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Abstract

Real-time control has become increasingly important
as technologies are moved from the lab into real world
situations. The complexity associated with these sys-
tems increases as control and autonomy are distributed,
due to such issues as precedence constraints, shared re-
sources, and the lack of a complete and consistent world
view. In this paper we describe a soft real-time architec-
ture designed to address these requirements, motivated
by challenges encountered in a distributed sensor allo-
cation environment. The system features the ability
to generate schedules respecting temporal, structural
and resource constraints, to merge new goals with exist-
ing ones, and to detect and handle unexpected results
from activities. We will cover a suite of technologies
being employed, including quantitative task represen-
tation, alternative plan selection, partial-order schedul-
ing, schedule consolidation and conflict resolution in an
uncertain environment. Technologies which facilitate
on-line real-time control, including schedule caching and
variable time granularities are also discussed.

Overview
In the field of multi-agent systems, much of the research
and most of the discussion focuses on the dynamics and
interactions between agents and agent groups. Just as
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important, however, is the design and behavior of the in-
dividual agents themselves. The efficiency of an agent’s
internal mechanics contribute to the foundation of the
system as a whole, and the degree of flexibility these
mechanics offer affect the agent’s achievable level of so-
phistication, particularly in its interactions with other
agents (Lesser 1991; 1998). We believe that a general
control architecture, responsible for both the planning
for the achievement of temporally constrained goals of
varying worth, and the sequencing of actions local to
the agent that have resource requirements, can provide
a robust and reusable platform on which to build high
level reasoning components. In this article, we will dis-
cuss the design and implementation of the Soft Real
Time Architecture (SRTA), a generic planning, schedul-
ing and execution subsystem designed to address these
needs.

The SRTA architecture, a sophisticated agent control
engine with relatively low overhead, provides several key
features:

1. The ability to quickly generate plans and schedules for
goals that are appropriate for the available resources
and applicable constraints, such as deadlines and ear-
liest start times.

2. The ability to merge new goals with existing ones, and
multiplex their solution schedules.

3. The ability to efficiently handle deviations in expected
plan behavior that arise out of variations in resource
usage patterns and unexpected action characteristics.

The system is implemented as a set of interacting com-
ponents and representations. A domain independent
task description language is used to describe goals and
their potential means of completion, which includes a
quantitative characterization of the behavior of alterna-
tives. A planning engine can determine the most appro-
priate means of satisfying such a goal within the set of
known constraints and commitments. This permits the
system to be able to adjust which goals it will achieve,
and how well it will achieve these chosen goals based
on the dynamics of the current situation. Scheduling
services integrate these actions and their resource re-
quirements with those of other goals being concurrently
pursued, while a parallel execution module performs the
actions as needed. Exception handling and conflict res-
olution services help repair and route information when
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unexpected events take place. Together, this system
can assume responsibility for the majority of the goal-
satisfaction process, which allows the high-level reason-
ing system to focus on goal selection, determining goal
objectives and other potentially domain-dependent is-
sues. For example, agents may elect to negotiate over
an abstraction of their activities or resource allocations,
and only locally translate those activities into a more
precise form (Mailler et al. 2001). SRTA can then
use this description to both enforce the semantics of
the commitments which were generated, and automati-
cally attempt to resolve conflicts that were not addressed
through negotiation.

Based on this architecture, it should be clear that this
research assumes sophisticated agents are best equipped
to operate and address goals within a resource-bound,
interdependent, mixed-task environment. In such a sys-
tem, individual agents are responsible for effectively bal-
ancing the resources they choose to allocate to their mul-
tiple time and resource sensitive activities. A different
approach addresses these issues through use of groups of
simpler agents, which may individually act in response
to single goals and only as a team address large-grained
issues. In such an architecture, either the host operat-
ing system or increased communication must be used to
resolve temporal or resource constraints, and yet more
communication is required for the agents to effectively
deliberate over potential alternative plans in context.
Decomposing the problem space completely to "simple"
agents does not address the problem or remove the in-
formation and decision requirements. We feel that such
a design is over-decomposed, and would more effectively
be addressed by more sophisticated agents capable of di-
rectly reasoning over and acting upon multiple concur-
rent issues, thereby saving both time and bandwidth.

In recent work on a distributed sensor network appli-
cation(Horling et al. 2001), which will be discussed in
more depth below, we exploited SRTA to create a virtual
agent organization of simple, single-threaded agents.
These "virtual" agents were in fact goals, created as
needed and dynamically assigned to a specific sophis-
ticated "real" agent based on information approximat-
ing the current resource usage of agents and the type
of resources available at each agent. The "real" agent
then performed detailed planning/scheduling based on
local resource availability and priority of these goals,
and multiplexed among the different goals that it was
concurrently executing in order to meet soft real-time
requirements.

SRTA operates as a functional unit within a Java-
based agent, which itself it running on a conventional
(i.e. not real-time) operating system. The SRTA con-
troller is designed to be used in a layered architec-
ture, occupying a position below the high-level rea-
soning component in an agent (Zhang et al. 2000;
Bordini et al. 2002) (see Figure 2). In this role, 
will accept new goals, report the results of the activities
used to satisfy those goals, and also serve as a knowledge
source about the potential ability to schedule future ac-
tivities by answering what-if style queries. Within this

context, SRTA offers a range of features designed to pro-
vide support for operating in a distributed, intelligent
environment. The goal description language supports
quantitative, probabilistic models of activities, including
non-local effects of actions and resources and a variety
of ways to define how tasks decompose into subtasks.
In particular, the uncertainty associated with activities
can be directly modeled through the use of quantitative
distributions describing the different outcomes a given
action may produce. Commitments and constraints can
be used to define relationships and interactions formed
with other agents, as well as internally generated limits
and deadlines. The planning process uses this informa-
tion to generate a number of different plans, each with
different characteristics, and ranked by their predicted
utility. A plan is then used to produce a schedule of
activities, which is combined with existing schedules to
form a potentially parallel sequence of activities, which
are partially ordered based on their interactions with
both resources and one another. This sequence is used
to perform the actions in time, using the identified pre-
conditions to verify if actions can be performed, and
invoking light-weight rescheduling if necessary. Finally,
if conflicts arise, SRTA can use an extendable series of
resolution techniques to correct the situation, in addi-
tion to passing the problem to higher level components
which may be able to make a more informed decision.

