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Abstract

Sophisticatedagentsoperatingin open ervironments
must malke comple real-time control decisionson
schedulingand coordinationof domainactions. These
decisionsare madein the context of limited resources
and uncertaintyaboutoutcomesof actions. The ques-
tion of how to sequencedomain and control actions
withoutconsumingoomary resourcef theprocessis
the meta-level control problemfor a resource-bounded
rational agent. Our approachis to designand build a
meta-leel control framevork with boundedcomputa-
tional overhead.This framevork will supportdecisions
onwhento acceptdelayor rejectanew task,whenit is
appropriateo negotiatewith anotheragent,whetherto
rengotiatewhenanegotiationtaskfails andhow much
effort to put into schedulingwhen reasoningabouta
new task.

I ntroduction

Agentsin complex ervironmentamustreasorabouttheir lo-
cal problemsolvingactions,interactwith otheragentsplan
acourseof actionandcarryit out. All thesehaveto bedone
in thefaceof limited resourcesnduncertaintyaboutaction
outcomesn real-time. Furthermorenew taskscanbe gen-
eratedby existing or new agentsatary time, thusanagents
deliberationmustbe interleaved with execution. The plan-
ning, schedulingand coordinationof tasksare non-trivial,
requiring eitherexponentialwork, or in practice,a sophis-
ticatedschemethat controlsthe complexity. In this paper
we describea framavork which will provide effective allo-
cationof computatiorresultingin improvedperformancef
individual agentdn a cooperatie multi-agentsystem.

In this framework, agentactionsare broadly classified
into threecategories- domain, control, andmeta-level con-
trol actions. Domain actionsare executableprimitive ac-
tionswhich achieve thevarioushigh-level tasks.Controlac-
tionsareof two types,schedulingactionswhich choosethe
high level tasks,setconstraintson how to achiese themand
sequencehe detaileddomainlevel actionswhich achieve
the selectedasks;andcoordinationactionswhich facilitate
cooperationwith otheragentsin orderto achieve the high-
level tasks. Meta-level control actionsoptimizethe agents
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performanceby choosingandsequencinglomainandcon-
trol actions.

Agentsperform control actionsto improve their perfor
mance. Many efficient architecturesand algorithmsthat
supporttheseactionshave beendevelopedandstudied(1;3;
4). Agentsreceve sensationgrom the ervironmentandre-
spondby performingactionsthataffectthe ervironmentus-
ing theeffectors.Theagentchoosests domainlevel actions
andthis might involve invoking the schedulingand coordi-
nationmodules.Classicagentarchitecture®itheroverlook
the costof control actionsor they assumea fixed and neg-
ligible costanddo not explicitly reasonaboutthe time and
otherresourcegonsumedy controlactions,which mayin
factdegradean agents performance.An agentis not per
forming rationally if it fails to accountfor the overheadof
computinga solution. This leadsto actionsthatarewithout
operationakignificance5).

Consideanadministratve agentwhichis capableof mul-
tiple taskssuch as answeringthe telephone,paying bills
andwriting reports. It usuallytakesthe agenta significant
amountof time to sortout the bills. Supposdhe agentdoes
not performary meta-level reasoningabouttheimportance
or urgeng of thetasks.It will thenspendthe sameamount
of time decidingwhetherto pick up a ringing phoneasit
doesondecidingwhich bills to pay. If theagentis equipped
with meta-lerel reasoningcapabilities,it will recognizethe
needto make quicker decisionson whetherto answerthe
phonethanon sortingbills sincethereis externalconstraint
ontheringing phone ,namelythatthe caller could hangup.
The agentwill make betterdecisionson answeringcalls as
well ascompletingits othertasksby dynamicallyadjusting
its decisionbasednits currentstateandtheincomingtask.

Our proposedarchitecturewill supportthis dynamicad-
justment processby introducing resource-boundedheta-
level reasoningin agentcontrol. In additionto the meta-
level control componentthere are various optionsfor in-
voking theschedulingandcoordinationcomponentsThese
optionsdiffer in their resourcausageandperformanceThe
meta-level controlcomponentvill decideif, whenandhow
muchcontrolactiity is necessaryor eacheventsensedy
theagent.

Meta-level control actionsinclude allocating appropri-
ateamountof processorlndotherresourcesit appropriate
times. To do this an agentwould have to know the effect



of all combinationsof actionsaheadof time, which is in-

tractablefor ary reasonablysized problem. The question
of how to approximatehis ideal of sequencinglomainand
controlactionswithoutconsumingoo mary resourcef the
processjs the meta-level control problem for a resource
boundedationalagent.

