engaged personnel assignments.

In addition to its inputs and outputs, the network also has
a few internal variables. These are “engulfed” representing
a compartment on fire, “explosive compartments” listing all
compartments with explosive materials in them, and “vital
compartments” referring to critical spaces on the ship.

4.1 Comparison between Numerical Simulator
and TIPN

The experimentation to measure the accuracy of the TIPN
involved four fire-spread scenarios of different scale. The
scenarios had 1, 5, 10, and 20 initial ignitions (primary dam-
age events) at the beginning of each scenario correspond-
ingly. No fire suppressants were introduced and the damage
control numerical simulator (Shouet al., 2001) was com-
pared to the TIPN shown above on these scenarios. The pre-
diction interval was varied in the following steps: 1 minute,
5 minutes, 10 minutes, and 20 minutes. Thus, 16 envision-
ment runs were conducted for the numerical simulator par-

High
Temp
Alarm

Fire FBS Granted
permission

to flood

FF in
progress

Available
personnel

FINDINGS:

RESULTS:

ACTIONS:

Investigation
complete

Fire
out Flooded Destroyed Exploded

Fight
fire

Flood

SFB

Investigate

station

station

station

spacespacespacespace

space

investigation
[3,7]

start FF
[2,5]

time to
set FB
[3,5]

~~

destruction
[20,30]

~
station

flooding
[2,7]

extinguishing
[10,20]

flooding
fire

[0,1]

engulfing
[5,10]

time to
report after

FF
[2,5]

Occupied
personnel

space
time to

report after
FBS recall

[2.5]

station
time to

report after
investigation

[2,5]

sp
re

ad
fir

e

station

space
self

extinguishing
[0,0]

Firemain

Low
pressure

Fire
mai
n

external input

belongs to
this subnet

belongs to
other subnet

connecting
nodes:

FIRE

Exploding
compartments

space
explosion

[2,7]

~
~

~

Vital space
lost

Vital
compartments

space
loosing vital

space
[0,0]

space
fire

spread
[3,5]

Engulfed

Request
permission

to Flood

space
waiting for

permission to
flood
[0,2]

~
position

Figure 11. Time Interval Petri Network used to model fire spread in Minerva 5.2 and the experiments described in
this paper.

Figure 11 shows a fragment of the TIPN model used to model ship damage control. Other TIPN models
of a similar complexity can be found in [Bulitko98a, Bulitko00]. This particular fragment models fire spread
including the actions of the crew to address the fire spread. Other TIPN fragments model aspects of
ship damage control such as flooding and firemain management. The ship is broken into compartments
or spaces. The fire spread places ship compartments in one of the following states: normal, engulfed,
destroyed, extinguished, and flooded. Damage control personnel are based off designated
compartments called stations.

The TIPN shown in Figure 11 takes as input the following variables: “low pressure” indicating
an insufficient water pressure in the firemain sea-water pipe network, “high temperature alarm”
indicating a specific alarm going off, “fire” indicating a fire report for a particular set of compartments,
“FBS” indicating the fact that fire boundaries are on a compartment, “Granted permission to flood”
indicating that the captain allowed to flood a compartment, “FF in progress” representing fire fighting
efforts in progress in a compartment, “Available personnel” listing all unengaged damage control
personnel. These variables describe the state of the system. The second category of the variables refer to
the actions whose effects we seek to envision. These include: “investigate” representing the action of
checking an apartment for fire, “fight fire” order, “flood” compartment order, “SFB” standing for “set
fire boundaries on a compartment”, and “request permission to flood” a compartment from the
captain.

The results of envisionment are represented via the following output variables: “investigation
complete” refers to the fact of completing a compartment investigation, “fire out” represents the
extinguished state of a compartment, “flooded” indicates a flooded compartment, “destroyed”
compartment state refers to the complete burn-out, “exploded” compartment state indicates an

 14

Figure 6:Time Interval Petri Network used to model fire spread in Minerva 5.2 and the experiments described in this paper.

alleled by 16 runs with the TIPN envisioner.

Degree of Speed-Up and Scalability.The numerical sim-
ulator was able to keep up its real-time operation even
when simulating 20 simultaneous primary damage events
that would in turn result in many more uncontrolled fire
spreads. Table 1 shows the timings for the experiments
and the degree of speed up. As mentioned above, pri-
mary fires were introduced at the very beginning of each
scenario and were let burn uncontrollably. The envision-
ment/simulation was terminated at the end of the envi-
sionment interval. For the purpose of this paper the num-
bers for the numerical simulator computation time are ap-
proximated using the simulation time. In practice, the ac-
tual computation time was within 10% of the estimate.