An important aspect of most real-world systems is
their ability to handle real-time constraints. This is
not to say that they must be fast or agile (although
it helps), but that they should be aware of deadlines
which exist in their environment, and how to operate
such that those deadlines are reasoned about and re-
spected as much as possible. This notion of real-time is
weaker than its relative, strict real-time, who’s adher-
ents attempt to rigorously quantify and formally bound
their systems’ execution characteristics. Instead, sys-
tems working in soft real-time operate on tasks which
may still have value for some period after their dead-
lines have passed (Stankovic & Ramamritham 1990),
and missing the deadline of a task does not lead to dis-
astrous external consequences. Our research addresses a
derivative of this concept, where systems are expected to
be statistically fast enough to achieve their objectives,
without providing formal performance guarantees. This
allows it to successfully address domains with highly un-
certain execution characteristics and the potential for
unexpected events, neither of which are well suited for a
hard real-time approach. As its name implies, SRTA op-
erates in soft real-time, using time constraints specified
during the goal formulation and scheduling processes,
and acting to meet those deadlines whenever necessary.
In this system, we have sacrificed the ability to provide
formal performance guarantees in order to address more
complex and uncertain problem domains. As will be
shown shortly, this technology has been used to success-
fully operate in a real-time distributed environment.

To operate in soft-real time, an agent must know when
actions should be performed, how to schedule its activi-
ties and commitments such that they can be performed
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or satisfied, and have the necessary resources on hand
to complete them. Our solution to this problem ad-
dresses two fronts. The first is to implement the tech-
nologies needed to directly reason about real-time. As
mentioned above, we begin by modeling the quantita-
tive and relational characteristics of the goals and ac-
tivities the agent may perform, which can be done a
priori and accessed as plan library or through a run-
time learning process(Jensen et al. 1999). This infor-
mation is represented, along with other goal achieve-
ment and alternative plan information, in a T/EMS task
structure (Decker & Lesser 1993; Horling et al. 1999)
(discussed in more detail later). A planning compo-
nent, the Design-to-Criteria scheduler (DTC) (Wagner,
Garvey, & Lesser 1998; Wagner & Lesser 2000), uses
these T/EMS task structures, along with the quantita-
tive knowledge of action interdependence and deadlines,
to select the most appropriate plan given current envi-
ronmental conditions. This plan is used by the Partial
Order Scheduler process to determine when individual
actions should be performed, either sequentially or in
parallel, within the given precedence and runtime re-
source constraints. In general, we feel that real-time
can be addressed through the interactions of a series of
components, operating at different granularities, speed
and satisficing (approximate) behaviors.

The second part of our solution attempts to optimize
the running time of our technologies, to make it easier
to meet deadlines. The partial order schedule provides
an inherently flexible representation. As resources and
time permit, elements in the schedule can be quickly de-
layed, reordered or parallelized. New goals can also be
incorporated piecemeal, rather than requiring a compu-
tationally expensive process involving re-analysis of the
entire schedule. Together, these characteristics reduce
the need for constant re-planning, in addition to mak-
ing the scheduling process itself less resource-intensive.
Learning plays an important role in the long-term vi-
ability of an agent running in real time, taking advan-
tage of the repetitive nature of its activities. Schedules
may be learned and cached, eliminating the need to re-
invoke the DTC process when similar task structures
are produced, and the execution history of individual
actions may be used to more accurately predict their
future performance. A similar technique could be used
to track the requisite actions and time needed to devote
to particular goals.

This article will proceed by discussing the problem
domain which motivated much of this system. Func-
tional details of the architecture will be covered, along
with further discussion of the various optimizations that
have been added. We will conclude with a more descrip-
tion of SRTA’s ability to adapt to varying conditions,
and summarize the significant characteristics of the ar-
chitecture. Note also that a more thorough overview of
this architecture can be found in (Horling et al. 2002).

Problem Domain

A distributed resource allocation domain which moti-
vated much of this work (Horling et al. 2001) will be

Figure 1: High-level distributed sensor allocation archi-
tecture. A) shows the initial sensor layout, decompo-
sition and allocation of sector managers. B) shows the
dissemination of scanning tasks. The new track manager
in C) can be seen coordinating with sensors to track 
target, while the resulting data is propagated in D) for
processing.

used throughout this article to ground the topics which
are discussed and formulate examples. This section
will briefly describe the environment and the particu-
lar challenges it offers. Components of the SRTA ar-
chitecture have also been used successfully in several
other domains, such as intelligent information gathering
(Lesser et al. 2000), intelligent home control (Lesser et
al. 1999), and supply chain (Horling, Benyo, & Lesser
2001).

The distributed resource environment consists of sev-
eral sensor nodes arranged in a region of finite area,
as can be seen in Figure 1A. Each sensor node is au-
tonomous, capable of communication, computation and
observation through the attached sensor. We assume
a one-to-one correspondence between each sensor node
and an agent, which serves locally as the operator of that
sensor. The high level goal of a given scenario in this
domain is to track one or more target objects moving
through the environment. This is achieved by having
multiple sensors triangulate the positions of the targets
in such a way that the calculated points can be used
to form estimated movement tracks. The sensors them-
selves have limited data acquisition capabilities, in terms
of where they can focus their attention, how quickly that
focus can be switched and the quality / duration tradeoff
of its various measurement techniques. The attention of
a sensor, or more specifically the allocation of a sensor’s
time to a particular tracking task, therefore forms an im-
portant, constrained resource which must be managed
effectively to succeed.

The real-time requirement of this environment is de-
rived from the triangulation process. Under ideal condi-
tions, three or more sensors will perform measurements
at the same instant in time. Individually, each sensor
can only determine the target’s distance and velocity rel-
ative to itself. Because each node will have seen the tar-
get at the same position, however, these gathered data
can then be fused to triangulate the target’s actual loca-
tion. In practice, exact synchronization to an arbitrarily
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high resolution of time is not possible, due to the uncer-
tainty in sensor performance and clock synchronization.
A reasonable strategy then is to have the sensors per-
form measurements within some relatively small window
of time, which will yield positive results as long as the
target is near the same location for each measurement.
Thus, the viable length of this window is inversely pro-
portional to the speed of the target (in our scenarios we
use a window of one second for a target moving one foot
per second).

