
Improving the Dynamic Behavior of CP-net based MultiMedia Systems by
Predicting Likely Components

Carmel Domshlak Solomon E. Shimony
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel

�dcarmel,shimony�@cs.bgu.ac.il

Abstract

We present a scheme for real-time dynamic presentation
of multi-media documents. The system uses CP-nets
to describe the author’s presentation preferences, and
a partial instantiation of component configuration vari-
ables to denote viewer choices. The system presents
components by finding the optimal assignment in the
CP-net constrained by the user choices.
Performance is important, and can be enhanced by pre-
dicting components needed in the near future, as well
as their form. We assume that a viewer event distribu-
tion is given, reducing the prediction problem to that of
finding marginal probabilities over components. For the
single-step prediction problem, we present a low-order
(quadratic) polynomial-time algorithm. Multi-step pre-
diction, is also an easy problem, provided one can com-
pute the distribution over events efficiently.

Introduction
Acquiring and presenting information are knowledge-
intensive activities that in combination have come to be
known as authoring. The task of an author is to collect a co-
herent body of information into a document, structure it in a
meaningful way, and present it in an appropriate manner to a
set of viewers. This traditional notion of authoring commits
the author to the form and the content of the document, well
in advance of the actual presentation time. The author must
both select and order the information to be presented.

An important goal of modern document authoring and
presentation systems is to provide viewer-oriented person-
alization of document content, since presentation can have
a significant impact on how well the information is com-
municated to the viewer. This goals is of particular impor-
tance given the growing volumes of multimedia content, and
has led to great interest in intelligent multi-media presenta-
tion systems both in industry and academia. These systems
exploit their knowledge base in order to dynamically adapt
and draw design decisions according to the runtime require-
ments of user-computer interaction (Bordegoni et al. 1998;
Csinger, Booth, & Poole 1995; Karagiannidis, Koumpis, &
Stephanidis 1998; Roth & Hefley 1993).

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A conceptually new model for representing a multime-
dia document content is proposed in (Domshlak, Brafman,
& Shimony 2001) and illustrated on a prototype system for
web-page authoring and presentation. This model is unique
in two ways. First, it emphasizes the role of the author in
the process, viewing her as a content expert whose knowl-
edge and taste are important factors in how the document
will be presented. The resulting model exhibits dynamic
response to user preferences, but does not require learning
long-term user profiles. Second, to accomplish this behav-
ior, well-founded tools for preferences elicitation and prefer-
ence optimization are used – namely, conditional preference
networks (CP-nets, for short). These tools are grounded in
qualitative decision theory (Doyle & Thomason 1999), and
help the author structure her preferences over document con-
tent off-line, in an intuitive manner, and support fast algo-
rithms for optimal configuration determination.

The move to personalized, context dependent dynamic
presentation of multimedia documents – regardless of the
particular approach to personalization – raises a serious per-
formance issue. Large amounts of information must be
delivered to the user quickly, on demand. To see the is-
sues involved, consider a medical record in which (multime-
dia) patient information is continuously gathered. It arrives
from different clinics, diagnostic centers, homes, laborato-
ries, etc. In addition, some components have several pre-
sentation options. Some presentation options may have to
be pre-generated and stored to be later delivered on demand.
For example, a CT image can be presented either plain, or
segmented. If online, high quality segmentation is infeasi-
ble, it must be performed offline, stored, and then transmit-
ted on demand. A medical record may be accessed remotely
from a web-site, as in the case of web pages in (Domsh-
lak, Brafman, & Shimony 2001), or by other means from a
centralized database serving a number of physically distant
clinics. In all such cases, the physician viewing it should
be provided with the quickest possible response time to her
choices. Two related problems hamper our ability to provide
fast response times to online, user dependent, presentation
needs:

1. The buffer available on the client side may be much
smaller than the size of the requested multimedia docu-
ment.

From: AAAI Technical Report WS-02-15. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

2. Bandwidth limitations are likely to make downloading
even a single document component upon request a lengthy
process.

Thus, when tackling the presentation of media-rich infor-
mation, in addition to the decision what to present from the
whole content of the document (which we address using the
model from (Domshlak, Brafman, & Shimony 2001)), one
must also address the question of how to ensure that this
presentation is done in a timely fashion. Note again that this
problem is not unique to our particular approach to dynamic
document presentation. In fact, a problem of similar flavor,
web-caching, has received much attention in industry and
academia (Wang 1999).