As a summary, speed-ups of three to five orders of mag-
nitude were feasible with the TIPN envisionment module.
It should be also noticed that increasing number of pri-
mary fires did slow down the TIPN module though it was
still above the desired speedup of 12,000x described in

Number
of primary
fires

Envisionment
interval (sec-
onds)

TIPN com-
putation
time (sec-
onds)

Degree
of speed-
up

1 1200 0.010 120,000x
5 600 0.014 42,857x
5 1200 0.015 80,000x
10 600 0.015 40,000x
10 1200 0.016 75,000x
20 600 0.016 37,500x
20 1200 0.031 38,710x

Table 1:Degree of speed-up of the TIPN envisionment mod-
ule over a numerical simulator.

Section 2 of this paper.

Accuracy of Envisionment. The accuracy of prediction re-
sults are summarized in Table 2.

As the table illustrates, the agreement between numeri-

Number
of pri-
mary
fires

Envision-
ment
interval
(min-
utes)

False
posi-
tives

False
nega-
tives

TOTAL
discrep-
ancy

1 1 0 0 0
1 5 0 0 0
1 10 12 0 12
1 20 20 4 24
5 1 0 0 0
5 5 0 0 0
5 10 11 0 11
5 20 19 4 23
10 1 0 0 0
10 5 0 0 0
10 10 13 6 19
10 20 20 13 33
20 1 0 0 0
20 5 0 0 0
20 10 5 11 16
20 20 7 23 30

Table 2:Envisionment accuracy of the TIPN module versus
the numerical simulator measured in the number of fires. The
total discrepancy is the sum of false positives (i.e., the fires
envisioned by TIPN but not the simulator) and false negatives
(i.e., the fires envisioned by the simulator but not TIPN).

cal simulator and a TIPN envisioner was perfect (0 false
positives and 0 false negatives) for the prediction intervals
below 10 minutes. Longer envisionment intervals caused
some differences between fire spread envisioned by the
TIPN module and the fire spread modelled by the numeri-
cal simulator. Some of the discrepancies can be explained
through the very basic initial design of the TIPN fire
spread model that, for example, assumed that firealways
spreads toall neighboring compartments. At the same
time, the numerical simulator had a much finer spread
model involving wall temperatures, probability, and pres-
ence of combustible materials.
Two observations are in order. First, the Minerva-5.2 de-
cision making system (Bulitko, 1998, 2000) had a lim-
ited look-ahead of 10-13 minutes. In the domain of
ship damage control longer look-ahead intervals with re-
spect to fire-spread are less applicable due to the very
rapidly changing environment, an array of external un-
predictable events, and a great deal of uncertainty and
world state inobservability. For short envisionment inter-
vals even a very basic TIPN model does not seem to devi-
ate significantly from the more precise numerical simula-
tor models. Secondly, as our experiments presented below
demonstrate, even with the most basic fire spread TIPN,
Minerva-5.2 was able to achieve expert level performance
often outperforming human subject matter experts.

4.2 Use of TIPN in Decision Making System
As the next step, we tested the TIPN envisionment mod-
ule in more realistic and practically useful settings of the
ship damage control domain. A much greater set of physical
and personnel activities phenomena were handled (Bulitko,

1998). The results presented below suggest that the TIPNs
can be a useful envisionment tool in a challenging real-world
domain.

TIPNs were used as an envisioner within a rule-based
real-time decision-making system Minerva 5.2 (Bulitko,
1998, 2000). The system’s tasks were (1) to maintain sit-
uation awareness by taking in damage reports and sensor
readings aboard a naval vessel as well as actively verify cri-
sis reports by sending investigator teams and (2) to provide a
casualty response by dispatching damage control teams and
activating damage control devices (Wilkinset al., 2001). On
every decision-making cycle the deliberation module of the
system would suggest a set of feasible actions to take. The
TIPN envisionment module was used to predict the effects
of the actions and select the most promising one.