Our solution to this problemis to constructa MDP-
basedneta-level controllerwhich usesreinforcementearn-
ing(RL) to learnthe utility of control actionsand decision
stratgjies in resource-boundedontets. In orderto con-
structsucha controller, it is necessaryo identify the fea-
tureswhich affect the decisions.The paperis structuredas
follows: we first enumerat¢heassumptionsnadein ourap-
proachand describethe agentarchitecturewhich will pro-
vide meta-level control. We then presentand evaluatea
case-basef hand-generatetleuristicsfor meta-level con-
trol. Theseheuristicswill determinethe featuresnecessary
for the RL meta-level controllerto make accuratelecisions.
Preliminaryexperimentalresultsillustrating the strengthof
meta-level controlin agentreasoningandthe effectiveness
of theheuristicsareprovided.

Assumptions

The following assumptiongre madein the framavork de-
scribedin this paper: The agentsare cooperatire and will
preferalternatveswhich increasesocial utility evenif it is
atthecostof decreasindpcal utility. Sincethe environment
is cooperatie, we cansafelyassumehatthe cumulative of
meta-level controldecisionsattheindividualagentevel rep-
resentthe meta-level control reasoningorocesgor a multi-
agentsystem. An agentmay concurrentlypursuemultiple
high-level goalsand the completionof a goal derives util-
ity for the systemor agent. The overall goal of the system
or agentis to maximizethe utility generatedver somefi-
nite time horizon. The high-level goalsaregeneratedy ei-
therinternalor externaleventsbeingsensedand/orrequests
by otheragentsfor assistance.Thesegoalsmustoften be
completedby a certaintime in orderto achieve ary utility.
It is not necessaryor all high-level goalsto be completed
in orderfor an agentto derive utility from its actions. The
partialsatisictionof a high-level goalis sometimepermis-
sible while trading-of the amountof utility derivedfor de-
creasedn resourceusage.The agents schedulingdecisions
involve choosingwhich of thesehigh-level goalsto pursue
and how to go aboutachiezing them. Therecanbe non-
local and local dependenciebetweentasksand methods.
Local dependencieareinter-agentwhile non-localdepen-
denciesare intra-agent. Thesedependenciesan be hard
or soft precedenceelationshipsCoordinationdecisionsn-
volvechoosinghetaskswhichrequirecoordinatiorandalso
whichagentto coordinatenith andhow mucheffort mustbe
spenton coordination.Schedulingandcoordinationactions
do not have to be doneimmediatelyaftertherearerequests
for themandin somecasesnaynotbedoneatall. Thereare
alternatve waysof completingschedulingandcoordination
activitieswhichtrade-of thelik elihoodof theseactiitiesre-
sulting in optimal decisionsversusthe amountof resources
used.We alsomalke the simplifying assumptiorthat negoti-
ationresultsarebindingandwe assumehatthe agentswill

notdecommitfrom their contractat later stages.

Agent Architecture

In this section,we provide an overview of our architecture
which provideseffective meta-level control for boundeda-
tionalagents Figurel describeshe controlflow within this
proposedarchitecture.The numbersequencesdescribethe
stepsin a singleflow of control. At the heartof the system
is the Domain Problem Solver (DPS).It recevestasksand
otherexternalrequest$rom theervironment(Stefd). When
anexogenousventsuchasarrival of a new taskoccurs the
DPSsendsthe correspondindask set, resourceconstraints
aswell constraintf othertaskswhich arebeingexecuted,
and performancecriteria to the meta-level controller(Step
2). Thecontrollercomputeghe correspondingtateandde-
terminesthe bestaction prescribedby the hand-generated
heuristic policy for that particulartask environment. The
bestactioncanbe one of the following: to call oneof the
two domainscheduler®n a subsebf tasks;to gathermore
informationto supportthedecisionprocessto dropthenewn
taskor to do nothing. The meta-level controllerthensends
theprescribedestactionbackto the DPS(Stefa).