One attractive solution, reminiscent of the idea of caching,
is that of pre-fetching likely components ahead of time. Ide-
ally, we would have liked to download the whole docu-
ment ahead of time. However, the limited buffer size and
communication bandwidth prevent this. Instead, we down-
load the components that are most likely to be requested
by the user, using the user’s buffer as a cache. Thus, in
this paper we extend the model for CP-net based multi-
media systems (Domshlak, Brafman, & Shimony 2001) by
a preference-based optimized prefetching of the document
components. Indeed, we believe that the low computational
complexity of our prefetch algorithms provides another sup-
porting argument for the use of this technique.

Our optimized prefetch approach works as follows: We
assume a given distribution over possible user actions, and
for each document presentation mode of each document
component, we compute its likelihood of being a part of the
document’s next configuration. Using this information, we
can determine what to deploy to the buffer on the client side,
and what to remove (suppress) from this buffer. Somewhat
surprisingly, the CP-net semantics allows us to determine
this information in time which is a low order polynomial in
the number of components. This is important as prediction
should be made in real-time, in order to be useful.

We note in passing that much work exists on improving
performance of caches, (by attempting to predict future us-
age of memory pages, disk blocks, web pages, etc.) in the
(mostly operating systems related) research literature. How-
ever, the problem defined here, in the context of the con-
straints imposed by the particular qualitative decision model
(CP-nets), is completely unexplored, and the above research
is thus largely irrelevant.

In the next section we provide the necessary background
on CP-net based multimedia systems. The following sec-
tion formally defines the prediction problem, and provides
a solution for single-step prediction. We conclude with a
discussion of some aspects of multi-step prediction.

Background

This section provides background on CP-net based multime-
dia systems, originally introduced in (Domshlak, Brafman,
& Shimony 2001). In particular we discuss qualitative pref-
erential statements, the CP-net model, and the overall archi-
tecture of the CP-net based multimedia system.

Qualitative Preferences and CP-nets

Any multimedia document can be considered as a set of
components ���� � � � � ���. Each component is associated
with its content. For example, the content of a compo-
nent may be a block of text, an image, etc. Each compo-
nent may have several optional presentation modes to the
viewer, and these options for �� are denoted by ����� �
������ � � � � ������. For example, CT image in a medical
record can be presented in the flat form, in the segmented
form, or omitted altogether.

The document’s components define a configuration space
� � ������� � � � � �����. Each element � in this space
is a possible presentation (= configuration) of the document
content. Our task will be to determine the preferentially op-
timal presentation, and to present it to the current viewers of
the document. In terms of decision theory, the set of com-
ponents of a document is a set of features, the optional pre-
sentations of a document’s content are the values of the cor-
responding features, and presentations are outcomes, over
which a preference ranking can be defined.

A preference order � over the configuration space is de-
fined as follows: �� � �� means that the decision maker
views configuration �� as equal to or more preferred than
��. This preference ranking is a partial order, and, of course,
it will be different for different decision makers. Given a
preference order � over the configuration space, an optimal
configuration is any � � � such that � � �� for any �� � �.

The preference order reflects the preferences of a deci-
sion maker. The typical decision maker in preference-based
product configuration is the consumer. However, in our ap-
plication the role of the decision maker is relegated to an-
other actor – the document authors. The authors are the con-
tent experts, and they are likely to have considerable knowl-
edge about appropriate content presentation. We would like
the document to reflect their expertise as much as possible.

During the, possibly continuous, creation of the docu-
ment, the authors describe their expectations regarding con-
tent presentation. Therefore, the preference order � repre-
sents the static subjective preferences of the document au-
thors, not of its viewer. Thus, preference elicitation is per-
formed on the document authors off-line once for all subse-
quent accesses to the created document. The dynamic na-
ture of the document presentation stems from the interac-
tion between the statically defined author preferences and
the constantly changing content constraints imposed by re-
cent choices of the current viewers.