Competing with the sensor measurement activity are
a number of other local goals, including sector manage-
ment (Figure 1A), target discovery scanning (1B), 
surement tasks for other targets (1C), and data pro-
cessing (1D). We don’t see these as separate agents 
threads, but rather as different objectives/goals that an
agent is multiplexing. To operate effectively, while still
meeting the deadlines posed above, the agent must be
capable of reasoning about and acting upon the impor-
tance of each of these activities.

In summary, our real-time needs for this application
require us to synchronize several measurements on dis-
tributed sensors with a granularity of one second. A
missed deadline may prevent the data from being fused,
or the resulting triangulation may be inaccurate - but
no catastrophic failure will occur. This provides indi-
vidual agents with some minimal leeway to occasion-
ally decommit from deadlines, or to miss them by small
amounts of time, without failing to achieve the overall
goal. At the same time, there is a great deal of un-
certainty in when new tasks will arrive, and how long
individual actions will take, so a strict timing policy is
too restrictive. Thus, our notion of real-time here is rel-
atively soft, enabling the agents to operate effectively
despite uncertainty over the behavioral characteristics
of computations and their resource requirements.

Further details on this domain and the multi-agent
architecture designed to address it can be found in (Hor-
ling et al. 2001).

Real-Time Control Architecture

Our previous agent control architecture, used exclu-
sively in controlled time environments, was fairly large
grained. As goals were addressed by the problem solving
component, they would be used to generate task struc-
tures to be analyzed by the Design-To-Criteria (DTC)
scheduler. The resulting linear schedule would then be
directly used for execution by the agent. Task structures
created to address new goals would be merged with ex-
isting task structures, creating a monolithic view of all
the agent’s goals. This combined view would then be
passed again to DTC for a complete re-planning and
re-scheduling. Execution failure would also lead to a
complete re-planning and re-scheduling. This technique
leads to "optimal" plans and schedules at each point if
meta-level overheads are not included. As will be dis-
cussed in a later section, however, the combinatorics as-
sociated with such large structures can get quite high.
This made agents ponderous when working with fre-
quent goal insertion or handling exceptions, because of

Figure 2: High-level agent control architecture.

the need to constantly perform the relatively expensive
DTC process. In a real-time environment, characterized
by a lot of uncertainty in the timing of actions and the
arrival of new tasks, where the agent must constantly
reevaluate their execution schedule in the face of varied
action characteristics, this sort of control architecture
was impractical.

In the SRTA architecture, we have attempted to make
the scheduling and planning process more incremental
and compartmentalized. New goals can be added piece-
meal to the execution schedule, without the need to re-
plan all the agent’s activities, and exceptions can be typ-
ically be handled through changes to only a small subset
of the schedule. Figure 2 shows the new agent control
architecture we have developed to meet our soft real-
time needs. We will first present an overview of how it
functions, and cover the implementation in more detail
in later sections. In this architecture, goals can arrive
at any time, in response to environmental change, local
planning, or because of requests from another agents.
The goal is used by the problem solving component
to generate a T/EMS task structure, which quantita-
tively describes the alternative ways that goal may be
achieved. The T/EMS structure can be generated in
a variety of ways; in our case we use a T/EMS "tem-
plate" library, which we use to dynamically instantiate
and characterize structures to meet current conditions.
Other options include generating the structure directly
in code (Lesser et al. 2000), or making use of an ap-
proximate base structure and then employing learning
techniques to refine it over time (Jensen et al. 1999).

The Design-To-Criteria component, used in the orig-
inal controller described earlier, retains a critical role
in SRTA. Where before it was responsible for both se-
lecting an appropriate plan of activities and producing
a schedule of actions for monolithic structures, SRTA
generally exploits only its planning capabilities for dis-
crete structures. Using the T/EMS structure mentioned
above, along with criteria such as potential deadlines,

57



Figure 3: The timeline of events for our running sce-
nario. Shown are the arrival times for the goals shown
in Figures 4 and 5, along with the negotiated deadline
for Task 2.

minimum quality, and external commitments, DTC se-
lects an appropriate plan.

The resulting plan is used to build a partially or-
dered schedule, which will use structure details of the
T~MS structure to determine precedence constraints
and search for actions which can be performed in par-
allel. Several components are used during this final
scheduling phase. A resource modeling component is
used during this analysis to ensure that resource con-
straints are also respected. A conflict resolution mod-
ule reasons about mutually-exclusive tasks and commit-
ments, determining the best way to handle conflicts. Fi-
nally, a schedule merging module allows the partial or-
der scheduler to incorporate the actions derived from the
new goal with existing schedules. Failures in this process
are reported to the problem solver, which is expected to
handle them (by, for instance, relaxing constraints such
as the goal completion criteria or delaying its deadline,
completing a substitute goal with different characteris-
tics, or decommiting from a lower priority goal or the
goal causing the failure).

Once the schedule has been created, an execution
module is responsible for initiating the various actions
in the schedule. It also keeps track of execution per-
formance and the state of actions’ preconditions, poten-
tially re-invoking the partial order scheduler when failed
expectations require it. As will be shown later, the par-
tial order scheduler uses a shifting mechanism to resolve
such failures with minimal overhead where possible.

To better explain our architecture’s functionality, we
will work through a example in the next several sec-
tions, using simplified versions of task structures in the
actual sensor network application. The initial timeline
for this example can be seen in Figure 3. At time 0 the
agent recognizes its first goal - to initialize itself. After
starting the execution of the first schedule it will re-
ceive another goal to track a target and sent the results
before time 2500. Later, a third goal, to negotiate for
delegating tracking responsibility, is received. We will
show how these different goals may be achieved, and
their constraints and interdependencies respected.