The DPS,basedon the exact natureof the prescribedac-
tion, caninvoke the complex scheduler, simple scheduler
or coor dination component(Step3) andrecevestheappro-
priateoutput(Steg8a). If theactionis to invokethecomplec
schedulerthe schedulecomponentecevesthe taskstruc-
tureandobjectie criteriaasinputandoutputsthe bestsatis-
ficing scheduleasa sequencef primitiveactions.Thecom-
plex schedulecanalsobecalledto determingheconstraints
on which a coordinationcommitmentis establishedIf the
meta-level or the domainscheduleprescribean actionthat
requiresestablishinga commitmentwith a non-localagent,
thenthe coordinationcomponents invoked. The coordina-
tion componentecevesa vectorof commitmentghathave
to be establishedndoutputsthe statusof the commitments
after coordinationcompletes. The simple scheduleris in-
voked by the DPS andrecevesthe task structureand goal
criteria. It usespre-computedabstractinformation of the
taskto selecttheappropriateschedulevhichfits thecriteria.

The DPS caninvoke the executioncomponenteitherto
executea single action prescribedby the meta-lerel con-
troller or a scheduleprescribedby the domain-level sched-
uler(Step4). The executionresultsare sentback to the
DPS(Stepda) wherethey are evaluatedand if the execu-
tion performancedeviatesfrom expectedperformancethe
necessaryneasuresaretakenby the DPS.

This work accountdor the costat all threelevels of the
decisionhierarchy- domain, control and meta-lerel con-
trol actwities. The costof domainactiities is modeleddi-
rectly in the taskstructureswvhich describethe tasks. They
arereasone@boutby controlactiities like negotiationand
scheduling.

The costof control actiities are reasonechboutby the
meta-level controlactiities. Negotiationcostsarereasoned
aboutexplicitly in this frameawork sincethey canbe mod-
eledas part of the domainactiities neededo completea
high-level goal. The neggotiationtasksare split into anin-
formationgatheringphaseanda negotiatingphasewith the
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outcomeof the former enablingthe latter The negotiation
phasecanbe achieved by choosinga memberfrom a fam-
ily of negotiation protocols(7). The information gathering
phasds modeledasa M etaNeg methodin thetaskstructure
andthenegotiationmethodsaremodeledasindividual prim-
itive actions. Thus,reasoningaboutthe costsof negotiation
is doneexplicitly, just asit is donefor regulardomain-level
activities. The M etaNeg methodbelongsto a specialclass
of domainactionswhich requestinexternalagentfor a cer
tain setof informationandit doesnot uselocal processor
time. It queriesthe otheragentandreturnsinformationon
theagents expectedutility from its tasks,expectedcomple-
tion time of its tasksandflexibility of its schedule Thisin-
formationis usedby the meta-level controllerto determine
therelevantcontrolactions.

However, reasoning about the cost associatedwith
schedulingactiities is implicit. A fixed costis associated
with eachof the two schedulersaand thesecostsaffect the
subsequenthoiceof domainactiities madeby the control
actiities. The earlieststarttime of domainactvities are
determineddy the latestfinish timesof their corresponding
controlactvities.

Meta-level control activities in this framework are mod-
eledasinexpensie actvities. The costfor meta-level con-
trol in this framework are incurred by the computationof
statefeatureswhich facilitatethe heuristicdecision-making
process. The statefeaturesand their functionality are de-
scribedin greaterdetaillateronin this section.

The domainlevel schedulerdepictedin the architecture
will be anextendedversionof the Design-to-Criteria(DTC)
scheduler(6). Design-to-Criteria(DTC) schedulingis the
soft real-timeprocessof finding an executionpaththrough
a hierarchicaltask network suchthat the resultantsched-
ule meetscertain designcriteria, such as real-time dead-

lines, costlimits, andutility preferences.t is the heartof
agentcontrol in agent-basedystemssuchasthe resource-
BoundedinformationGatheringagentBIG (2). Castingthe
languageinto an action-selecting-sequencimyoblem, the
processs to selecta subsedf primitive actionsfrom a setof
candidateactions,andsequencéhem,sothatthe endresult
is anend-to-endscheduleof anagents activities thatmeets
situationspecificdesigncriteria.

We alsointroducea simpleschedulebasedon the useof
abstractionsf agenttaskstructuresThis will supportreac-
tive controlfor highly constrainegituations.Abstractionis
anoffline processvherepotentialschedulesandtheirassoci-
atedperformanceharacteristicfor achieving thehighlevel
tasksare discoveredfor varying objectie criteria. This is
achieved by systematicallysearchingover the spaceof ob-
jective criteria. Also multiple schedulesould potentially
be representedy the sameabstraction. The abstraction
hidesthe detailsof thesepotential schedulesand provides
onlythehighlevelinformationnecessarto make meta-level
choices.Whenan agenthasto schedulea taskbut doesnt
have theresource®r time to call the complex domain-level
scheduler the genericabstractioninformation of the task
structurecanbeusedto provide theapproximateschedule.