These requirements are addressed in the CP-net based
framework for preference-based multimedia documents pre-
sentation, introduced in (Domshlak, Brafman, & Shimony
2001). The CP-net model (Boutilier et al. 1999) is an intu-
itive, qualitative, graphical model, that represents statements
of conditional preference under a ceteris paribus (all else
equal) assumption. In terms of our domain, this conditional
ceteris paribus semantics requires the authors of the multi-
media document to specify, for any specific component�� of
interest, the content presentation of which other components
����� can impact her preferences over the presentation op-
tions of ��. For each content configuration � of �����, the

author must specify her preference ordering over the presen-
tation options of �� given �.

For example, let �� be a component with domain � �
������ �����, and suppose that an author determines that
����� � ��� � ��� and that ���� is preferred to ���� given
that �� appears as ���� and �� appears as ����, all else being
equal. This means that given two configurations that agree
on all components other than �� and in which �� � ���� and
�� � ����, the configuration in which �� � ���� is preferred
to the configuration in which �� � ����.

CP-nets bear a surface similarity to Bayesian networks.
Both rely employ annotated directed graphs in which nodes
correspond to features. In our particular application, each
feature represents the viewing mode of a particular com-
ponent �� of the document. The immediate ancestors of
�� in the graph are associated with �����. Formally, if
�� � ���� � � � � ��� � ���������� then �� and �� are
conditionally preferentially independent given �����. This
standard notion of multi-attribute utility theory can be de-
fined as follows: Let � , � , and � be non-empty sets that
form a partition of feature set 	 . � and � are conditionally
preferentially independent given �, if for each assignment

on � and for each ��, ��, ��, �� we have that

����
 � ����
 �� ����
 � ����
�

Each node of the CP-net contains a table, denoted by
�
� ���� (conditional preference table), which describes
the preferences about the values of the corresponding fea-
ture �� given all possible combinations of �����.

An example CP-net with the corresponding preference ta-
ble is shown in Figure 1. We see that the author specifies
unconditional preference for presenting the content of com-
ponent �� (denoted in figure by ���� � ����). However, if
�� is presented by ���� and �� is presented by ����, then the
author prefers to present the content of �� by ���� (denoted
by ����� � ����� � ���� � ����).

����������

���
��
����������

����
�

����������

���
��

����
�

����������
����������

�� �������

�� ����� � �����

�� ����� � �����
�� ������ � ����� � ����� � ����� � ���� � �����

����� � ����� � ����� � ����� � ���� � �����
�� ����� � ���� � ����� ���� � ���� � �����

�� ����� � ���� � ����� ���� � ���� � �����

Figure 1: An example CP-net

One of the central properties of the CP-net model is that,
given a CP-net 	 , one can easily determine the preferen-
tially optimal outcome (Boutilier et al. 1999): Traverse the
nodes of 	 according to a topological ordering and set the
value of the processed node to its preferred value, given the
(already fixed) values of its parents. Indeed, any CP-net de-
termines a unique best outcome. More generally, suppose
that we are given ”evidence” constraining outcomes in the
form of a partial assignment � on the variables of 	 . De-
termining the best completion of �, i.e., the best outcome
consistent with �, can be achieved in a similar fashion by
projecting � on the corresponding variables in 	 before the
top-down traversal described above. In what follows, we re-
fer to this procedure as Algorithm 1.

CP-net based Multimedia System Architecture
A CP-net based multimedia system consist of two tools - the
authoring tool, and the viewing tool. The central part of the
authoring tool is a module for specification of the CP-net for
the created/edited multimedia document. The result of such
preference-based multimedia document design, is a docu-
ment specifying both what to present and how to present.
Given such a document, the viewing tool is responsible for
reasoning about the preferences, i.e. for an optimal content
reconfiguration after an interaction of the viewer with the
document. In this process, the user’s recent content choices
are viewed as constraints – these items must appear in the
specified manner – subject to which an optimal document
presentation with respect to the author’s CP-net must be gen-
erated. The outline of the system is presented in Figure 2.

Authoring
Tool

Document’s Data

CP−network
 specification

Request
Data

Viewer

3. Presentation

Browser

2. Reconfiguration
of the document
presentation

buffer
1. Interaction

Data

Figure 2: CP-net based multimedia system framework

The viewing tool on the client side is a specialized
browser: Accessing a CP-net based multimedia document
results in shipping the CP-net, and the data of the document
to the browser’s buffer. The amount of the information that
is actually shipped is subject to the size of the buffer. If
some data is subsequently required for document presenta-
tion, and it is not available in the buffer, it will be shipped
from the server side on demand. The general algorithm for
such a browser is presented in Figure 3. Upon downloading
the document, the agent sets all the components to their val-
ues (= content) in the optimal presentation, given the prior
model
 of the viewer’s current interests. Note that the
optimal presentation for many component may be simply to
hide them completely, e.g., due to their current irrelevance.
The representation of the model
, as well as the method
for acquiring the model (or learning it), are system specific.
However, any model
 that explicitly specifies the form of
content presentation for some of the document components
(i.e. constitutes a partial assignment of values to the ��’s)
can be used with the general framework.

