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Abstract

Sophisticatedagentsoperatingin open environments
must make complex real-time control decisionson
schedulingandcoordinationof domainactions.These
decisionsaremadein the context of limited resources
anduncertaintyaboutoutcomesof actions. The ques-
tion of how to sequencedomain and control actions
withoutconsumingtoomany resourcesin theprocess,is
themeta-level controlproblemfor a resource-bounded
rationalagent. Our approachis to designandbuild a
meta-level control framework with boundedcomputa-
tionaloverhead.This framework will supportdecisions
onwhento accept,delayor rejectanew task,whenit is
appropriateto negotiatewith anotheragent,whetherto
renegotiatewhenanegotiationtaskfailsandhow much
effort to put into schedulingwhen reasoningabouta
new task.

Introduction
Agentsin complex environmentsmustreasonabouttheir lo-
cal problemsolvingactions,interactwith otheragents,plan
acourseof actionandcarryit out. All thesehaveto bedone
in thefaceof limited resourcesanduncertaintyaboutaction
outcomesin real-time.Furthermore,new taskscanbegen-
eratedby existingor new agentsatany time, thusanagent’s
deliberationmustbe interleavedwith execution. The plan-
ning, schedulingandcoordinationof tasksarenon-trivial,
requiringeitherexponentialwork, or in practice,a sophis-
ticatedschemethat controlsthe complexity. In this paper,
we describea framework which will provide effective allo-
cationof computationresultingin improvedperformanceof
individualagentsin acooperativemulti-agentsystem.

In this framework, agentactionsare broadly classified
into threecategories- domain, control, andmeta-level con-
trol actions. Domain actionsare executableprimitive ac-
tionswhichachievethevarioushigh-level tasks.Controlac-
tionsareof two types,schedulingactionswhich choosethe
high level tasks,setconstraintson how to achieve themand
sequencethe detaileddomainlevel actionswhich achieve
theselectedtasks;andcoordinationactionswhich facilitate
cooperationwith otheragentsin orderto achieve the high-
level tasks.Meta-level controlactionsoptimizetheagent’s
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performanceby choosingandsequencingdomainandcon-
trol actions.

Agentsperform control actionsto improve their perfor-
mance. Many efficient architecturesand algorithmsthat
supporttheseactionshavebeendevelopedandstudied(1;3;
4). Agentsreceive sensationsfrom theenvironmentandre-
spondby performingactionsthataffect theenvironmentus-
ing theeffectors.Theagentchoosesits domainlevel actions
andthis might involve invoking the schedulingandcoordi-
nationmodules.Classicagentarchitectureseitheroverlook
the costof control actionsor they assumea fixed andneg-
ligible costanddo not explicitly reasonaboutthe time and
otherresourcesconsumedby controlactions,which mayin
fact degradean agent’s performance.An agentis not per-
forming rationally if it fails to accountfor the overheadof
computinga solution.This leadsto actionsthatarewithout
operationalsignificance(5).

Consideranadministrativeagentwhichis capableof mul-
tiple taskssuch as answeringthe telephone,paying bills
andwriting reports. It usuallytakesthe agenta significant
amountof time to sortout thebills. Supposetheagentdoes
not performany meta-level reasoningaboutthe importance
or urgency of thetasks.It will thenspendthesameamount
of time decidingwhetherto pick up a ringing phoneas it
doesondecidingwhichbills to pay. If theagentis equipped
with meta-level reasoningcapabilities,it will recognizethe
needto make quicker decisionson whetherto answerthe
phonethanon sortingbills sincethereis externalconstraint
on theringing phone,namelythat thecallercouldhangup.
Theagentwill make betterdecisionson answeringcalls as
well ascompletingits othertasksby dynamicallyadjusting
its decisionbasedon its currentstateandtheincomingtask.

Our proposedarchitecturewill supportthis dynamicad-
justment processby introducing resource-boundedmeta-
level reasoningin agentcontrol. In addition to the meta-
level control component,thereare variousoptionsfor in-
voking theschedulingandcoordinationcomponents.These
optionsdiffer in their resourceusageandperformance.The
meta-level controlcomponentwill decideif, whenandhow
muchcontrolactivity is necessaryfor eacheventsensedby
theagent.

Meta-level control actions include allocating appropri-
ateamountof processorandotherresourcesat appropriate
times. To do this an agentwould have to know the effect
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of all combinationsof actionsaheadof time, which is in-
tractable� for any reasonablysizedproblem. The question
of how to approximatethis idealof sequencingdomainand
controlactionswithoutconsumingtoomany resourcesin the
process,is the meta-level control problem for a resource
boundedrationalagent.