To evaluate the system’s performance, the input was 160
scenarios that had been run within the DC-Train ship dam-
age control simulator at the Navy’s Surface Warfare Officers
School (SWOS) in Newport, Rhode Island. These scenarios
were judged by experts to be realistic and approximately 60
different Navy officers solved them. We compared the per-
formance of Minerva-DCA (with the TIPN scheduler) to that
of Navy officers at SWOS on these scenarios. The results are
shown in Figure 7. Any scenario had one of the three out-
comes: “ship lost”, meaning that a major disaster such as a
missile compartment explosion was reached; “ship possibly
saved”, meaning that at 25 minutes scenario time the ship
was still alive yet there were active crises; and “ship saved”,
meaning that there were no active crises at the 25-minute
mark.

The use of Minerva with the TIPN envisionment module
resulted in 117 out of 160 ships being saved. This is a 318%
improvement over human DCAs wherein 28 ships were
saved. Likewise, TIPN-equipped Minerva lost 21 ships, or
46% fewer than the Navy officers did.

5 Knowledge Acquisition for TIPNs
The previous sections have introduced the TIPN formalism
and illustrated how a TIPN can be used to simulate fire
spread on a ship, which can be used for example, to envi-
sion or predict the future course of the fire spread. In this
section we highlight the guidelines for manual TIPN design.
Automated methods including machine learning for TIPNs
are presented in (Bulitko, 2000; Bulitko & Wilkins).

TIPN-based envisionment models can be handcrafted in
a number of ways. In this section we will formulate some
intuition and guidelines for doing so based on practical ex-
perience.

In the approach one typically begins by identifying do-
main states (described with a set of attributes), state changes,
causal dependencies, and temporal information. As an ex-
ample, we will use the fire spread TIPN presented in Figure
5. For the example, one would first identify state attributes
of interest: (1) compartment temperature (hot/not hot); (2)
compartment fire boundaries (set/not set); (3) compartment
ignition (ignited/not ignited).

Then one identifies relevant state changes: fire spread (a
compartment becomes ignited).

A domain expert would then inform the designer of the
following causal dependency: fire spreads (i.e., a compart-

realistic and approximately 60 different Navy officers solved them. We compared the performance of
Minerva-DCA (with the TIPN scheduler) to that of Navy officers at SWOS on these scenarios. The
results are shown in Figure 12. Any scenario had one of the three outcomes: “ship lost”, meaning that a
major disaster such as a missile compartment explosion was reached; “ship possibly saved”, meaning
that at 25 minutes scenario time the ship was still alive yet there were active crises; and “ship saved”,
meaning that there were no active crises at the 25-minute mark.

39

93

28

Ship Lost Ship Possibly Saved Ship Saved

221

22

117

Ship Lost Sh ip Pos sibly Saved Ship Saved

+ 318 %

- 46 %

Figure 12. Performance of Minerva with TIPN envisionment module in the domain of ship damage
control vs. human experts. The left pie chart shows the distribution of outcomes for scenarios presented
to Navy experts. The chart on the right presents the distribution for Minerva-DCA.

The use of Minerva with the TIPN envisionment module resulted in 117 out 121 ships being saved. This
is a 318% improvement over human DCAs wherein 28 ships were saved. Likewise, TIPN-equipped
Minerva lost 21 ships, or 46% fewer than the Navy officers did.

6 TIPN Construction
The previous sections have indicated that Time Interval Petri Networks are a suitable formalism for an
AI envisioner. This section explores the issues of designing a TIPN scheduler. It starts out with the
manual engineering process, then considers a case where the domain modeling knowledge is a-priori
available in the form of Horn Clauses, and finally, touches upon inductive machine learning methods
for TIPNs.

6.1 Manual Knowledge Acquisition (KA)
TIPN-based envisionment models can be handcrafted in a number of ways. In this section we will
formulate some intuition and guidelines for doing so based on practical experience.

In the approach one typically begins by identifying domain states (described with a set of
attributes), state changes, causal dependencies, and temporal information. As an example, we will use
the fire spread TIPN presented in Figure 5. For the example, one would first identify state attributes of
interest:

• compartment temperature (hot/not hot)

• compartment fire boundaries (set/not set)

• compartment ignition (ignited/not ignited).

Then one identifies relevant state changes:

• fire spread (a compartment becomes ignited).

 17

Figure 7: Performance of human experts vs. Minerva with TIPN envisionment module (Minerva-DCA) in the domain of ship
damage control. The left pie chart shows the distribution of outcomes for scenarios presented to Navy experts. The chart on the
right presents the distribution for Minerva-DCA.

ment becomes ignited) if its neighboring compartment is hot
and no fire boundaries are set around it and the associated
temporal information: the process of fire spread takes 3 to 4
minutes.