Steps 1 and 2 of the Optimized-Presentation algorithm
stand for Algorithm 1. Note that if some data to be presented
is not present in the local buffer, it is shipped online from the
server side (step 3). Now, since the browser is responsible
for reacting to viewer actions by reconfiguring the content
presentation of the document, henceforth it acts in event-
driven fashion, and waits for a viewer’s interaction with the

Procedure Optimized-Presentation
� - CP-net of the multimedia document’s components that

describes the preferences of the author.
� - User model - an assignment to some of the ��’s

loop:

1. Set the values of the components in� addressed by � to the
values specified by �.

2. Traverse � in a topological order and set each unspecified
component �� to its most preferred value ���� w.r.t. to the val-
ues of its predecessors in � .

3. For each component value ���� ����� from steps 1- 2, not avail-
able in the local buffer, download it into the local buffer.

4. Complete the presentation, and wait for user feedback.

5. Update � w.r.t. the received feedback.

Figure 3: Preference-based reconfiguration algorithm

browser (step 4). After some feedback from the viewer is
received, the user model
 is updated (step 5), and recon-
figuration of the document presentation is performed. The
new content presentation will be optimal with respect to the
current user model
, and the CP-net of the document.

Predicting most preferred outcomes
To improve the response time to dynamic changes in the
document’s presentation, we attempt to predict which com-
ponents have a high probability of being required soon.
Memory usage can be optimized by discarding components
that are not likely to be useful in the near future and re-
placing them with those that are likely to be required. Be-
low we show how the probability that a component will be
needed can be computed efficiently. But first, we provide an
overview of the process and define some needed notation.

The Framework
Recall that changes to document presentation are caused
by user actions, e.g. following a link, and their effect de-
pends on the particular design choices made. For example,
in (Domshlak, Brafman, & Shimony 2001), user actions are
limited to requests to display certain items. A list of the last
� requests is maintained, and the optimal set of components
containing these � requests is displayed. More generally,
at each point the user places certain constraints on the pre-
sentation (e.g., “make sure I see these � components”) and
an optimized presentation based on these constraints is se-
lected. An important assumption of our model is that some
statistics on events is available. For example, this is the case
in e-commerce web-sites, most of which maintain user logs.

We model user constraints simply as partial assignments
of presentation choices to different components. That is,
the user may indicate that for component �� a presenta-
tion choice of �� is required. This assignment is partial be-
cause on the value of some components, the user places no
constraints. Thus, when describing user presentation con-
straints, it is convenient to think of ������, the extended
domain of each variable (i.e., component)��. ������ is de-
fined as ����� � ���, where ��� denotes the fact that �� is

unselected, i.e., no constraint is placed on its presentation.
We use �	 to denote the selection state of the set of compo-
nents at time �. �	 is an element of �������� � ��������.

At various points in time, the user indicates a change of
preference. We refer to these changes as events and denote
the set of possible events by �. An event may consist of
adding a new constraint (i.e., selecting a presentation mode
for a component), or relaxing the current constraints by uns-
electing a component (i.e., assigning the value ��� to it). An
event changes the current selection state.

Because the precise manner in which a new event changes
the new selection state may depend on the identity of pre-
vious events, we define the notion of a preference history
state at time �, or preference state for short. The prefer-
ence state at time �, �	, consists of the current selection state
together with the list of all previous events. Thus, �	 �
��	� ��� ��� � � � � �	�. We denote the set of all such states
by �. Finally, the transition function 	 determines how the
selection state (and thus, the preference state) changes as a
result of a new event. That is, 	 � � �� � �.

The Prediction Problem
The prediction problem is to determine the distribution over
the next optimal document configuration. We assume that
we have a model of
 ��	��
�	� – note how the dependence
on previous events enters through the inclusion of previous
events in �	 – and we need to compute the marginal prob-
abilities of the different component configurations after one
or more future events.