T/EMS Generation
Before progressing, we must provide some background
on our task description language, T/EMS. T/EMS, the
Task Analysis, Environmental Modeling and Simulation
language, is used to quantitatively describe the alterna-
tive ways a goal can be achieved (Decker & Lesser 1993;
Horling et al. 1999). A T/EMS task structure is essen-
tially an annotated task decomposition tree. The high-
est. level nodes in the tree, called task groups, represent

Figure 4: An example T/EMS task structure for track-
ing. The expected execution characteristics are shown
below each method, and the Send-Results method in
this figure has a deadline of 2500.

goals that an agent may try to achieve. The goal of
the structure shown in Figure 4 is Task2. Below a task
group there will be a set of tasks and methods which de-
scribe how that task group may be performed, including
sequencing information over subtasks, data flow rela-
tionships and mandatory versus optional tasks. Tasks
represent sub-goals, which can be further decomposed in
the same manner. Task2, for instance, can be performed
by completing subtasks Set-Parameters, Track, and
Send-Result s.

Methods, on the other hand, are terminal, and repre-
sent the primitive actions an agent can perform. Meth-
ods are quantitatively described, with probabilistic dis-
tributions of their expected quality, cost and duration.
These quantitative descriptions are themselves grouped
together as outcomes, which abstractly represent the
different ways in which an action can conclude, cost
incurred. Set-Parameters, then, is described with
two potential outcomes, Must-Update-Parameters and
Already-Set-Correctly, each with its relative proba-
bility and description of expected duration.

The quality accumulation functions (QAF) below 
task describes how the quality of its subtasks is com-
bined to calculate the task’s quality. For example, the
min QAF below Task2 specifies that the quality of
Task2 will be the minimum quality of all its subtasks
- so all the subtasks must be successfully performed for
the Task2 task to succeed. On the other hand, the max
below Track says that its quality will be the maximum
of any of its subtasks.

Interactions between methods, tasks, and affected re-
sources are also quantitatively described as interrela-
tionships. The enables interrelationships in Figure 4
represent precedence relationships, which in this case
say that Set-Parameters, Track, and Send-Results
must be performed in-order. An analogous disables in-
terrelationship exists, as well as the softer relations ]a-
cilitates and hinders. These latter two are particularly
interesting because they permit the further modeling of
choice - the agent might choose to perform a facilitating
method prior to its target to obtain an increase in the
latter’s quality, or ignore the method to save time.

lock2 and release2 are resource interrelationships,
describing, in this case, the consumes and produces ef-
fects method Send-Results has on the resource RF.
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These indicate that when the method is activated, it
will consume or produce some quantity of that resource.
The resource effect is further described through the lim-
its interrelationship, which defines the changes in the
method’s execution characteristics when that resource
is over-consumed or over-produced. The resource itself
is also modeled, including its bounds and current value
(as shown below the RF triangle), and whether it is con-
sumable or not (e.g. printer paper is consumable, where
the printer itself is not).

Together, these descriptions provide the foundation
for the planning process to reason about the effects of
selecting this method for execution, so a planner can
choose correctly when the agent is willing to trade off
uncertainty against quality or some other metric.

The problem solver is responsible for translating its
high-level goals into T/EMS, which serves as a more de-
tailed representation usable by other parts of the agent.
This can be done by building T/ti~MS structures dynami-
cally at runtime, reading static structures from a library,
or using a hybrid scheme consisting of a library of tem-
plate structures which can be annotated at runtime.

At time 0 the agent will use its template library to
generate the initialization structure seen in Figure 5A.
In this structure, the agent must first Init and then
Calibrate its sensor. Properties passed into the tem-
plate specify the particular values used in Init, such
as the sensor’s desired gain settings or communications
channel assignment, as well the number of measure-
ments to be used during Calibrate. As specified by the
enables interrelationship, Init must successfully com-
plete before the agent can Send-Message, reporting its
capabilities to its local manager. Send-Message also
uses resource interrelationships to obtain an exclusive
lock on the RF communication resource. Only one ac-
tion at a time can use RF to send message, so all mes-
saging methods have similar locking interrelationships.
As we will see later, this indirect interaction between
messaging methods creates interesting scheduling prob-
lems. Task2 and Task3, shown in Figures 4 and 5B,
respectively, are generated later in the run in a similar
manner.

DTC Planner / Initial Scheduler

Design-to-Criteria (DTC) scheduling is the soft real-
time process of evaluating different possible courses of
action for an intelligent agent and choosing the course
that best fits the agent’s current circumstances. For ex-
ample, in a situation where the RF resource is under a
great deal of concurrent usage, the agent may be unable
to send data using the traditional quick communications
protocol and thus be forced to spend more time on a
more reliable, but slower method to produce the same
quality result (analogous to selecting between a UDP or
TCP session). Or, in a different situation when both
time and cost are constrained, the agent may have to
sacrifice some degree of quality to meet its deadline or
cost limitations. Design-to-Criteria is about evaluating
an agent’s problem solving options from an end-to-end
view and determining which tasks the agent should per-

form, when to perform them, and how to go about per-
forming them. Having this end-to-end view is crucial for
evaluating the relative performance of alternative plans
able to satisfy the goal.

One would expect any reasonable planning process to
enforce so-called "hard" constraints - ones which must
be satisfied for a goal to be achieved or a commitment
satisfied. It is DTC’s additional ability to reason about
weaker, optional interactions which sets it apart. The
sum QAF in T/EMS , for instance, defines a task who’s
quality is determined by the sum of all its subtasks’
qualities. In a time critical situation, DTC may opt for
a shorter, but lower quality plan which only calls for one
of these subtasks to be executed. In more relaxed condi-
tions, more may be added to the plan. Similarly, soft in-
terrelationships such as facilitates or hinders may be re-
spected or not, depending on their specific quantitative
effects and the current planning co~text. DTC’s behav-
ior is governed through the use of a criteria description,
which is provided to it along with each T/EMS structure.
This criteria specifies, for example, the desired balance
between plan quality and duration, or what level of un-
certainty is tolerable(Wagner, Garvey, & Lesser 1997).
More information covering the techniques DTC uses can
be found in (Wagner, Garvey, &: Lesser 1998).