Our solution to this problem is to constructa MDP-
basedmeta-level controllerwhichusesreinforcementlearn-
ing(RL) to learn the utility of control actionsanddecision
strategies in resource-boundedcontexts. In order to con-
struct sucha controller, it is necessaryto identify the fea-
tureswhich affect thedecisions.Thepaperis structuredas
follows: wefirst enumeratetheassumptionsmadein ourap-
proachanddescribethe agentarchitecturewhich will pro-
vide meta-level control. We then presentand evaluatea
case-baseof hand-generatedheuristicsfor meta-level con-
trol. Theseheuristicswill determinethe featuresnecessary
for theRL meta-level controllerto makeaccuratedecisions.
Preliminaryexperimentalresultsillustrating thestrengthof
meta-level control in agentreasoningandthe effectiveness
of theheuristicsareprovided.

Assumptions
The following assumptionsaremadein the framework de-
scribedin this paper: The agentsarecooperative andwill
preferalternativeswhich increasesocialutility even if it is
at thecostof decreasinglocalutility. Sincetheenvironment
is cooperative,we cansafelyassumethat thecumulative of
meta-levelcontroldecisionsattheindividualagentlevel rep-
resentthemeta-level control reasoningprocessfor a multi-
agentsystem. An agentmay concurrentlypursuemultiple
high-level goalsand the completionof a goal derivesutil-
ity for the systemor agent.The overall goal of the system
or agentis to maximizethe utility generatedover somefi-
nite time horizon.Thehigh-level goalsaregeneratedby ei-
therinternalor externaleventsbeingsensedand/orrequests
by otheragentsfor assistance.Thesegoalsmustoften be
completedby a certaintime in orderto achieve any utility.
It is not necessaryfor all high-level goalsto be completed
in orderfor an agentto derive utility from its actions.The
partialsatisfactionof ahigh-level goalis sometimespermis-
siblewhile trading-off theamountof utility derivedfor de-
creasein resourceusage.The agent’s schedulingdecisions
involve choosingwhich of thesehigh-level goalsto pursue
and how to go aboutachieving them. Therecan be non-
local and local dependenciesbetweentasksand methods.
Local dependenciesare inter-agentwhile non-localdepen-
denciesare intra-agent. Thesedependenciescan be hard
or soft precedencerelationships.Coordinationdecisionsin-
volvechoosingthetaskswhichrequirecoordinationandalso
whichagentto coordinatewith andhow mucheffort mustbe
spenton coordination.Schedulingandcoordinationactions
do not have to bedoneimmediatelyafter therearerequests
for themandin somecasesmaynotbedoneatall. Thereare
alternativewaysof completingschedulingandcoordination
activitieswhichtrade-off thelikelihoodof theseactivitiesre-
sulting in optimaldecisionsversustheamountof resources
used.We alsomake thesimplifying assumptionthatnegoti-
ationresultsarebindingandwe assumethat theagentswill

notdecommitfrom their contractat laterstages.

Agent Architecture
In this section,we provide an overview of our architecture
which provideseffective meta-level control for boundedra-
tionalagents.Figure1 describesthecontrolflow within this
proposedarchitecture.The numbersequencesdescribethe
stepsin a singleflow of control. At theheartof thesystem
is theDomain Problem Solver(DPS).It receivestasksand
otherexternalrequestsfrom theenvironment(Step1). When
anexogenouseventsuchasarrival of a new taskoccurs,the
DPSsendsthe correspondingtaskset,resourceconstraints
aswell constraintsof othertaskswhich arebeingexecuted,
and performancecriteria to the meta-level controller(Step
2). Thecontrollercomputesthecorrespondingstateandde-
terminesthe bestaction prescribedby the hand-generated
heuristicpolicy for that particular task environment. The
bestactioncanbe oneof the following: to call oneof the
two domainschedulerson a subsetof tasks;to gathermore
informationto supportthedecisionprocess;to dropthenew
taskor to do nothing. Themeta-level controllerthensends
theprescribedbestactionbackto theDPS(Step2a).