Taxonomy of meta-level control decisions

We now describea taxonomyof the meta-lerel decisions
in a multi-agentsystemusing a simple example scenario.
Considera multi-agentsystemconsistingof 2 agentsA and
B. Thediscussionwill focusonly on the variousmeta-level
questionghatwill have to be addressethy agentA. TO and
T1 arethe top-level tasksperformedby agentA. Eachtop-
level taskis decomposedhto two executableprimitive ac-
tions. In orderto achiese the task, agentA can execute
oneor both of its primitive actionswithin the taskdeadline
andthe utility accruedfor the taskwill be cumulative (de-
notedby the sumfunction). Methodsare primitive actions
which canbe scheduledaindexecutedandarecharacterized
by their expectedutility, costanddurationdistributions. For
instancethe utility distribution of methodM2 describedas
90% 10 10% 12, indicatesthatit achievesutility valueof 10
with probability 0.9 and utility of 12 with probability 0.1.
Utility is a deliberatelyabstractdomain-dependertoncept
thatdescribeghe contritution of a particularactionto over-
all problemsolving. Thereexists an enablesrelationship
from taskNX belongingto agentB to methodM2 belonging
to agentA'staskT1. Thisimpliesthatsuccessfuéxecution
of NX by agentB is a preconditionfor agentA to execute
methodM2.

In the remainderof this section,we enumeratehe fea-
turescomputedwhenthe meta-level control componentis
invoked. The costof computingandreasoningaboutthese
statefeaturegeflectthe costof meta-level controlreasoning.
We thenenumeratehe variousmeta-level controldecisions
andthe case-basef heuristicsusedto make the decisions.

The following are somesimple statefeatureswhich are
usedin the heuristicdecisionmaking processof the meta-
level controller We use qualitative valuessuch as high,
mediumandlow, to representhe variousfactorswhich af-
fect the heuristicfeatures. The quantitatve valuessuchas



quality of 80 versusguality of 60 wereclassifiedinto qual-
itative buckets (high versusmediumquality) initially based
on intuitions on the expectedand preferredbehaior of the
system.They areverifiedby multiple simulationrunsof the
systemon varioustestcases.

FO: Current status of system Thisfeatureis represented
asa 3-tuplerepresentinghe Newltems Stack,Agendaand
ScheduleStackvhere eachentry in the tuple containsthe
numberof itemsonthe correspondingtack.The new items
arethe taskswhich have just arrived at the agentfrom the
ervironment.Theagendastackis thesetof taskswhich have
arrived at the agentbut whosereasoninghasbeendelayed
andthey have notbeenscheduledret. Theschedulestackis
the setof taskscurrentlybeingscheduled Eg. < 2,0,1 >
meangherearetwo new itemswhich have arrivedfrom the
ervironmentandthereis onetaskbeingscheduled.

F1: Relation of utility gain per unit time of a par-
ticular task to that of currently scheduled task set:
The utility gain per unit time of a taskis the ratio of
total expected utility 10 total expected duration of that
task. This featurecompareshe utility of a particulartask
to that of the existing tasksetandhelpsdeterminewhether
the new taskis very valuable,moderatelyvaluableor not
valuablein termsof utility to thelocal agent.

F2: Relation of deadline of a particular task to that
of currently scheduled task set: This featurecompareghe
deadlineof a particulartaskto that of the existing task set
andhelpsdeterminavhetherthe new task’s deadlinds very
close,moderatelycloseor farin thefuture.

F3: Relation of priority of items on agenda to that of
currently scheduled task set: This featurecompareshe
averagepriority of the existing tasksetto the priority of the
new taskandhelpsdeterminewhetherthe new taskis very
valuable,moderatelyvaluableor not valuablein terms of
utility to thelocal agent. Priority is a function of the utility
anddeadlinesof the tasks. Computingthe averagepriority
of atasksetis amorecomplicatedunctionthancomputing
the priority of a single taskssinceit involvesrecognizing
dominanceof individualtasks.

The experimentsdescribedin this paperuse the above
four features Thereareotherfeaturessimpleandcomple,
which areenumeratedbelon but yetto beimplemented..

F4: Percent of dlack in local schedule: This featureis
usedto make a quick evaluationof theflexibility in thelocal
schedule. The amountof slackin the local scheduleallows
the agentto acceptnew tasksandschedulghemin the free
slotsaswell asdealwith unexpectedmeta-level controlac-
tivities.