Returning to our example, DTC is used to select the
most appropriate set of actions from the initialization
task structure. In this case, it has only one valid plan:
Init, Calibrate, and Send-Message. A more interest-
ing task structure is seen in Task2 from figure 4, which
has a set of alternative methods under the task Track.
A deadline is associated with Send-Result, correspond-
ing to the desired synchronization time specified by the
agent managing the tracking process. In this case, DTC
must determine which set of methods is likely to obtain
the most quality, while still respecting that deadline.
Because T/EMS models duration uncertainty, the issue
of whether or not a task will miss its deadline involves
probabilities rather than simple discrete points. The
techniques used to reason about the probability of miss-
ing a hard deadline are presented in (Wagner & Lesser
2000). It selects for execution the plan Set-Parameters,
Track-Medium, and Send-Results. After they are se-
lected, the plans will be used by the partial order sched-
uler to evaluate precedence and resource constraints,
which determine when individual methods will be per-
formed.

Partial Order Scheduler

DTC was designed for use in both single agents and
agents situated in multi-agent environments. Thus, it
makes no assumption about its ability to communicate
with other agents or to "force" coordination between
agents. This design approach, however, leads to compli-
cations when working in a real-time, multi-agent envi-
ronment where distributed resource coordination is an
issue. When resources can be used by multiple agents at
the same time, DTC lacks the ability to request commu-
nication for the development of a resource usage model.
This is the task of another control component that forms
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I Send-Message I

A) Initialization task structure.

I Neg°tiate-Tracking I I Send-Tracking-Inf° I

0.011000.01 1000.0

B) Tracking goal negotiation task structure.

Figure 5: Two T/EMS task structures, abstractions of those used in our agents.

scheduling constraints based on an understanding of re-
source usage. In most applications, these constraints
are formed by rescheduling to analyze the implications
of particular commitments. In the real-time sensor ap-
plication, the rescheduling overhead is too expensive for
forming these types of relationships. The solution we
have adopted is to use a subset of DTC’s functional-
ity, and then offioad the distributed resource and fine
grained scheduling analysis to a different component -
the partial order scheduler. Specifically, DTC is used
in this architecture to reason about tradeoffs between
alternative plans, respect ordering relationships in the
structure, evaluate the feasibility of soft interactions,
and ensure that hard duration, quality and cost con-
straints are met.

DTC presents the partial order scheduler with a lin-
ear schedule meeting the requested deadline. Timing de-
tails, with the exception of hard deadlines generated by
commitments to other agents and overall goal deadlines,
are ignored in the schedule, which is essentially used as
a plan. The partial order scheduler uses this to build a
partially ordered schedule, which includes descriptions
of the interrelationships between the scheduled actions
in addition to their desired execution times. This par-
tially ordered schedule explicitly represents precedence
relationships between methods, constraints and dead-
lines. This information arises from commitments, re-
source and method interrelationships, and the QAFs as-
signed to tasks, and is encoded as a precedence graph.
This graph can then be used both to determine which
activities may potentially be run concurrently, because
they have no precedence relation between them or they
do not have interfering resource usage, and where par-
ticular actions may be placed in the execution timeline.
Of particular significance, this latter functionality allows
the scheduler to quickly reassess scheduled actions in
context, so that some forms of rescheduling can be per-
formed with very low overhead when unexpected events
require it. Much of this information can be directly de-
termined from the T/EMS task structure.

Consider the tracking task structure shown in Fig-
ure 4. Enables interrelationships between the tasks
and methods indicate a strict ordering is necessary for
the three activities to succeed. In addition (although
not shown in the figure), a deadline constraint exists
for Send-Result, which must be completed by time
2500. Next look at the initialization structure in Fig-
ure 5A. While an enables interrelationship orders Init

and Send-Message, it does not affect the Calibrate
method. Internally, the partial order scheduler will use
this information to construct a precedence graph. In
this example, the graph will first be used to determine
that Calibrate may be run in parallel with the other
two methods in its structure. Later, when Task2 arrives,
the updated graph can be used to find an appropriate
starting time for Set-Parameters which still respects
the deadline of Send-Result.

While the partial order scheduler may directly rea-
son about direct precedence rules as outlined above, a
more robust analysis is needed to identify indirect in-
teractions which occur through common resource usage.
Because of uncertain and probabilistic interactions be-
tween resources and actions, both locally and those to be
performed by other agents, a thorough temporal model
is needed to correctly determine acceptable times and
limits for resource usage.

Resource Modeler

In order to bind resources, we use another component
called the resource modeler. The partial order sched-
uler does this by first producing a description of how a
given method is expected to use resources, if at all. This
description includes such things as the length of the us-
age, the quantity that will be consumed or produced,
and whether or not the usage will be done throughout
the method’s execution or just at its start or completion.
The scheduler then gives this description to the resource
modeler, along with constraints on the method’s start
and finish time, and asks it to find a point in time when
the necessary resources are available.

As with most elements in T/EMS the resource us-
age is probabilistically described, so the scheduler must
also provide a minimum desired chance of success to the
modeler. At any potential insertion point, the modeler
computes the aggregate affects of the new resource us-
age, along with all prior usages up to the last known
actual value of the resource. The expected usage for
a given time slot can become quite uncertain, as the
probabilistic usages are carried through from each prior
slot. If the probability of success for this aggregate us-
age lies above the range specified by the scheduler, then
the resource modeler assumes the usage is viable at that
point. Since a given usage may actually take place over
a range of time, this check is performed for all other
points in that range as well. If all points meet the suc-
cess requirement, the resource modeler will return the
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valid point in time. After this, the scheduler will insert
the usage into the model, which will then be taken into
account in subsequent searches. If a particular point in
time is found to be incompatible, the resource modeler
continues its search by looking at the next "interesting"
point on its timeline- the next point at which a resource
modification event occurs. The search process becomes
much more efficient by moving directly from one poten-
tial time point to the next, instead of checking all points
in between, making the search-time scale with the num-
ber of usage events rather than the span of time which
they cover. Caching of prior results, especially the re-
sults of the aggregate usage computation, is also used
to speed up the search process.

This information is used by the resource modeler to
search for appropriate places where new resource us-
ages may be inserted. In general, the scheduling pro-
cess will provide a set of resource usage descriptions ex-
tracted from methods it is attempting to schedule, which
may affect multiple different resources at different times,
along with start and finish time bounds and a minimum
desired probability of success, and the resource mod-
eler will return the first possible match if one is found.
These constraints are then used along with direct struc-
tural precedence rules and the existing schedule to lay
down a final schedule.