TheDPS,basedon theexactnatureof theprescribedac-
tion, caninvoke thecomplex scheduler, simple scheduler
or coordination component(Step3) andreceivestheappro-
priateoutput(Step3a). If theactionis to invokethecomplex
scheduler, theschedulercomponentreceivesthe taskstruc-
tureandobjectivecriteriaasinputandoutputsthebestsatis-
ficing scheduleasasequenceof primitiveactions.Thecom-
plex schedulercanalsobecalledto determinetheconstraints
on which a coordinationcommitmentis established.If the
meta-level or thedomainschedulerprescribeanactionthat
requiresestablishinga commitmentwith a non-localagent,
thenthecoordinationcomponentis invoked. Thecoordina-
tion componentreceivesa vectorof commitmentsthathave
to beestablishedandoutputsthestatusof thecommitments
after coordinationcompletes. The simple scheduleris in-
voked by the DPSandreceivesthe taskstructureandgoal
criteria. It usespre-computedabstractinformation of the
taskto selecttheappropriateschedulewhichfits thecriteria.

The DPS can invoke the executioncomponenteither to
executea single action prescribedby the meta-level con-
troller or a scheduleprescribedby the domain-level sched-
uler(Step4). The execution resultsare sent back to the
DPS(Step4a) where they are evaluatedand if the execu-
tion performancedeviatesfrom expectedperformance,the
necessarymeasuresaretakenby theDPS.

This work accountsfor the costat all threelevels of the
decisionhierarchy- domain, control and meta-level con-
trol activities. Thecostof domainactivities is modeleddi-
rectly in the taskstructureswhich describethe tasks.They
arereasonedaboutby controlactivities like negotiationand
scheduling.

The cost of control activities are reasonedaboutby the
meta-level controlactivities. Negotiationcostsarereasoned
aboutexplicitly in this framework sincethey canbe mod-
eledaspart of the domainactivities neededto completea
high-level goal. The negotiationtasksaresplit into an in-
formationgatheringphaseanda negotiatingphase,with the
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Figure1: Control-flow in a boundedrationalagent

outcomeof the former enablingthe latter. The negotiation
phasecanbe achievedby choosinga memberfrom a fam-
ily of negotiationprotocols(7). The informationgathering
phaseis modeledasaMetaNeg methodin thetaskstructure
andthenegotiationmethodsaremodeledasindividualprim-
itive actions.Thus,reasoningaboutthecostsof negotiation
is doneexplicitly, just asit is donefor regulardomain-level
activities. TheMetaNeg methodbelongsto a specialclass
of domainactionswhich requestanexternalagentfor acer-
tain setof informationand it doesnot uselocal processor
time. It queriesthe otheragentandreturnsinformationon
theagent’sexpectedutility from its tasks,expectedcomple-
tion time of its tasksandflexibility of its schedule.This in-
formationis usedby themeta-level controllerto determine
therelevantcontrolactions.

However, reasoning about the cost associatedwith
schedulingactivities is implicit. A fixed cost is associated
with eachof the two schedulersand thesecostsaffect the
subsequentchoiceof domainactivities madeby thecontrol
activities. The earlieststart time of domainactivities are
determinedby the latestfinish timesof their corresponding
controlactivities.

Meta-level control activities in this framework aremod-
eledasinexpensive activities. Thecostfor meta-level con-
trol in this framework are incurredby the computationof
statefeatureswhich facilitatetheheuristicdecision-making
process.The statefeaturesand their functionality are de-
scribedin greaterdetail lateron in thissection.

The domainlevel schedulerdepictedin the architecture
will beanextendedversionof theDesign-to-Criteria(DTC)
scheduler(6). Design-to-Criteria(DTC) schedulingis the
soft real-timeprocessof finding an executionpaththrough
a hierarchicaltask network such that the resultantsched-
ule meetscertain designcriteria, such as real-time dead-

lines, cost limits, andutility preferences.It is the heartof
agentcontrol in agent-basedsystemssuchasthe resource-
BoundedInformationGatheringagentBIG (2). Castingthe
languageinto an action-selecting-sequencingproblem,the
processis to selectasubsetof primitiveactionsfrom asetof
candidateactions,andsequencethem,sothattheendresult
is anend-to-endscheduleof anagent’s activities thatmeets
situationspecificdesigncriteria.

We alsointroducea simpleschedulerbasedon theuseof
abstractionsof agenttaskstructures.This will supportreac-
tivecontrol for highly constrainedsituations.Abstractionis
anofflineprocesswherepotentialschedulesandtheirassoci-
atedperformancecharacteristicsfor achieving thehighlevel
tasksarediscoveredfor varying objective criteria. This is
achievedby systematicallysearchingover the spaceof ob-
jective criteria. Also multiple schedulescould potentially
be representedby the sameabstraction. The abstraction
hidesthe detailsof thesepotentialschedulesandprovides
only thehighlevel informationnecessaryto makemeta-level
choices.Whenan agenthasto schedulea taskbut doesn’t
have theresourcesor time to call thecomplex domain-level
scheduler, the genericabstractioninformation of the task
structurecanbeusedto providetheapproximateschedule.