Having this information at hand, one can start building a
TIPN. The following conversion guidelines apply: (1) state
attributes become TIPN places (e.g., places “Hot”, “Fire
Boundaries”, “Ignited”); (2) state attribute types become
TIPN token colors (e.g., tokens in place “Hot” would be
colored with compartment tags); (3) state changes become
transitions (e.g., transition “Spread”); (4) temporal infor-
mation becomes transitions’ delay intervals (e.g., [3,4]); (5)
causal information determines the TIPN arcs (e.g., enabling
arc “Hot” to “Spread” and disabling arc “Fire Boundaries”
to “Spread”). It also determines the arc operators (e.g., oper-
ator “Compartment” spreads the fire to a neighboring com-
partment).

Figure 8 represents this process graphically. The intuition
is as follows: the marking (i.e., the set of tokens) of a TIPN
represents the current domain state. If a token is present
in a place then the relevant state attribute is considered to
hold. The color of the token specifies the context. Exam-
ple: a token tagged with3-370-0-E, [5:00, 6:15]
in the place “Ignited” represents the fact that compartment
3-370-0-E is known to become ignited between scenario
times5:00 and6:15 . Domain state changes correspond
to marking changes. A TIPN marking changes when a tran-
sition fires and tokens flow through the transition. Thus,
domain state changes correspond to TIPN transition firing.
Each domain state change is causally dependant on some
preconditions. In the TIPN world such dependency is ex-
pressed by linking enabling and disabling places to a TIPN
transition. Thus the fact that fire spreads if a compartment
is hot and no fire boundaries are set will lead to having one
enabling input arc and one disabling input arc linked to the
transition “Spread”.

6 Related Research
There exists extensive research in domain modelling for
prediction-based decision-making. Often more accurate and
detailed first-principle simulators (NIST, 2002; Shouet al.,
2001; Heath, 1996) arecompiledinto less accurate and com-
putationally effective models. The resulting trade-offs are
an interesting research topic on its own (Russell & Wefald,
1991b,a). A detailed treatment of the major approaches is
beyond the scope of the paper and can be found in (Bulitko,
2000).

Previous work that develops Petri Nets extensions for AI
intelligent reasoning includes (Sil, 1995) for probabilistic
reasoning, (Zhang & Murata, 1996) for rule-based logic sys-
tems, (Medeiros, Xexeo, & de Souza, 1999) for fuzzy work-
flow management, and (Costa Miranda, 1999) for multi-
agent systems. In the remainder of this section we will sur-
vey efforts on extending Petri Nets as a domain modelling
formalism.

6.1 Timed Colored Petri Nets (TCP-nets) By
Jensen

In (Jensen, 1997) Jensen suggests a set of extensions to
his formalism of Colored Petri Nets (CP-nets) dealing with
time. The new model is termed Timed Colored Petri Nets
(TCP-nets) and contains the following main elements:

1. tokens with point-value timestamps indicating when the
tokens are ready to bind;

2. a CP-net state characterized with not only the marking but
also the central model time (a point value);

3. input arc expressions that evaluate to timed multi-sets. In
other words, the expressions not only specify the tokens to
be presented at the input places but also their timestamps
relative to the model time;

4. output arc expressions that also evaluates to a timed multi-
set. In this case the time values of the multi-set are treated

A domain expert would then inform the designer of the following causal dependency:

• fire spreads (i.e., a compartment becomes ignited) if its neighboring compartment is hot and no
fire boundaries are set around it;

and the associated temporal information:

• the process of fire spread takes 3 to 4 minutes.

Having this information at hand, one can start building a TIPN. The following conversion guidelines
apply:

• state attributes become TIPN places (e.g., places “Hot”, “Fire Boundaries”, “Ignited”);

• state attribute types become TIPN token colors (e.g., tokens in place “Hot” would be colored
with compartment tags);

• state changes become transitions (e.g., transition “Spread”);

• temporal information becomes transitions’ delay intervals (e.g., [3,4]);

• causal information determines the TIPN arcs (e.g., enabling arc “Hot” to “Spread” and disabling
arc “Fire Boundaries” to “Spread”). It also determines the arc operators (e.g., operator
“Compartment” spreads the fire to a neighboring compartment).