Schedule Merging

Once potential interactions, through interrelationships,
deadlines or resource uses are determined, the partial
order scheduler can evaluate what the best order of ex-
ecution is. Wherever possible, actions are parallelized
to maximize the flexibility of the agent, as was shown
earlier. In such cases, methods running concurrently
require less overall time for completion, and thus offer
more time to satisfy existing deadlines or take on new
commitments. Once the desired schedule ordering is de-
termined, the new schedule must be integrated with the
existing set of actions.

The partial order scheduler makes use of two other
technologies to integrate the new goal with existing
scheduled tasks. The first is a conflict resolution mod-
ule, which determines how best to handle un-schedulable
conflicts, given the information at hand. A second com-
ponent handles the job of merging the new goal’s sched-
ule with those of prior goals. The specific mechanism
used is identical to that which determines order of ex-
ecution. Interdependencies between this large set of
methods, either direct or indirect, are used to determine
which actions can be performed relative to one another.
This information is then used to determine the final de-
sired order of execution.

To this point in our example, the agent has been asked
to work towards three different goals, each with slightly
different execution needs. Taskl allows some measure
of parallelism within itself, as Init and Calibrate can
run concurrently because no ordering constraints exist
between them. Task2, received some time later, must
be run sequentially, and its method Send-Result must
be completed by time 2500. Task3 is received later still,

A)

Figure 6: A) Initial schedule produced after all the
goals have been received, with a Send-Result dead-
line of 2500, B) the invalid schedule showing that
constraint broken by the unexpected long duration of
Negotiate-Tracking, and C) the corrected schedule re-
specting the deadline.

and also must be run sequentially. All three, however,
require the use of the RF resource, for communication
needs, and are thus indirectly dependent on one another.
The partial order scheduler produces the schedule seen
in Figure 6A, where all the known constraints are met.
Some measure of parallelism can be achieved, seen with
Set-Parameters and Send-Message, and also between
Track-Medium and the methods in Task3. Note that the
resource modeler detected the incompatibility between
the methods using RF (shaded gray), however, and there-
fore do not overlap.

Conflict Resolution

Suppose next that Negotiate-Tracking is taking
longer than expected, forcing the agent to dynam-
ically reschedule its actions. Because the method
Send-Tracking-Info cannot start before the com-
pletion of Negotiate-Tracking, due to the en-
ables interrelationship shown in Figure 5B, the
partial order scheduler must delay the start of
Send-Tracking-Info. A naive approach would simply
delay Send-Tracking-Info by a corresponding amount.
This has the undesirable consequence of also delaying
Send-Result, because of the contention over the RF re-
source. This will cause Send-Result to miss its deadline
of 2500, as shown in the invalid schedule in Figure 6B.

Fortunately, the partial order scheduler was able to
detect this failure, because of the propagation of ex-
ecution windows. Send-Result was marked with a
latest start time of 2000. This caused the sched-
uler to try other permutations of methods, which re-
sulted in the schedule shown in Figure 6C, which delays
Send-Tracking-Info in favor of Send-Result. This al-
lows the agent to proceed successfully despite a failed
expectation. This process is accomphshed by first de-
laying the finish time of the offending method in the
schedule to reflect the current state of affairs, and then
recursively delaying any other methods which are de-
pendent on that method until a valid solution is found
or a recursive limit is reached.
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This type of simple conflict resolution is performed
automatically, through the cooperation of the execution
module, which detects the unexpected behavior, and
the scheduling component which attempts to repair the
problem using the quick shifting technique shown above.
In some cases, particularly when methods actually fail
to achieve their goal, this sort of simple shifting is not
sufficient to repair the problem. To handle these cases,
we designed a conflict resolution module capable of an-
alyzing a particular situation and suggesting solutions.

Abstractly, the conflict resolution module is a cus-
tomizable engine, which applies techniques encoded as
"plug-ins" to a particular situation. If the set of tech-
niques available is not appropriate for the agent de-
signer, they are free to add or remove them as needed.
Each technique plug-in is associated with a discrete nu-
meric priority rating, typically specified by the designer
of the plug-in, which controls the ordering in which the
techniques are applied. When searching for a conflict
resolution, the engine will begin by applying all tech-
niques marked with the highest priority. If one or more
solutions are suggested, then that set of solutions is re-
turned for the caller to select from. If no solutions are
suggested, the engine will apply the techniques at the
second-to-highest level, and so on. If the techniques
are ordered appropriately, such as with quick or effec-
tive techniques first followed by slower or less applicable
ones, the engine can make efficient use of its time.

As an example, consider the T/EMS structure shown
in Figure 4. We will assume three different resolution
plug-ins are in use by the agent, corresponding to sev-
eral of the techniques outlined above. At the highest
priority level is Check-Cache, which searches for cached
resolution techniques which are applicable to the cur-
rent problem. At the next level is Alternate-Plan, which
looks for compatible results from the previous schedul-
ing activity. At the lowest priority level is Regenerate-
Plans, which uses DTC to generate a completely new
set of viable plans. The initial schedule generated from
this structure would be { Set-Parameters, Track-High,
Send-Results }. In this instance however, Track-High
fails, forcing the conflict resolution subsystem to find
an appropriate solution. Check-Cache has never seen
this problem and context before, so it offers no solu-
tion. The prior planning activity, however, returned
three different plans, so two potentially viable plans re-
main for Alternate-Plan to examine. In this case, the
plan { Set-Parameters, Track-Low, Send-Results }
both avoids the failed method and still fulfills related
commitment criteria. This schedule is offered as a so-
lution. Since a solution was offered at a lower level,
Regenerate-Plans is not invoked. Because only one so-
lution is provided, the execution subsystem will instan-
tiate the Alternate-Plan solution. If multiple solutions
were provided, they would be discriminated through
their respective expected qualities (which can be ob-
tained from the task structure). Note that if this prob-
lem were seen again, Check-Cache would immediately
recognize the context and provide this same solution,
avoiding further search.