Denoting the fact that component �� has the value ����
at time � by ��	

� � �����, we need to compute
 ��
��
� �

����
�
 � for � � �� �� ���, and ���� � �����.1 We begin here
with the problem of predicting the most-likely configuration
of all components one time-step ahead (i.e. only � � �), and
discuss the more general prediction problem later on.

For the single-step prediction problem (defined be-
low), we only need the distribution for the next event

 ��
��
�
 �, which is directly available in the user model.

Definition 1 The single-step prediction problem is: given a
CP-net, a transition function 	 , a state �
 , and a distribu-
tion
 ��
��
�
 �, find
 ��
��

�
�
 � for � � � � �.

In order to use our prediction model in practice, we need
to further specify the transition function 	 . We consider two
types of transition functions:

scheme 1: �	�� depends only on �	 and �	�� as follows:
the event �	�� is an assignment to some ��. Make �	��

the same as �	, except change the assignment to �� to be
as specified by �	��.

scheme 2: �	�� depends only on the � last events (from
��� ��� ���� �	� �	��), as follows. �	�� consists only of
assignments made in events�	����� ���� �	� �	��. If sev-
eral assignments are made to the same variable, the latest

1The standard shorthand, where for any variable � , � ���
stands for the set of probabilities �� �� � ���� � �����, is
used throughout. Thus, we denote the set of values to compute by
� �����

� ��� � (for � � �� ��).

assignment overrides earlier assignments. All variables
that are not mentioned in the last � events are assigned
the value �, i.e., no constraint is placed on them.

The second scheme corresponds to the treatment of user
preferences in earlier work on web page configuration
(Domshlak, Brafman, & Shimony 2001), where � was called
the event queue length and was one of the properties of a
configurable web page). The first scheme is reasonable as
well. Our treatment below covers both cases.

We begin with the intuitively obvious conditioning:

� �����
� ��� � �

�

����

� �
������ �� �����
� �
���

� �
� � (1)

where �
�� ranges over all possible selection states. In
practice, we need only sum over a small number of selection
states reachable from �
 via a single event since for un-
reachable states,
 ��
��
�
 � � 	. The second multiplica-
tive term,
 ��
��

�
�
��� �
 � depends only on�
��. This
is a degenerate distribution:
 ��
��

� � ����
�
��� is 1 just
when ���� is in the most preferred outcome in the CP-net
given�
��, and 0 otherwise. The value of
 ��
��

�
�
���
for a given�
�� can be computed with a single (linear time)
pass over the CP-net (Algorithm 1), for all the marginals
�� � ���� with 	 � � � �, and ���� � �����.

The first multiplicative term in Eq. 1 can be computed
from transition function 	 and the event distribution:

 ��
��
�
 � �
�

� �
� �������
���

 ��
��
�
 �

Algorithm 2
Input: CP-net � , assignment
� , discrete distribution

� ������ over �� � � �
��������
Output: � �����

� �
� � for all �� in the CP-net.

1. Initialization: set variables ���� � �, one for each � � � �
,
and each � � � � �������

2. for � � � to
 do
3. for � � � to �������� do
4. Set
 to
� modified by assignment �� � ����
5. ProbCalculation (� �
� � ������).
6. return the values ���� as � �����

� � ���� �

� �, respectively.

ProbCalculation (� �
� � ������)
1. Determine preferentially optimal assignment � for � ,

consistent with
, according to algorithm 1.
2. for � � � to
 do
3. if ���� � ���	 then
4. ���	 � ���	 � � ������

Figure 4: Single-step prediction for scheme 1

In general, this computation may be hard. However, in
both schemes considered here for the transition function
	 , the summation will be over a small number of possible
events, and additionally most states �
�� will not be reach-
able from �
 by a single event �
��. In particular:

1. For 	 as defined in scheme 1, there are only ����� pos-
sible reachable states, since an event causes a change to
�	 in only one variable, at most.

2. For 	 as defined in scheme 2, there are only����� possi-
ble reachable states as well, since an event assigns a value
to at most one more variable. Here, the oldest event drops
off the queue, thus a new event also causes the value of
one variable �� to become �, i.e., unconstrained. This
change is independent of which event occurs - unless the
event consists of an assignment to ��, but this latter ex-
ception does not contribute to the asymptotic complexity.