Taxonomy of meta-level control decisions
We now describea taxonomyof the meta-level decisions
in a multi-agentsystemusing a simple examplescenario.
Considera multi-agentsystemconsistingof 2 agentsA and
B. Thediscussionwill focusonly on thevariousmeta-level
questionsthatwill have to beaddressedby agentA. T0 and
T1 arethe top-level tasksperformedby agentA. Eachtop-
level taskis decomposedinto two executableprimitive ac-
tions. In order to achieve the task, agentA can execute
oneor bothof its primitive actionswithin thetaskdeadline
andthe utility accruedfor the taskwill be cumulative (de-
notedby the sumfunction). Methodsareprimitive actions
which canbescheduledandexecutedandarecharacterized
by theirexpectedutility, costanddurationdistributions.For
instance,theutility distribution of methodM2 describedas�������������������

, indicatesthatit achievesutility valueof 10
with probability 0.9 andutility of 12 with probability 0.1.
Utility is a deliberatelyabstractdomain-dependentconcept
thatdescribesthecontributionof aparticularactionto over-
all problemsolving. Thereexists an enablesrelationship
from taskNX belongingto agentB to methodM2 belonging
to agentA’s taskT1. This implies thatsuccessfulexecution
of NX by agentB is a preconditionfor agentA to execute
methodM2.

In the remainderof this section,we enumeratethe fea-
turescomputedwhen the meta-level control componentis
invoked. The costof computingandreasoningaboutthese
statefeaturesreflectthecostof meta-levelcontrolreasoning.
We thenenumeratethevariousmeta-level controldecisions
andthecase-baseof heuristicsusedto make thedecisions.

The following aresomesimplestatefeatureswhich are
usedin the heuristicdecisionmakingprocessof the meta-
level controller. We use qualitative valuessuch as high,
mediumandlow, to representthevariousfactorswhich af-
fect the heuristicfeatures.The quantitative valuessuchas



quality of 80 versusquality of 60 wereclassifiedinto qual-
itativ� e buckets(high versusmediumquality) initially based
on intuitions on the expectedandpreferredbehavior of the
system.They areverifiedby multiplesimulationrunsof the
systemon varioustestcases.

F0: Current status of system This featureis represented
asa 3-tuplerepresentingthe NewItemsStack,Agendaand
ScheduleStackwhereeachentry in the tuple containsthe
numberof itemson thecorrespondingstack.Thenew items
arethe taskswhich have just arrived at the agentfrom the
environment.Theagendastackis thesetof taskswhichhave
arrived at the agentbut whosereasoninghasbeendelayed
andthey havenotbeenscheduledyet. Theschedulestackis
thesetof taskscurrentlybeingscheduled.Eg. � ��� �!���#"
meanstherearetwo new itemswhich havearrivedfrom the
environmentandthereis onetaskbeingscheduled.

F1: Relation of utility gain per unit time of a par-
ticular task to that of currently scheduled task set:
The $&%('*)�'*%(+-,!./'(02143�56$407'(%8%('(9:3 of a task is the ratio of
%*;�%*.�)<3>=?143>@A%*3>B�$&%('()C'*%(+ to %*;�%*.�)<3>=?143>@A%*3>BDB/$E5�.�%('*;>0 of that
task. This featurecomparesthe utility of a particulartask
to thatof theexisting tasksetandhelpsdeterminewhether
the new task is very valuable,moderatelyvaluableor not
valuablein termsof utility to thelocalagent.

F2: Relation of deadline of a particular task to that
of currently scheduled task set: This featurecomparesthe
deadlineof a particulartaskto that of the existing taskset
andhelpsdeterminewhetherthenew task’sdeadlineis very
close,moderatelycloseor far in thefuture.

F3: Relation of priority of items on agenda to that of
currently scheduled task set: This featurecomparesthe
averagepriority of theexisting tasksetto thepriority of the
new taskandhelpsdeterminewhetherthe new taskis very
valuable,moderatelyvaluableor not valuablein termsof
utility to the local agent.Priority is a functionof theutility
anddeadlinesof the tasks.Computingthe averagepriority
of a tasksetis a morecomplicatedfunctionthancomputing
the priority of a single taskssinceit involves recognizing
dominanceof individual tasks.

The experimentsdescribedin this paperuse the above
four features.Thereareotherfeatures,simpleandcomplex,
which areenumeratedbelow but yet to beimplemented..