F5: Percent of slack in other agent’s schedule: This
featureis usedto make a quick evaluationof the flexibility
on the otheragents schedule.The computationof feature
F5isinexpensiesinceit is doneafteraninformationgather
ing phaserepresentetly a primitive actioncalledMetaNg
which whenexecutedwill gatherinformationon non-local
agentavhicharepotentialcoordinatiorpartnerdor thelocal
agent.

F6: Relation of utility gain per unit time of non-local
task to non-local agent’s current task set: This feature
comparesheutility of aparticulartaskto thatof theexisting

task setof a non-localagentand helpsdeterminewhether
the new taskis very valuable,moderatelyvaluableor not
valuablewith respecto the utility of the otheragent. The
computatiorof featureF6 is inexpensve sinceit toois done
aftertheinformationgatheringphase.

F7. Expected utility of current schedule item at cur-
rent time: Thisis theexpectedutility of thecurrentschedule
item attime t asdeterminecdby the domain-level scheduler
which usesexpectedvaluecomputations.

F8: Actual utility of current schedule item at current
time: Thisis theactualquality of the currentschedulatem
atrun time t. This featureis comparedto F7 in orderto
determinewhetherscheduleaxecutionis proceedingas ex-
pected. If it is not proceedingas expected,a reschedulés
initiated to prevent the agentfrom reachinga failure point
from which recovery is not possible. Featured=7 and F8
will be computedat specifiedmonitoringpoints.

F9: Expected Rescheduling Cost with respect to atask
set: Thisfeatureestimateshecostof reschedulingitaskset
andit depend®nthesizeandquality accumulatioriactorof
thetaskstructure.It alsodepend®n the horizonandeffort
parameterspecifiecto thedomain-level scheduler

F10: Expected DeCommitment Cost with respect to a
particular task: Thisis acomplex featurewhich estimates
the cost of decommitingfrom a method/taskoy consider
ing the local and non-localdown-streameffects of sucha
decommit. The domain-lerel scheduleicould be invoked a
numberof timesto computethis featuremakingit expensve
to compute.

F11: Relation of dack fragmentation in local schedule
tonew task: Thisis acomple featurewhich determineshe
feasibility of fitting a new taskgiventhe detailedfragmen-
tationof slackin a particularschedulelt involvesresolving
detailedtiming andplacementssues.

F12: Relation of dlack fragments in non-local agent
to non-local task: This is a complex featurewhich deter
minesthe feasibility of fitting a new taskgiventhe detailed
fragmentatiorof slackin a particularnon-localschedulelt
involvesresolvingdetailedtiming andplacementssues.

The following are someof the specificmeta-level deci-
sionsthat will be addressedy ary individual agent. We
describehow the heuristicsdeterminethe bestactionwhen
certainexogenousventsoccur The descriptionis limited
to reasoningaboutfeatured=0-F4. Currentwork allows for
reasoningaboutall 12 features.

1. Arrival of anew taskfrom the ernvironment:Whena new
task arrives at the agent,the meta-level control compo-
nenthasto decidewhetherto reasonaboutit later; drop
the task completely;or to do scheduling-relatedeason-
ing aboutanincomingtaskat arrival time andif so,what
type of scheduling- complec or simple. The decision
treedescribinghevariousactionchoicemamedAl1-A9 is
shavn in Figure2. Eachof the meta-level decisionshave
anassociatedecisiontree. As eachexogenousventoc-
cursfor a particularervironment,its correspondingle-
cisiontreeis addedincrementallyto the parentMDP for
thatenvironmentandtheoptimalpolicy will becomputed
offline. Heuristic Rule: If the new taskhasvery low or
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negligible priority andhigh opportunitycostwith respect
to takingresourcesway from future higherpriority tasks,
thenit shouldbediscarded!f theincomingtaskhasvery
high priority, in otherwords, the expectedutility is very
high andit hasa relatively closedeadline thenthe agent
shouldoverrideits currentscheduleandscheduleghe new
taskimmediately If the deadlineis very tight the agent
will usesthe abstraction-basesimple schedulergelse,it
will usethemorecomplex schedulerlf thecurrentsched-
ule hasaverageutility thatis significantlyhigherthanthe
new taskandthe averagedeadlineof the currentschedule
is significantly closerthanthatof the new task,thenrea-
soningaboutthe new taskshouldbe postponedill later
If the new taskis scheduledmmediately the scheduling
actioncoststime, andthereareassociateaostsof drop-
ping establishedommitmentsf the previousschedulas
significantlyrevisedor completelydropped.Thesecosts
arediminishedor avoided completelyif the taskreason-
ing is postponedo lateror completelyavoidedif thetask
is dropped.