Figure 13 represents this process graphically. The intuition is as follows: the marking (i.e., the set of
tokens) of a TIPN represents the current domain state. If a token is present in a place then the relevant
state attribute is considered to hold. The color of the token specifies the context. Example: a token
tagged with “3-370-0-E”, [5:00, 6:15] in the place “Ignited” represents the fact that compartment 3-370-
0-E is known to become ignited between scenario times 5:00 and 6:15. Domain state changes
correspond to marking changes. A TIPN marking changes when a transition fires and tokens flow
through the transition. Thus, domain state changes correspond to TIPN transition firing. Each domain
state change is causally dependant on some preconditions. In the TIPN world such dependency is
expressed by linking enabling and disabling places to a TIPN transition. Thus the fact that fire spreads
if a compartment is hot and no fire boundaries are set will lead to having one enabling input arc and
one disabling input arc linked to the transition “Spread”.

Hot
Fire

Boundaries

Ignited

Spread

3-370-0-E, [2:32,3:14] R3, 3-370-0-E, [2:32,3:14]

~
<Compartment>

Neighbors

[3,4]

Domain State Attributes:
* compartment fire boundaries (set/not set)
* compartment temperature (hot/not hot)
* compartment ignition (ignited/not ignited)

Domain State Changes:
* fire spread (a compartment becomes ignited)

Domain Causal Dependencies:
* fire spreads (i.e., a compartment becomes
ignited) if its neighboring compartment is hot and
no fire boundaries are set around it

Temporal Information:
* the process of fire spread takes 3 to 4 minutes.

DOMAIN MODEL TIPN MODEL

Figure 13. Going from a domain model to a TIPN model involves mapping of individual parts.

 18

Figure 8:Creating a TIPN network from a domain model

as the time delay values;

5. transitions eager to fire, meaning that the time enabled
step with the earliest enabling time will occur (fire) first
(if it does).

There are several important observations to make about
TCPNs:
1. All the timestamps and delays are point-value with no in-

tervals or probabilistic distributions and thus don’t easily
allow for uncertainty to be taken into account.

2. The model operates with a single global clock mean-
ing that the occurrence (firing) rules are non-local and
the entire operation is ordered along the time dimension.
In other words, a TCPN cannot simultaneously model
two completely independent processes happening, for in-
stance, 10 days apart.

3. Each TCPN has a corresponding CPN readily derivable
by dropping all the timing information. An occurrence
graph of a TCPN (without the timing information in-
cluded in the nodes) is a subset of the occurrence graph
of the corresponding CPN since TCPN firing rules are
stricter than their CPN counterparts.

4. For a cyclic TCPN the occurrence graph is likely to be-
come infinite since the timestamps are likely to continue
to increase. In such a case either an OE-graph should be
devised or the scenario timeline should be artificially lim-
ited to make the graph suitable to analysis.

6.2 Timed Colored Petri Nets (ITCP-nets) by van
der Aalst

One of the important drawbacks of representing time stamps
and time delays as point values is that in reality, the dura-

tions of subprocesses typically vary. This fact might have
an adverse effect on accuracy and convenience of modelling
with TCPNs. Several extensions have been proposed includ-
ing probabilistic time delay distributions and interval calcu-
lus. There are several strong assumptions one has to make
in order to use probabilistic distribution methods for transi-
tion time delays and still the analysis methods might not be
always adequate (van der Aalst, 1993). In this section we
will consider an alternative formalism called Interval Time
Colored Petri Nets (ITCPN) suggested by van der Aalst in
(van der Aalst, 1993) which is to represent transition time-
delays as intervals. Below we will present the highlights of
the framework illustrated with a simple example (Figure 9):
1. Like with the TCP-net formalism presented above, the to-

kens are point time stamped and colored. Arc expressions
are implemented through the transition function which
translates a multi-set of tokens to be consumed into a
multi-set of tokens to be produced. In our example the
transition function is not given explicitly which means, by
default, that it takes a single token from each input places
(i.e.,p1) and outputs a single token into each of the output
places (i.e.,p2 andp3).

2. One of major differences between TCPNs and ITCPNs
lies with the transition delays. In ITCPNs the transition
delays are represented as closed intervals. Each output
arc is assigned a time delay interval. In our example arc
〈t, p2〉 has the delay interval of[1, 2] and arc〈t, p3〉 has
the delay interval of[3, 4].

3. The enabling time of an event (or step in TCP-net termi-
nology) is the maximum of all timestamps of the tokens
to be consumed. van der Aalst also defines the model
time as the minimum of all enabling times. Thus, the

information included in the nodes) is a subset of the occurrence graph of the
corresponding CPN since TCPN firing rules are stricter than their CPN
counterparts.