F4: Percent of slack in local schedule: This featureis
usedto makeaquickevaluationof theflexibility in thelocal
schedule.Theamountof slackin the local scheduleallows
theagentto acceptnew tasksandschedulethemin thefree
slotsaswell asdealwith unexpectedmeta-level controlac-
tivities.

F5: Percent of slack in other agent’s schedule: This
featureis usedto make a quick evaluationof the flexibility
on the otheragent’s schedule.The computationof feature
F5is inexpensivesinceit isdoneafteraninformationgather-
ing phase,representedby a primitiveactioncalledMetaNeg
which whenexecutedwill gatherinformationon non-local
agentswhicharepotentialcoordinationpartnersfor thelocal
agent.

F6: Relation of utility gain per unit time of non-local
task to non-local agent’s current task set: This feature
comparestheutility of aparticulartaskto thatof theexisting

tasksetof a non-localagentandhelpsdeterminewhether
the new task is very valuable,moderatelyvaluableor not
valuablewith respectto the utility of the otheragent. The
computationof featureF6 is inexpensivesinceit too is done
aftertheinformationgatheringphase.

F7: Expected utility of current schedule item at cur-
rent time: Thisis theexpectedutility of thecurrentschedule
item at time t asdeterminedby the domain-level scheduler
whichusesexpectedvaluecomputations.

F8: Actual utility of current schedule item at current
time: This is theactualquality of thecurrentscheduleitem
at run time t. This featureis comparedto F7 in order to
determinewhetherscheduleexecutionis proceedingasex-
pected. If it is not proceedingasexpected,a rescheduleis
initiated to prevent the agentfrom reachinga failure point
from which recovery is not possible. FeaturesF7 and F8
will becomputedatspecifiedmonitoringpoints.

F9: Expected Rescheduling Cost with respect to a task
set: This featureestimatesthecostof reschedulingataskset
andit dependsonthesizeandqualityaccumulationfactorof
thetaskstructure.It alsodependson thehorizonandeffort
parametersspecifiedto thedomain-level scheduler.

F10: Expected DeCommitment Cost with respect to a
particular task: This is a complex featurewhich estimates
the cost of decommitingfrom a method/taskby consider-
ing the local andnon-localdown-streameffectsof sucha
decommit.Thedomain-level schedulercouldbe invokeda
numberof timesto computethis featuremakingit expensive
to compute.

F11: Relation of slack fragmentation in local schedule
to new task: This is acomplex featurewhichdeterminesthe
feasibility of fitting a new taskgiven the detailedfragmen-
tationof slackin a particularschedule.It involvesresolving
detailedtiming andplacementissues.

F12: Relation of slack fragments in non-local agent
to non-local task: This is a complex featurewhich deter-
minesthefeasibility of fitting a new taskgiventhedetailed
fragmentationof slackin a particularnon-localschedule.It
involvesresolvingdetailedtiming andplacementissues.

The following aresomeof the specificmeta-level deci-
sionsthat will be addressedby any individual agent. We
describehow the heuristicsdeterminethebestactionwhen
certainexogenouseventsoccur. The descriptionis limited
to reasoningaboutfeaturesF0-F4. Currentwork allows for
reasoningaboutall 12 features.

1. Arrival of a new taskfrom theenvironment:Whena new
task arrivesat the agent,the meta-level control compo-
nenthasto decidewhetherto reasonaboutit later; drop
the taskcompletely;or to do scheduling-relatedreason-
ing aboutanincomingtaskat arrival time andif so,what
type of scheduling- complex or simple. The decision
treedescribingthevariousactionchoicesnamedA1-A9 is
shown in Figure2. Eachof themeta-level decisionshave
anassociateddecisiontree.As eachexogenouseventoc-
curs for a particularenvironment,its correspondingde-
cision treeis addedincrementallyto theparentMDP for
thatenvironmentandtheoptimalpolicy will becomputed
offline. Heuristic Rule: If thenew taskhasvery low or
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Figure2: Decisiontreewhenanew taskarrives

negligible priority andhigh opportunitycostwith respect
to takingresourcesawayfrom futurehigherpriority tasks,
thenit shouldbediscarded.If theincomingtaskhasvery
high priority, in otherwords,the expectedutility is very
high andit hasa relatively closedeadline,thentheagent
shouldoverrideits currentscheduleandschedulethenew
taskimmediately. If the deadlineis very tight the agent
will usesthe abstraction-basedsimplescheduler;else,it
will usethemorecomplex scheduler. If thecurrentsched-
ule hasaverageutility thatis significantlyhigherthanthe
new taskandtheaveragedeadlineof thecurrentschedule
is significantlycloserthanthatof thenew task,thenrea-
soningaboutthe new taskshouldbe postponedtill later.
If thenew taskis scheduledimmediately, thescheduling
actioncoststime, andthereareassociatedcostsof drop-
ping establishedcommitmentsif thepreviousscheduleis
significantlyrevisedor completelydropped.Thesecosts
arediminishedor avoidedcompletelyif the taskreason-
ing is postponedto lateror completelyavoidedif thetask
is dropped.