. Decisionon whetherto negotiate: The metalevel con-
troller will decideto negotiatebasedon the information
returnedby theM etaNeg action. It queriegheotheragent
and returnsinformation on the agents expectedutility
from its tasks,expectedcompletiontime of its tasksand
flexibility of its schedule.We know that methodM2 in
agentA is enabledby taskNX belongingto agentB. The
benefitfrom including methodM2 in agentA’s schedule
is that it increasests total utility. However, it alsore-
quiresagentA and B to negotiate over the completion
time of task NX by agentB and this negotiationhasan
associatectostaswell asthereis a resourcecostto the
agentwhichagreego thecontract.Heuristic Rule: If the
otheragents currentexpectedutility is muchlower than

theresultsof the nggotiation,thenthelocal agentwill ini-

tiate negotiation. Negotiationis alsoinitiatedif the other
agents taskshave high utility but the deadlinesare far
enoughin the future to permitthe otheragentto execute
the enablingtask. If the otheragents taskshave higher
priority thanthe local task,thenthe negotiationoptionis

dropped.

3. Choiceof negotiation protocol: Whenan agentdecides

to negotiate,it shouldalso decidewhetherto negotiate
by meansof a single stepor a multi-step protocol that
may requirea numberof negotiationcyclesto find anac-
ceptablesolutionor even a more expensve searchfor a
nearoptimal solution. The single shotprotocolis quick
but hasa higherchanceof failure whereasa morecom-
plex protocoltakesmoretime andhasa higherchanceof
succes#euristic Rule: If theagentreceveshigh utility
from the resultsof the nggotiation,thenthe agentshould
choosehe moreeffective albeitmoreexpensve protocol.
The protocolwhich hasa higherguaranteef successe-
quire moreresourcesmore cycles and more end-to-end
time in caseof multi-stepnegotiationandhighercompu-
tation power andtime in caseof nearoptimal solutions.
(The end-to-endiime is proportionalto the delayin be-
ing ableto starttask executions). If the agentdoesnot
have too muchresourceso expendon the negotiationor
if thereis averyslightprobabilitythatthe otheragentwill
accepthecontractthenthelocalagentshouldchoosehe
singleshotprotocol.

4. Failure of a neggotiationto reacha commitment: If the

negotiationbetweentwo agentsusinga particularnego-
tiation protocol fails, the initiating agentshould decide
whetherto retry the nggotiation;whetherto usethe same
protocolor an alternateprotocol with the sameagentor
alternateagentsand how mary suchretriesshouldtake
place? Heuristic Rule: If negotiationis preferred(the
agentwill receve high utility asa resultof the negotia-
tion), thenamorecomplex negotiationprotocolis chosen
sinceit hasa higherprobability of succeedingSincere-
sourcedave alreadybeenspenton figuring outasolution
to the negotiation, it may be profitableto put in a little
moreeffort andachiere asolution.If thereis averyslight
or no probability of finding an acceptableeommitment,
thenresourcesvhich canbe profitably spenton otherso-
lution pathsare being wastedand the agentmight find
itself in a dead-endsituationwith no resourceseft for an
alternatesolution. So the negotiation option shouldbe
dropped.

Two other meta-lerel decisionswhich are being devel-
oped determinethe parameterdor invoking the domain
scheduleincluding scheduleihorizon,scheduleeffort and
slackamountin overallschedulendalsodeterminavhether
to invoke the domainlevel scheduleffor a reschedulesince
theperformancef theagentis not goingasexpected.

Experimental Results

For the purposef this paper we usedthe environmentin-
troducedin the previous sectionwith randomly generated
which adheredo the abose mentionedcharacteristicsThe



Rov# | Agent| TS | Arrival | Deadline Control Utility
Name| ID Time Activity Runl] Run2 | Run3 [ Run4 | Run5] Run6 | Run7
1 A T0_1 1 40 NTCS 17.50] 19.50 | 1750 | 17.50] 17.50| 17.50| 16.30
2 A T02 10 28 Drop 0.00 | 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00
3 A T13 21 75 ATCS,NM1 | 45.60| 51.19 | 55.20 | 45.60| 45.60| 12.00| 43.41
4 A T0 4 55 80 ATCS 16.00| 16.00 | 16.00 | 16.00| 16.00| 16.00| 18.00
5 A TO5 61 100 ATCS 6.00 | 6.00 6.00 | 6.00 | 6.00 | 6.00 | 6.00
6 B NX_3 37 a7 SS 10.00| 10.00 | 10.00 | 10.00]| 10.00 - 10.00
Total
Utility 96.10| 102.69| 104.70| 95.10| 95.10| 51.50| 93.77
[Col.#] 1 | 2 | 3 ] 4 | 5 | 6 | 7 [ 8 [ 9 ][ 1o 11 ] 12 ]