4) For a cyclic TCPN the occurrence graph is likely to become infinite since the
timestamps are likely to continue to increase. In such a case either an OE-
graph should be devised or the scenario timeline should be artificially limited
to make the graph suitable to analysis.

7.5 Interval Timed Colored Petri Nets (ITCP-nets) by Van der
Aalst

One of the important drawbacks of representing time stamps and time delays as
point values is that in reality, the durations of subprocesses typically vary. This
fact might have an adverse effect on accuracy and convenience of modeling with
TCPNs. Several extensions have been proposed including probabilistic time
delay distributions and interval calculus. There are several strong assumptions
one has to make in order to use probabilistic distribution methods for transition
time delays and still the analysis methods might not be always adequate [1]. In
this section we will consider an alternative formalism called Interval Time
Colored Petri Nets (ITCPN) suggested by Van der Aalst in [1] which is to
represent transition time-delays as intervals. Below we will present the
highlights of the framework illustrated with a simple example (Figure 23):

[1,2]

p1<a, 5>

<b,10>

t

[3,4]

p2 p3
Figure 23. An example of Interval
Timed Colored Petri Net (ITCPN).

1) Like with the TCP-net formalism presented above, the tokens are point time
stamped and colored. Arc expressions are implemented through the
transition function which translates a multi-set of tokens to be consumed into
a multi-set of tokens to be produced. In our example the transition function is
not given explicitly which means, by default, that it takes a single token from
each input places (i.e., p1) and outputs a single token into each of the output
places (i.e., p2 and p3).

 33

Figure 9: An example of Interval Timed Colored Petri Net
(ITCPN).

model time advances only when an event happens. In our
example there are two events (steps): one is with token
〈a, 5〉 as the enabling token and the other event has token
〈b, 10〉 as the enabling token. In the first case the enabling
time ismax{5} = 5 and in the second case the enabling
time ismax{10} = 10. The model time will be equal to
min{5, 10} = 5 and thus the first event is bound to occur
before the second one.

4. Once an event happens (or step occurs) the new to-
kens are put into the output places. Each of them will
have a new timestamp calculated as follows:tnew =
tfiring + td wheretnew is the new point-valued times-
tamp, tfiring is the firing time, andtd is the actual de-
lay value which is required to fall into the delay interval
[delaymin, delaymax]. In our example if the first event
(with 〈a, 5〉 as the enabling token) happens then the re-
sulting marking will look as shown in Figure 10 if the ac-
tual delays happen to be1.79 ∈ [1, 2] for the first output
arc and3.2 ∈ [3, 4] for the second output arc. It is impor-
tant to realize that there are non-countably many mark-
ings resulting from the event as the delays can take on
any real numbers in ranges[1, 2] and [3, 4] correspond-
ingly. So in reality we get the following set of markings:
{p1 : 〈b, 10〉, p2 : 〈a, 5 + d1〉, p3 : 〈a, 5 + d2〉 | d1 ∈
[1, 2], d2 ∈ [3, 4]}.

The ITCPN extensions are undoubtedly a significant ad-
vance over the P/T nets. The time stamping, coloring, and
interval calculus provided for successful applications of the
formalism (van der Aalst, 1993). It should be also noted that
the ITCPN and TIPN formalisms while developed indepen-
dently, share a number of common attributes and strengths.
In the following we will point out some differences among
TIPNs, ITCPNs, and TCPNs.

1. Since ITCPN delay values are non-deterministically
”sampled” from the non-point delay intervals the occur-
rence (reachability) graph will always be infinite (even
non-countably infinite). That makes the reachability
graph based analysis inefficient. To relax this problem
van der Aalst (van der Aalst, 1993) created alternative

2) One of major differences between TCPNs and ITCPNs lies with the transition
delays. In ITCPNs the transition delays are represented as closed intervals.
Each output arc is assigned a time delay interval. In our example arc <t,p2>
has the delay interval of [1,2] and arc <t,p3> has the delay interval of [3,4].

3) The enabling time of an event (or step in TCP-net terminology) is the
maximum of all timestamps of the tokens to be consumed. Van der Aalst also
defines the model time as the minimum of all enabling times. Thus, the model
time advances only when an event happens. In our example there are two
events (steps): one is with token <a,5> as the enabling token and the other
event has token <b,10> as the enabling token. In the first case the enabling
time is max{5} = 5 and in the second case the enabling time is max{10} = 10.
The model time will be equal to min{5,10} = 5 and thus the first event is bound
to occur before the second one.