Optimizations

The high-level technologies discussed above address the
fundamental issues needed to run in real-time. Unfor-
tunately, even the best framework will fail to work in
practice if it does not obtain the processor time needed
to operate, or if activity expectations are repeatedly not
met. A good example of this is the execution subsys-
tem. It may be that planning and scheduling have suc-
cessfully completed, and determined that a particular
method must run at a particular time in order to meet
its deadline. If, however, some other aspect of the agent
has control of the processor when the assigned start time
arrives, the method will not be started on time and may
therefore fail to meet its deadline. In this section we
will cover a pair of techniques which aim to reduce the
overhead of the system, to avoid such situations.

Plan Caching

An issue affecting the agent’s real time performance is
the significant time that meta-level tasks such as plan-
ning and scheduling can take themselves. In systems
which run outside of real-time, the duration performance
of a particular component will generally not affect the
success or failure of the system as a whole - at worst it
will make it slow. In real time, this slowdown can be
critical, for the reasons cited previously. Complicating
this issue is the fact that these meta-level activities may
be randomly interspersed with method executions. New
goals, commitments and negotiation sessions may occur
at any time during the agent’s lifetime, and each of these
will require some amount of meta-level attention from
the agent in a timely manner. To address this, SRTA
attempts to optimize the meta-level activities performed
by the agent.

One particular computationally expensive process for
our agents is planning, primarily because the DTC plan-
ner runs as a separate process, and requires a pair of
disk accesses to use. Unfortunately, this is an artifact
caused by DTC’s C++ implementation; the remainder
of the architecture is in Java. We noticed during our
scenarios that a large percentage of the task structures
sent to DTC were similar, often differing in only their
start times and deadlines, and resulting in very similar
plan selections. This is made possible by the fact that
DTC is now used on only one goal at a time, as opposed
to our previous systems which manipulated structures
combining all current goals. To avoid this overhead, a
plan caching system was implemented, shown as a by-
pass flow in Figure 2. Each task structure to be sent to
DTC is used to generate a key, incorporating several dis-
tinguishing characteristics of the structure. If this key
does not match one in the cache, the structure is set to
DTC, and the resulting plan read in, and added to the
cache. If the key does match one seen before, the plan is
simply retrieved from the cache, updated to reflect any
timing differences between the two structures (such as
expected start times), and returned back to the caller.
This has resulted in a significant performance improve-
ment, which leaves more time for low-level activities,
and thus increases the likelihood that a given deadline
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Component Average Calls Execution Time
DTC Scheduler 72.14 300 ms

DTC Cache 31.12 74 ms
PO Scheduler 531.03 36 ms

Table 1: Average results from 1077 runs of 180 seconds.
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Figure 7: The effect of varying time granularity on
agent behavior. A higher time ratio indicates that a
greater percentage of sequential time units are seen,
which should reduce the need for rescheduling. A higher
action ratio indicates the available time was used more
efficiently.

or constraint will be satisfied. Quantitative effects of
this system can be seen in Table 1.

To test the caching subsystem, we performed 1077
runs in simulation using eight sensors and one target. As
shown in the table, the caching system was able to avoid
calling DTC 30% of the time, resulting in a significant
savings in both time and computational power.

Time Granularity

The standard time granularity of agents running in our
example environment is one millisecond, which dictates
the scale of timestamps, execution statistics and com-
mitments. Because we run in a conventional (i.e. not
real-time) operating system, in addition to our rela-
tively unpredictable activity durations, it becomes al-
most impossible to perform a given activity at precisely
its scheduled time. For instance, some action X may be
scheduled for time 1200. When the agent first checks
its schedule for actions to perform, it is time 1184. In
the subsequent cycle, 24 milliseconds have passed, and
it is now time 1208. To maintain schedule integrity (es-
pecially with respect to predicted resource usage), we
must shift or reschedule the method which missed its
execution time before performing it. Despite existing
optimizations, in large number these actions can still
consume a significant portion of agents’ operating time.

To compensate for this, we scale the agents’ time gran-
ularity by some fixed amount. This theoretically trades
off prediction and scheduling accuracy for responsive-
ness (Durfee & Lesser 1988), but in practice a suitably
chosen value has few drawbacks, because the agent is
effectively already operating at a lower granularity due

to the real time missed between agent activity cycles.
Using this scheme, if we say that every agent tick cor-
responds to 20 milliseconds, the above action would be
mapped to run at time 60. At time 1184, the agent
would operate as if it were time 59, while 1208 would
become 60, the correct scheduled time for X, thus avoid-
ing the need to shift the action. Clearly we can not
eliminate the need for rescheduling, due to the inherent
uncertainty in action duration in this environment, but
the hope is to reduce the frequency it is needed. Exper-
imentation can find the most appropriate scaling factor
for an agent running on a particular system, by search-
ing for the granularity which optimizes the number of
actions which are able to be performed against the num-
ber of rescheduling events which must take place. Our
experiments, the results of which can be seen in Figure
7, resulted in a 35% reduction in the number of shifted
or rescheduled activities by using a time granularity be-
tween 40 and 60 ms. Ideally, the system should "see"
each sequential time click, but as the graph shows, as
the system reaches that point, the coarse timeline un-
necessarily restricts the number of actions which may
take place, reducing the overall efficiency.

Adapting to Environmental Conditions

An agent’s ability to adapt to changing conditions is
essential in an unpredictable environment. SRTA sup-
ports this notion with T/EMS , which provides a rich,
quantitative language for modeling alternative plans,
and DTC and the partial order scheduler, which can
reason about those alternatives. As discussed previ-
ously, this combination can also make use of activity and
resource constraints in addition to results of completed
actions, providing the necessary context for analysis and
decision making.

Consider the model shown in Figure 8, where a vari-
ety of strict and flexible options are encoded. Because
Goal has a seq_sum QAF, it will succeed (e.g. accrue
quality) if all of its subtasks are completed in sequence.
The quality it does accrue will be the sum of the qual-
ities of it’s subtasks. The structure indicates that D
must be performed for Task2 to succeed, and also that
the agent cannot execute E after F. Task:t and Task2
have slightly more flexible satisfaction criteria. Their
sum QAFs specify that they will obtain more quality
as more subtasks are successfully completed - without
any ordering constraints. Finally, the facilitates rela-
tionships between A, B and C model how the agent can
improve C’s performance through the successful prior
completion of A or B. Specifically, A will augment C’s
quality by 25%, while B will both increase C’s quality by
75% and reduce its cost by 50%.