Tablel: ExperimentaResultsfor agentscapableof meta-level reasoningAgentNameis nameof the agentbeingconsidered,;
TSID is thenameof thetaskbeingconsideredArrival Time andDeadlinearethearrival timesanddeadlinedor thatparticular
task; Control Activity is the controlactionchosernby the meta-level controller; Columns5-11 describethe utility accruedor
eachof theindividual tasksin sevendifferentruns; Row 6 describeghetotal utility of all taskscompletedby both agentsfor

eachrun

Rov# | Agent| TS | Arrival | Deadline Control Utility
Name| ID Time Activity Runl] Run2| Run3| Run4| Run5] Run6| Run7
1 A TO1 1 40 ATCS 22.80| 24.00| 23.00| 22.00| 22.00| 22.00| 18.26
2 A T0.2 10 28 ATCS 10.00| 12.00| 10.00| 10.00| 10.00| 10.00| 10.00
3 A T13 21 75 ATCS,NM1 | 12.00| 12.00| 12.00| 12.00| 12.00| 12.00| 12.00
4 A T04 55 80 ATCS 10.00| 10.00| 10.00| 10.00| 10.00| 10.00| 12.00
5 A TO5 61 100 ATCS 10.00| 10.00| 12.00| 12.00| 10.00| 10.00| 10.00
6 B NX_3 39 53 ATCS 10.00| 10.00| 10.00| 10.00| 10.00| 10.00| 10.00
Total
Utility 74.80| 78.00| 77.00| 76.00| 74.00| 74.00| 72.26
[Col#] 1 2 3 4 5 6 7 [ 8 ] 9 ] 10 ] 11 ] 12 ]

Table2: ExperimentaResultsfor agentswith no meta-level reasoningControl Activity is thefixedcontrolactionusedby the

agent

maximum possibleutility from task TO is 23.0 and mini-
mumis 17.0;the maximumfrom taskT1is 56.0and mini-
mum utility is 12.0; NX hasa deterministicutility of 10.00.
We make the simplifying assumptiorthat task NX arrives
at agentB only asaresultof a successfuhegotiationwith
agentA. Therearefour possiblemeta-decisionsponarrival
of a new task: NTCS, New Task Complex Schedulingin-
vokesthecomple« DTC scheduleonthenew taskonly and
hasa time costof 2; Drop, this causeghe agentto drop
the new taskandnot reasonaboutit ever againhasa time
costof 0; ATCS, All TaskComplex Schedulingnvokesthe
complex DTC schedulepnthe new taskaswell asall other
taskswhichareontheagendar in partialexecutionandhas
atime costof 3; andSS, SimpleSchedulingnvokesthesim-
ple abstractiorbasedanalysison the new taskonly andhas
atime costof 1. Therearetwo possibleoptionsfor Nego-
tiation: NM 1, NegotiationMechanisml which is the sim-
ple single-shotprotocolandNM 2, NegotiationMechanism
2 whichis themorecomplex multi-shotprotocol.

The designcriteria in theseexperimentsis to maximize
overall utility over a finite horizon. Individual taskshave
hard deadlinesassociatedvith them. It is assumedhat if
a taskhasnot accruedutility by its deadline,it recevesa

utility of zero. This simpledesigncriteriasettingis onethat

lendsitself to meta-level control asthe existenceof a hard

deadlineq(in contrastto a soft preferenceg.g., soft dead-

line or no deadlines)make processorand other resources
valuablecommoditiegequiringathe non-myopicreasoning
providedby themeta-level controlcomponent.

The resultsfor the experimentson agentswhich have
meta-reasoningapabilitiesare shovn in Table 1 and the
resultson agentswhich have no meta-level reasoningcapa-
bilities areshavn in Table2. The above describedscenario
is usedin both cases.All domain,control and meta-level
actionshave atime costassociatedvith themwhich arere-
flectedin theresults.