4) Once an event happens (or step occurs) the new tokens are put into the
output places. Each of them will have a new timestamp calculated as follows:
tnew = tfiring + td where tnew is the new point-valued timestamp, tfiring is the firing
time, and td is the actual delay value which is required to fall into the delay
interval [delaymin, delaymax]. In our example if the first event (with <a,5> as the
enabling token) happens then the resulting marking will look as shown in
Figure 24 if the actual delays happen to be 1.79∈[1,2] for the first output arc
and 3.2∈[3,4] for the second output arc. It is important to realize that there are
non-countably many markings resulting from the event as the delays can take
on any real numbers in ranges [1,2] and [3,4] correspondingly. So in reality
we get the following set of markings: {<p1:<b,10>, p2:<a,5+d1>, p3:<a,5+d2> |
d1∈[1,2], d2∈[3,4]}.

[1,2]

p1

<a, 6.79>

<b,10>

t

[3,4]

p2 p3

<a, 8.2>

Figure 24. The ITCPN after one of the events
happens.

The ITCPN extensions are undoubtedly a significant advance over the PT nets.
The time stamping, coloring, and interval calculus provided for successful
applications of the formalism [1]. It should be also noted that the ITCPN and

 34

Figure 10:The ITCPN after one of the events happens.

ITCPN behavior semantics in which token timestamps are
intervals and thus the entire model implements an inter-
val calculus. A similar calculus was adapted consistently
throughout TIPNs from the very beginning.

2. There is a central ITCPN model time and the transitions
are eager to fire. In other words, enabled firing steps
(events) will be executed in chronological order. Thus,
like TCP-nets, ITCP-nets do not allow for concurrent sim-
ulations of processes which are time-separated.

3. Unlike in the case of TCPNs, ITCPNs appear to have no
provision for premature token use. In other words, the
input arcs carry no time expressions and thus a token can
be used only on or after the model time equals its time
stamp.

4. Unlike in the case of TIPNs, ITCPNs don’t provide for
uncertainty with regard to token timestamps for any single
marking since all the timestamps are point values and thus
are assumed to be known exactly. Therefore, there is a
need to represent the uncertainty with a generally non-
countableset of markings.

7 Summary and Conclusions
The following main contributions were presented in the pa-
per:

1. A Petri Nets based approach to decision-making through
envisionment modelling is presented. Petri Nets formal-
ism is known for its solid theoretical base, clear syntax
and semantics, intuitive graphic representation, and native
concurrency support (Peterson, 1981; Murata, 1989).

2. The classical Petri Net model is extended in various ways
to make it suitable for reasoning within AI environments.
The main extensions concern explicit temporal reason-
ing, context, and operator support. The new formalism
is hence called Time Interval Petri Nets (TIPNs).

3. The framework has been applied in the real-time decision-
making domain of ship damage control for the tasks of au-
tomated problem-solving and intelligent tutoring (advis-
ing, critiquing, and scoring). In a large exercise involving
160 simulated ship crisis scenarios, our decision-making
expert system showed a 318% improvement over Navy
officers by saving 89 more ships.

Subsequently, the following directions for the future re-
search appear to be interesting:

1. A TIPN model encodes what is commonly known as the
next state functionδ(st, a) = st+1 wherest is the world’s
state at timet, a is the action the agent takes at timet, and
st+1 is the state of the world at timet+1. In the schedul-
ing framework presented in this paper we used the func-
tion to predict the effects (i.e., to calculatest+1) given the
current situation (st) and the action (a) we are consider-
ing taking. Another interesting way of usingδ is to solve
the equation above for actiona given the current statest

and the desired future statest+1. Using the model in such
a way will allow us to produce the action to take given
where we are and where we want to be. If the equation al-
lows for multiple solutions then a separate scheduler (e.g.,
a more refined model) should be used to arbitrate among
them.

2. A large number of formal analysis techniques have been
developed for Petri nets that are relevant to modelling do-
mains with concurrent temporal processes. Examples of
formal analysis techniques include computing deadlocks,
cycles, equivalence, coverability, and reachability (Peter-
son, 1981). A line of future research is to show how these
techniques are valuable when using Petri Nets for physical
and intelligent agent simulation in an intelligent system
domain. Some initial efforts in this direction are reported
in (Bulitko, 2000).