2. Decisionon whetherto negotiate: The metalevel con-
troller will decideto negotiatebasedon the information
returnedby theMetaNeg action.It queriestheotheragent
and returnsinformation on the agent’s expectedutility
from its tasks,expectedcompletiontime of its tasksand
flexibility of its schedule.We know that methodM2 in
agentA is enabledby taskNX belongingto agentB. The
benefitfrom includingmethodM2 in agentA’s schedule
is that it increasesits total utility. However, it also re-
quires agentA and B to negotiateover the completion
time of task NX by agentB and this negotiationhasan
associatedcostaswell as thereis a resourcecost to the
agentwhichagreesto thecontract.Heuristic Rule: If the
otheragent’s currentexpectedutility is muchlower than

theresultsof thenegotiation,thenthelocalagentwill ini-
tiatenegotiation.Negotiationis alsoinitiatedif theother
agent’s taskshave high utility but the deadlinesare far
enoughin the future to permit theotheragentto execute
the enablingtask. If the otheragent’s taskshave higher
priority thanthe local task,thenthenegotiationoption is
dropped.

3. Choiceof negotiationprotocol: Whenan agentdecides
to negotiate, it shouldalso decidewhetherto negotiate
by meansof a single stepor a multi-stepprotocol that
mayrequirea numberof negotiationcyclesto find anac-
ceptablesolutionor even a moreexpensive searchfor a
near-optimal solution. The singleshotprotocol is quick
but hasa higherchanceof failurewhereasa morecom-
plex protocoltakesmoretime andhasa higherchanceof
successHeuristic Rule: If theagentreceiveshigh utility
from theresultsof thenegotiation,thentheagentshould
choosethemoreeffectivealbeitmoreexpensiveprotocol.
Theprotocolwhich hasa higherguaranteeof successre-
quire moreresources,morecyclesandmoreend-to-end
time in caseof multi-stepnegotiationandhighercompu-
tation power andtime in caseof near-optimal solutions.
(The end-to-endtime is proportionalto the delay in be-
ing able to start task executions). If the agentdoesnot
have too muchresourcesto expendon thenegotiationor
if thereis averyslightprobabilitythattheotheragentwill
acceptthecontract,thenthelocalagentshouldchoosethe
singleshotprotocol.

4. Failure of a negotiation to reacha commitment: If the
negotiationbetweentwo agentsusinga particularnego-
tiation protocol fails, the initiating agentshoulddecide
whetherto retry thenegotiation;whetherto usethesame
protocolor an alternateprotocolwith the sameagentor
alternateagentsand how many suchretriesshouldtake
place? Heuristic Rule: If negotiation is preferred(the
agentwill receive high utility asa resultof the negotia-
tion), thenamorecomplex negotiationprotocolis chosen
sinceit hasa higherprobabilityof succeeding.Sincere-
sourceshavealreadybeenspentonfiguringoutasolution
to the negotiation, it may be profitableto put in a little
moreeffort andachieveasolution.If thereis averyslight
or no probability of finding an acceptablecommitment,
thenresourceswhich canbeprofitablyspenton otherso-
lution pathsare being wastedand the agentmight find
itself in a dead-endsituationwith no resourcesleft for an
alternatesolution. So the negotiation option shouldbe
dropped.

Two other meta-level decisionswhich are being devel-
oped determinethe parametersfor invoking the domain
schedulerincludingschedulerhorizon,schedulereffort and
slackamountin overallscheduleandalsodeterminewhether
to invoke thedomainlevel schedulerfor a reschedulesince
theperformanceof theagentis not goingasexpected.