ConsiderTable 1 where eachrow representsa specific
taskarriving at the specifiedagentat the associatedarrival
time with a deadline. The tasknamesare augmentedvith
the arrival countto differentiatebetweenvariousinstances
of the sametask. For eg. Row 4 describegaskTO arriving
atagentA asits fourth taskat time 55 with a deadlineof 80.
Columnb, titled Contmol Actiondescribeghe variousdeci-
sionsmadeby the meta-level controlleruponarrival of the
new task.Columns6-12describeheutility accumulatedby
eachof thetasksfor sevendifferentruns.



In Row 1, task TO_1 arrivesat time 1. Sincethe meta-
level controlleris awarethatno othertasksarein execution,
it invokesNT CS on thetaskwhichis acheapeioptionthan
AT CSwhichwould bethechoiceof anagentwith no meta-
reasoningcapabilities.

In Row 2, taskT0_2 arrivesattime 11 while the previous
taskis still in executionand a meta-level decisionto drop
taskT0_2 is made. This is becausehe previoustask TO_1
hastheexactsamecharacteristicasthecurrenttaskandhas
atight deadline.Thetaskalsohasatight deadlineandinter-
rupting the alreadyexecutingtasksmight resultin missing
thedeadlinenbothTaskT0_1 andtaskT0_2.

In Row 3, AgentA decidedo doacompletereschedul®f
all tasksandchoosego negotiatewith agentB overtaskNX
usingnegotiationmechanisTNM 1. In this case,it is will-
ing to rescheduleask T0O_1 sincethe expectedutility from
the newly arrived taskis muchhigherthanthat of the cur
renttask. Also, the fact that the agentdroppedtask T0O_2
althoughit wasunawvareof the arrival of a highly preferred
taskin the nearfuture works to agentA’'s advantagesince
it hasmoretime to performthe highervaluedtask. In five
outof six runs,theagentsdecisionto dropthe previoustask
T0_2 andperformtaskT1_3 with the negotiationoptionre-
sultsin very high utility values.In Run6,taskT1 3 receves
avery low utility becauseegotiationfails with agentB and
thetaskrecevesthe minimumutility. However on average,
agentA’s meta-level decisionworksto its benefit.In Row 6,
we seethatagentB chooseshe simpleschedulingoptionto
executetaskNX_3 becausef its tight deadline.

ConsiderTable2. Herethe agentdoesnot reasonabout
the characteristicof the tasksat the meta-level. This re-
sultsin the agentchoosingthe samecontrol action,namely
AT CSfor all tasksindependentf the statusof othertasksin
execution. This resultsin the mostexpensve controlaction
beinginvokedindependenof thecurrentstateof thesystem.
This resultsthe choiceof domainactvities with shorterdu-
rationsand lower utilities asreflectedby the utility values
in columns6-12. The total utilities accumulatedy five of
the six runsin Table2 is significantlylower thanthe corre-
spondingrun in Table1. This supportsour hypothesighat
meta-level controlis generallyadvantageous.

Conclusions and Future Work

In this paperwe presenta novel meta-level control agent
frameawork for sophisticateanulti-agentervironments.The
meta-level control haslimited and boundedcomputational
overheadandwill supportreasoningaboutschedulingand
coordinationcostsasfirst-classobjects.

We have shavn, usinga simpleexample,that meta-level
control is beneficial. The heuristicsdescribedin this pa-
per, althoughvery simple, enablethe meta-level controller
to make accuratedecisionsn simplescenarios We planto
introducemore complex featureswhich will malke the rea-
soningprocessmorerobust. Somesuchfeaturesncludere-
lation of slackfragmentsn local scheduldo new task. This
would enableanagentto fit a new taskin its currentsched-
uleif it is possibleandavoid a reschedule Anotherfeature
would beto estimatehedecommitmentostfor a particular

task. Thiswill enableusto considerervironmentsin which
agentcandecommitfrom taskswhich they have previously
agreedo complete.

We will extendthedetaileddomainlevel scheduler(DTC)
to handleschedulingeffort, slackandhorizonasfirst-class
objects. The extendedDTC will acceptparametersvhich
constrairtheeffort spenionschedulingvhichin turnwill af-
fecttheoverheadf theschedulerlt will alsobeextendedo
dealwith slackasaschedulablelementvhich canbequan-
tified andvaluedasary otherprimitive action.We hopethat
augmentinghe domainlevel schedulewill make the meta-
level controllermoreversatileby providing moreoptions.

Finally, we will usetheinsightgatheredrom the heuris-
tic approacho constructhe statefeaturesyrewardfunctions
andalgorithmsto apply a reinforcementearningapproach
to this problem.We expectthis analysisto provide valuable
experienceaboutapplying RL techniquego complex real-
world problems.
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