Acknowledgements
IRCL members Sebastian Magda, Anthony Czupryna, Jr.,
and David Fried have done most of the TIPN coding and
have contributed numerous interesting suggestions. An-
thony Czupryna’s participation deserves a special recogni-
tion. Discussions with KBS members and Drs. Valeriy K.
Bulitko and Dan Roth were helpful. Detailed reviews from
anonymous reviewers led the paper to its current form. The
research has been supported in part by ONR Grant N00014-
95-1-0749, ARL Grant DAAL01-96-2-0003, NRL Contract
N00014-97-C-2061 as well as University of Alberta and
NSERC grants.

References
Bulitko, V., and Wilkins, D. C. Knowledge acquisition and

machine learning for time interval petri nets.Journal of
Machine Learning Research. (in preparation).

Bulitko, V., and Wilkins, D. 1999. Damage control domain:
Using petri nets for intelligent scheduling. In Portinale,
L.; Valette, R.; and Zhang, D., eds.,Proceedings of the
Workshop on Application of Petri Nets to Intelligent Sys-
tem Development, 14–25.

Bulitko, V. 1998. Minerva-5: A multifunctional dynamic
expert system. Master’s thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign.

Bulitko, V. 2000. Envisionment-Based Scheduling Using
Time Interval Petri Networks: Representation, Inference,
And Learning. Ph.D. Dissertation, University of Illinois
at Urbana-Champaign.

Costa Miranda, M. 1999. Modeling and analysis of a multi-
agent system using colored petri nets. In Portinale, L.;
Valette, R.; and Zhang, D., eds.,Proceedings of the Work-
shop on Application of Petri Nets to Intelligent System De-
velopment, 59–70.

Donatelli, S., and Kleijn, J. 1999.Applications And Theory
of Petri Nets 1999, volume 1639. Springer.

Heath, M. 1996. Scientific Computing: An Introductory
Survey. McGraw Hill Text.

Jensen, K. 1997.Colored Petri Nets. Basic Concepts, Anal-
ysis Methods and Practical Use. Monographs in Theoret-
ical Computer Science. Springer-Verlag.

Korf, R. E. 1990. Real-time heuristic search.Artificial
Intelligence42(2-3):189–211.

Medeiros, S.; Xexeo, G.; and de Souza, J. 1999. Fuzzy petri
nets for dynamic workflow in gis environment. In Porti-
nale, L.; Valette, R.; and Zhang, D., eds.,Proceedings of
the Workshop on Application of Petri Nets to Intelligent
System Development, 38–46.

Murata, T. 1989. Petri nets: Properties, analysis, and appli-
cations. InProceedings of IEEE 77, 541–580.

NIST. 2002. Cfast reference documentation.
http://fast.nist.gov . National Institute of
Standards and Technology.

Peterson, J. 1981.Petri Nets Theory and Modeling of Sys-
tems. Prentice-Hall, Inc.

Russell, S. J., and Wefald, E. H. 1991a. Principles of metar-
easoning.Artificial Intelligence49.

Russell, S. J., and Wefald, E. H. 1991b.Do the right thing:
Studies in limited rationality. MIT Press.

Shou, G.; Wilkins, D.; Hoemann, M.; Mueller, C.; Tatem,
P.; and Williams, F. 2001. Supervisory control system
for ship damage control: Volume 2 – scenario generation
and physical ship simulation of fire, smoke, flooding, and
rupture. Technical Report NRL/MR/6180-01-8572, Naval
Research Laboratory, Washington, D.C.

Sil, J. 1995.Intelligent Expert and Learning Systems Using
Petri Nets. Ph.D. Dissertation, Jadavpur University.

van der Aalst, W. 1993. Interval timed colored petri nets and
their analysis. In Marsan, M., ed.,Applications and The-
ory of Petri Nets, volume 691 ofLecture Notes in Com-
puter Science, 453–472. Berlin: Springer-Verlag.

Wilkins, D.; Sniezek, J.; Tatem, P.; and Williams, F. 2001.
The dc-scs supervisory control systems for ship dam-
age control: Volume 1 – design overview. Technical
Report NRL/MR/6180-01-8559, Naval Research Labora-
tory, Washington, D.C.

Zhang, D., and Murata, T. 1996. Fixpoint semantics for
a petri net model of definite clause logic programs.Ad-
vances in the Theory of Computation and Computational
Mathematics1:155–194.