Experimental Results
For thepurposesof this paper, we usedtheenvironmentin-
troducedin the previous sectionwith randomlygenerated
which adheresto the above mentionedcharacteristics.The



Row # Agent TS Arrival Deadline Control Utility
Name ID Time Activity Run1 Run2 Run3 Run4 Run5 Run6 Run7

1 A T0 1 1 40 NTCS 17.50 19.50 17.50 17.50 17.50 17.50 16.30
2 A T0 2 10 28 Drop 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 A T1 3 21 75 ATCS,NM1 45.60 51.19 55.20 45.60 45.60 12.00 43.41
4 A T0 4 55 80 ATCS 16.00 16.00 16.00 16.00 16.00 16.00 18.00
5 A T0 5 61 100 ATCS 6.00 6.00 6.00 6.00 6.00 6.00 6.00
6 B NX 3 37 47 SS 10.00 10.00 10.00 10.00 10.00 - 10.00

Total
Utility 96.10 102.69 104.70 95.10 95.10 51.50 93.77
Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Table1: ExperimentalResultsfor agentscapableof meta-level reasoning:AgentNameis nameof theagentbeingconsidered;
TSID is thenameof thetaskbeingconsidered;Arrival TimeandDeadlinearethearrival timesanddeadlinesfor thatparticular
task;Control Activity is thecontrolactionchosenby themeta-level controller;Columns5-11describetheutility accruedfor
eachof the individual tasksin sevendifferentruns;Row 6 describesthetotal utility of all taskscompletedby bothagentsfor
eachrun

Row # Agent TS Arrival Deadline Control Utility
Name ID Time Activity Run1 Run2 Run3 Run4 Run5 Run6 Run7

1 A T0 1 1 40 ATCS 22.80 24.00 23.00 22.00 22.00 22.00 18.26
2 A T0 2 10 28 ATCS 10.00 12.00 10.00 10.00 10.00 10.00 10.00
3 A T1 3 21 75 ATCS,NM1 12.00 12.00 12.00 12.00 12.00 12.00 12.00
4 A T0 4 55 80 ATCS 10.00 10.00 10.00 10.00 10.00 10.00 12.00
5 A T0 5 61 100 ATCS 10.00 10.00 12.00 12.00 10.00 10.00 10.00
6 B NX 3 39 53 ATCS 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Total
Utility 74.80 78.00 77.00 76.00 74.00 74.00 72.26
Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Table2: ExperimentalResultsfor agentswith nometa-level reasoning:Control Activity is thefixedcontrolactionusedby the
agent

maximumpossibleutility from task T0 is 23.0 and mini-
mumis 17.0; themaximumfrom taskT1 is 56.0andmini-
mumutility is 12.0;NX hasa deterministicutility of 10.00.
We make the simplifying assumptionthat taskNX arrives
at agentB only asa resultof a successfulnegotiationwith
agentA. Therearefour possiblemeta-decisionsuponarrival
of a new task: NTCS, New TaskComplex Schedulingin-
vokesthecomplex DTC scheduleron thenew taskonly and
hasa time cost of 2; Drop, this causesthe agentto drop
the new taskandnot reasonaboutit ever againhasa time
costof 0; ATCS, All TaskComplex Schedulinginvokesthe
complex DTC scheduleron thenew taskaswell asall other
taskswhichareontheagendaor in partialexecutionandhas
atimecostof 3; andSS, SimpleSchedulinginvokesthesim-
ple abstractionbasedanalysison thenew taskonly andhas
a time costof 1. Therearetwo possibleoptionsfor Nego-
tiation: NM1, NegotiationMechanism1 which is the sim-
ple single-shotprotocolandNM2, NegotiationMechanism
2 which is themorecomplex multi-shotprotocol.

The designcriteria in theseexperimentsis to maximize
overall utility over a finite horizon. Individual taskshave
harddeadlinesassociatedwith them. It is assumedthat if
a taskhasnot accruedutility by its deadline,it receivesa

utility of zero.Thissimpledesigncriteriasettingis onethat
lendsitself to meta-level control asthe existenceof a hard
deadlines(in contrastto a soft preference,e.g., soft dead-
line or no deadlines)make processorand other resources
valuablecommoditiesrequiringathenon-myopicreasoning
providedby themeta-level controlcomponent.

The results for the experimentson agentswhich have
meta-reasoningcapabilitiesare shown in Table 1 and the
resultson agentswhich have no meta-level reasoningcapa-
bilities areshown in Table2. Theabove describedscenario
is usedin both cases.All domain,control andmeta-level
actionshave a time costassociatedwith themwhich arere-
flectedin theresults.

ConsiderTable 1 whereeachrow representsa specific
taskarriving at the specifiedagentat the associatedarrival
time with a deadline.The tasknamesareaugmentedwith
the arrival count to differentiatebetweenvariousinstances
of thesametask.For eg. Row 4 describestaskTO arriving
atagentA asits fourth taskat time55with adeadlineof 80.
Column5, titled Control Actiondescribesthevariousdeci-
sionsmadeby the meta-level controlleruponarrival of the
new task.Columns6-12describetheutility accumulatedby
eachof thetasksfor sevendifferentruns.