There are several other classes of alternatives which
are not shown in the figure. Resource interrelationships,
for example, may be used to model a variety of effects on
both the resources and the activities using them. The
presence or absence of nonlocal activities, as discussed
in the previous section, can indicate alternative means
of accomplishing a task. Multiple outcomes on methods
may indicate alternative solutions which may arise from
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Figure 8: A T/EMS task structure modeling several dif-
ferent ways to achieve the same goal.

Conditions Schedule Q c D
1 Unconstrained ABCDEF 49.9 7.0 90.0
2 Deadline 40 ADE 17.0 0.0 40.0
3 Deadline 50 ADEF 27.0 2.0 50.0
4 Deadline 76 BCDEF 43.5 7.0 75.0
5 Cost 3 ABDEF 28.0 2.O 65.0
6 Balanced ADEF 27.0 2.0 50.0

Table 2: A variety of schedules, and their expected
qualities, costs and durations, generated from the
T/EMS structure in Figure 8 under different conditions.

a method’s execution, so the probability densities asso-
ciated with each outcome provide an additional source
of discriminating information which can help control the
uncertainty of generated plans. The individual proba-
bility distributions for the quality, cost and duration of
each outcome serve in the same capacity, as do analo-
gous probabilities modeling the quantitative effects of
interrelationships. The available time, desired quality
and cost, along with other execution constraints pro-
vide the context in which to generate and evaluate the
alternative plans such a structure may produce.

To demonstrate how the system adapts to varying
conditions, several plans derived from the task struc-
ture in Figure 8 are shown in Table 2. These plans
are produced for different environmental conditions that
place different resource constraints on the agent. As
one would expect, when the agent is completely uncon-
strained and has a goal to maximize quality, the plan
shown in row one is produced. Note that the selected
plan has an expected quality of 49.9, expected cost of
7.0, and an expected duration of 90.0. The quality
shown is not a round integer even though the qualities
shown in Figure 8 are integers because A and B ]acili-
tare method C and increase C’s quality when they are
performed before it.

Row two shows the plan selected for the agent under
a hard deadline of 40 seconds. This path through the
network has the shortest duration enabling the agent to
perform each of the major subtasks. Note the difference
in quality, cost, and duration between rows one and two.

Row three shows the plan selected for the agent if it
is given a slightly more loose deadline of 50 seconds.
This case illustrates an important property of schedul-
ing and planning with T/EMS - optimal decisions made
locally to a task do not combine to form decisions that
are optimal across the task structure. In this case, the

agent selected methods ADEF. If the agent were plan-
ning by simply choosing the best method at each node,
it would select method C for the performance of Task 1
because C has the highest quality. It would then select D
as there is no choice to be made with respect to method
D. It would then select method E because that is the
only method that would fit in the time remaining to the
agent. The plan CDE has an expected quality of 25, cost
of 10, and duration of 50. Planning with T/EMS requires
stronger techniques than simple hill climbing or local
decision making. This same function holds when tasks
span agents and the agents work to coordinate their ac-
tivities, evaluate cross agent temporal constraints, and
determine task value.

Row four shows the plan produced if the agent is given
a hard deadline of 76 seconds. What is interesting about
this choice is that DTC selected BCDEF over ACDEF even
though method B has a lower quality than method A and
they both require the same amount of time to perform.
The reason for this is that B’s facilitation effect (75%
quality multiplier) on method C is stronger than that of
method A (which has a 25% quality multiplier). The
net result is that BCDEF has a resultant expected quality
of 43.5 whereas ACDEF has an expected quality of 39.5.

Row five shows the plan produced by DTC if the agent
has a soft preference for schedules whose cost is under
three units. In this case, schedule ABDEF was selected
over schedules like ADEF because it produces the most
quality while staying under the cost threshold of three
units. DTC does not, however, deal only in specific
constraints. The "criteria" aspect of Design-to-Criteria
scheduling also expresses relative preferences for quality,
cost, duration, and quality certainty, cost certainty, and
duration certainty. Row six shows the plan produced
if the scheduler’s function is to balance quality, cost,
and duration. Consider the solution space represented
by the other plans shown in Table 2 and compare the
expected quality, cost, and duration attributes of the
other rows to that of row six. Even though the solution
space represented by the table is not a complete space,
it shows how the solution in row six falls relative to the
rest of the possible solutions - a good balance between
maximizing quality while minimizing cost and duration.

Note these examples do not illustrate DTC’s ability
to trade-off certainty against quality, cost, and duration.
The examples also omit the quality, cost, and duration
distributions associated with each item that is sched-
uled/planned for and the distributions that represent
the aggregate behavior of the schedule/plan.

Conclusion

The SRTA architecture has been designed to facilitate
the construction of sophisticated agents, working in soft-
real time environments possessing complex interactions
and a variety of ways to accomplish any given task.
With T/EMS , it provides domain independent mecha-
nisms to model and quantify such interactions and alter-
natives. DTC and the partial ordered scheduler reason
about these models, using information from the resource
modeler and the runtime context to generate, rank and



select from a range of candidate plans and schedules.
An execution subsystem executes these actions, track-
ing performance and rescheduling or resolving conflicts
where appropriate. The engine is capable of real-time
responsiveness, allowing these techniques to analyze and
integrate solutions to dynamically occurring goals.

SRTA’s objective is to provide domain independent
functionality enabling the relatively quick and simple
construction of agents and multi-agent systems capa-
ble of exhibiting complex and applicable behaviors. It’s
ability to adapt to different environments, respond to
unexpected events, and manage resource and activity-
based interactions allow it to operate successfully in a
wide range of conditions. We feel this type of system can
form a reusable foundation for agents working in real-
world environments, allowing designers to focus their
efforts on higher-level issues such as organization, nego-
tiation and domain dependent problems.

More generally, the significance of the work presented
in this paper comes from its demonstration that it is pos-
sible to perform in soft real-time the complex modeling,
planning and scheduling that has been described in our
prior research. Previously, these techniques were ana-
lyzed only in theory or simulation, and it was not clear
that our heuristic approach would be sufficiently respon-
sive and flexible to address real-world problems. The
SRTA architecture shows that engineering can be used
to combine and streamline these approaches to make a
viable, coherent solution.
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