Theorem 1 Given a CP-net with � variables, and maximum
domain size �, complexity of single-step prediction under
transition function 	 in schemes 1 or 2, is ������.

The proof is constructive - the algorithms are presented in
what follows. Notice that in our framework the queue size �
is always less than �.

Algorithm 3
Input: CP-net � , � � � recent events 	�
����� 	 	 	 � �

,

discrete distribution � ������ over �� � � �
��������.
Output: Probability distribution � ��
��

� ��
�

0. Create a set of variables ���� � �, one for each � � � �
,
and each � � � � �������

1. Create a template assignment

 on the variables of � :
2. for � � � to
 do

��� � �

3. for � � �� � � � to � do
4. if �� � ���� ����� then

��� � ����
5. let � � � be the set of variables affected by �
����� 	 	 	 � �
.
6. foreach �� � � do
7. if �� � � then � � ������ else � � �����
8. for � � � to �������� do
9.
 �

 and
��� � ����
10. ProbCalculation (� �
� � ������).
11. return the values ���� as

� �����
� � ���� �	�
����� 	 	 	 � �

�, respectively.

Figure 5: Single-step prediction for scheme 2

We begin with the algorithm for scheme 1, where we es-
sentially ignore past events and consider only �
 . The al-
gorithm is presented in Figure 4, and its central procedure is
denoted by Algorithm 2.

For each possible event (lines 2-3) we proceed as follows:
First, we generate the corresponding next user selection state
� (line 4) by updating the current user selection state �
 by
the (variable, value) induced by the event. Then, in line 5,
we pass the resulting user selection state � to the ProbCal-
culation procedure that

1. generates the optimal outcome � consistent with � using
Algorithm 1, and

2. if ���� is the value of �� induced by the optimal con-
figuration �, updates
��� (accumulating
 ��
��

� �

����
�
 �) by the probability of event ���� .

Lines 4-5 are performed for each possible event, thus are
executed ����� times. Complexity of ProbCalculation is
����, resulting in overall complexity of ������.

Figure 5 presents the algorithm for scheme 2, where we
consider only � past events ��	����� � � � � �	�. First, in lines
1-4, we translate the recent events into a current user selec-
tion state �	, and this is done in ����.

The complexity of lines 5-10 is ������ as in Algorithm
2. However, in certain cases we can exploit the fact that the
� �� �. Lines 7 distinguishes between the events involving
values specifies by � (at most �� such events), and those
not specified by �. Total complexity of probability updating
for the former set of events is ������, and for the latter set
is ������. A specialized, linear-time algorithm for the lat-
ter set exists for singly connected CP-nets (discussed in the
full version of the paper), reducing the overall complexity
to ������
 ���. This is essentially linear time, since in a
typical application � and � are bounded by a small constant.

Multi-Step Prediction Problem
It is frequently desirable to perform multi-step prediction,
i.e. to compute
 ��
�	

� � for some � � �. In order to do that,
we first need to model the dependencies between the events
�
��� �
��� � � �. We briefly consider three possibilities:

1. The events are independent given the state at time � .

2. Event�
�	 depends on�
 and on some previous events,
�
��, where � � � � �. This is the most general case.

3. The event�
�	 depends only on the configuration at time
�
���. Note that we do not rule out dependency on pre-
vious events, but here, dependency must be summarized
by the configuration.

In all cases, there are potentially������	� possible reach-
able states at time step �
 �, and if � is very small (e.g.,
1 or 2), we can modify our original selection algorithm to
handle this problem efficiently. Dependencies among the
events can be reasonably modeled as a Bayes network. Of
particular interest is Scheme 2, but with a very short event
queue; especially when the event queue size is 1, as used
in (Domshlak, Brafman, & Shimony 2001). In this case, the
number of reachable states is small. We examine the case of
a single-element queue, under the above three event depen-
dency models. An important point to note here is that the
component configuration in this case does not depend on the
selection state, but only on the last event.

First, consider the case of independent events. Now, the
multi-step prediction problem is the same as the single-step
prediction problem, since neither the state nor the event de-
pend on history. Next, consider the more difficult case of
dependent events. The dependence here is restricted to pre-
vious events. The complexity of prediction is determined by
the complexity of finding the marginal distribution of �
�	,
which can be exponential in � in the worst case. After finding
the marginals, the multi-step prediction problem is reduced,
in this case, to the single-step prediction problem.