In Row 1, taskT0 1 arrivesat time 1. Sincethe meta-
levelt controlleris awarethatnoothertasksarein execution,
it invokesNTCS on thetaskwhich is a cheaperoptionthan
ATCS whichwouldbethechoiceof anagentwith nometa-
reasoningcapabilities.

In Row 2, taskT0 2 arrivesat time 11 while theprevious
task is still in executionanda meta-level decisionto drop
taskT0 2 is made.This is becausethe previous taskT0 1
hastheexactsamecharacteristicsasthecurrenttaskandhas
atight deadline.Thetaskalsohasatight deadlineandinter-
rupting the alreadyexecutingtasksmight result in missing
thedeadlinesonbothTaskT0 1 andtaskT0 2.

In Row 3, AgentA decidesto doacompleterescheduleof
all tasksandchoosesto negotiatewith agentB over taskNX
usingnegotiationmechanismNM1. In this case,it is will-
ing to rescheduletaskT0 1 sincethe expectedutility from
the newly arrived taskis muchhigherthanthat of the cur-
rent task. Also, the fact that the agentdroppedtaskT0 2
althoughit wasunawareof thearrival of a highly preferred
task in the near-future works to agentA’s advantagesince
it hasmoretime to performthe highervaluedtask. In five
outof six runs,theagent’sdecisionto droptheprevioustask
T0 2 andperformtaskT1 3 with thenegotiationoptionre-
sultsin veryhighutility values.In Run6, taskT1 3 receives
a very low utility becausenegotiationfailswith agentB and
thetaskreceivestheminimumutility. Howeveron average,
agentA’smeta-level decisionworksto its benefit.In Row 6,
weseethatagent uB choosesthesimpleschedulingoptionto
executetaskNX 3 becauseof its tight deadline.

ConsiderTable2. Herethe agentdoesnot reasonabout
the characteristicsof the tasksat the meta-level. This re-
sultsin theagentchoosingthesamecontrolaction,namely
ATCS for all tasksindependentof thestatusof othertasksin
execution.This resultsin themostexpensivecontrolaction
beinginvokedindependentof thecurrentstateof thesystem.
This resultsthechoiceof domainactivities with shorterdu-
rationsandlower utilities asreflectedby the utility values
in columns6-12. The total utilities accumulatedby five of
thesix runsin Table2 is significantlylower thanthecorre-
spondingrun in Table1. This supportsour hypothesisthat
meta-level controlis generallyadvantageous.

Conclusions and Future Work
In this paperwe presenta novel meta-level control agent
framework for sophisticatedmulti-agentenvironments.The
meta-level control haslimited andboundedcomputational
overheadandwill supportreasoningaboutschedulingand
coordinationcostsasfirst-classobjects.

We have shown, usinga simpleexample,thatmeta-level
control is beneficial. The heuristicsdescribedin this pa-
per, althoughvery simple,enablethe meta-level controller
to make accuratedecisionsin simplescenarios.We plan to
introducemorecomplex featureswhich will make the rea-
soningprocessmorerobust.Somesuchfeaturesincludere-
lationof slackfragmentsin local scheduleto new task.This
would enableanagentto fit a new taskin its currentsched-
ule if it is possibleandavoid a reschedule.Anotherfeature
wouldbeto estimatethedecommitmentcostfor aparticular

task.This will enableusto considerenvironmentsin which
agentscandecommitfrom taskswhich they havepreviously
agreedto complete.

Wewill extendthedetaileddomainlevel scheduler(DTC)
to handleschedulingeffort, slackandhorizonasfirst-class
objects. The extendedDTC will acceptparameterswhich
constraintheeffort spentonschedulingwhichin turnwill af-
fecttheoverheadof thescheduler. It will alsobeextendedto
dealwith slackasaschedulableelementwhichcanbequan-
tified andvaluedasany otherprimitiveaction.Wehopethat
augmentingthedomainlevel schedulerwill make themeta-
level controllermoreversatileby providing moreoptions.

Finally, we will usethe insightgatheredfrom theheuris-
tic approachto constructthestatefeatures,rewardfunctions
andalgorithmsto apply a reinforcementlearningapproach
to this problem.We expectthis analysisto providevaluable
experienceaboutapplyingRL techniquesto complex real-
world problems.
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