The most interesting case is where the next event depends
only on the current component configuration. This assump-
tion makes intuitive sense, as the component configuration is

observable by the user, and hence most likely to directly in-
fluence the next user choice. In this case, we can essentially
use the CP-net as an element of a temporal Bayes network
and use this network to perform prediction. If the descrip-
tion of the conditional probability of the next event given the
configuration is compact, this can be done efficiently, even if
the event depends on many (or all) configuration variables.
This is due to the fact that there is only a small (linear in �)
number of possible optimal configurations – at most one for
each possible selection. The result can be stated as follows:

Theorem 2 For a queue size of 1, the complexity of pre-
dicting the marginals over the configuration � time-steps is
��������.

Proof: By induction on �. At each step we compute the
marginals over the configuration, and the distribution over
the next event, in time�������. The algorithm is as follows.

1. Initialize accumulators ���� and ���� to 0, for all � � � �

and � � � � ��������.

2. foreach possible event ���
 do
(a) Compute the most preferred configuration
.
(b) foreach � � � �
 and � such that
���� � ���� ,

let ���� � ���� � � ����
�.
(c) foreach � � � �
 and � � � � ��������,

let ���	 = ���	 � � ����
�� ����
�� � ���	�
�.
(d) Output all ���� as the marginals over the configuration,

and ���� as the distribution over ���
��.

Conclusion
To support reasonable quality of service levels during mul-
timedia document presentation on devices with limited
buffers and bandwidth limitation, some form of component
caching, or prefetching is required. In this paper, we showed
that an efficient prefetching algorithm can be provided for
the CP-net based presentation approach of (Domshlak, Braf-
man, & Shimony 2001). This algorithm utilizes the special
properties of the underlying CP-net and makes the case for
their use in this context even more attractive. The algorithm
is used in our application to predict likely multimedia com-
ponents in real time. In the longer version of this paper,
we show how the quadratic time algorithm featured in this
paper can be replaced by a more sophisticated, linear time
algorithm.

Integration of the above prediction scheme as a module
within a system for multimedia conferencing being devel-
oped at our institution is underway. Although we expect
performance improvements as a result, it is extremely dif-
ficult to measure quantitatively in the real system, due to
system variability and other uncontrollable factors. Thus,
in order to quantify performance enhancement, we intend to
construct and experiment on an environment that simulates
user choices and communication delays. Simulated perfor-
mance using our scheme will be compared with, on the one
hand a system that does no prefetching, and on the other
hand a system that uses a standard prefetch scheme, based
on prior marginal distribution over components.

Acknowledgments
Partially supported by an infrastructure grant from the Israeli
Science Ministry, and the Paul Ivanier Center for Robotics
and Production Management, Ben-Gurion University.

References
Bordegoni, M.; Faconti, G.; Maybury, M.; Rist, T.; Rug-
gieri, S.; Trahanias, P.; and Wilson, M. 1998. A Standard
Reference Model for Intelligent Multimedia Presentation
Systems. Computer Standards and Interfaces 18(6-7):477–
496.
Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D. 1999.
Reasoning with Conditional Ceteris Paribus Preference
Statements. In Proc. of UAI-99, 71–80.
Csinger, A.; Booth, K. S.; and Poole, D. 1995. AI Meets
Authoring: User Models for Intelligent Multimedia. Artifi-
cial Intelligence Review 8:447–468.
Domshlak, C.; Brafman, R.; and Shimony, S. E. 2001.
Preference-based Configuration of Web Page Content. In
Proc. of IJCAI-01, 1451–1456.
Doyle, J., and Thomason, R. 1999. Background to Quali-
tative Decision Theory. AI Magazine 20(2):55–68.
Karagiannidis, C.; Koumpis, A.; and Stephanidis, C. 1998.
Adaption in IMMPS as a Decision Making Process. Com-
puter Standards and Interfaces 18(6-7).
Roth, S., and Hefley, W. 1993. Intelligent Multimedia Pre-
sentation Systems: Research and Principles. In Intelligent
Multimedia Interfaces. AAAI Press. 13–58.
Wang, J. 1999. A Survey of Web Caching Schemes
for the Internet. ACM Computer Communication Review
29(5):36–46.

