
A Calculus for Reasoning About Containment and Object Access
Michael Pool

Information Extraction and Transport, Inc.
1911 North Fort Myer Dr., Suite 600

Arlington, VA 22209
703-841-3500, 703-841-3501(fax)

mpool@iet.com
Keywords: container reasoning, qualitative spatial reasoning, molecular biology, logic, spatial accessibility

Abstract

In this paper we analyze two different notions of
containment that are relevant to reasoning about physical
systems, a notion of being inside versus a notion of being
restricted. We develop a formal vocabulary that allows us
to represent and reason about restrictive containment and
formalize three kinds of accessibility that are each salient to
attempts to reason about the ability of pairs of objects in a
system to interact. We also consider the relation of this
calculus to the RCC-8 and potential applications.

Introduction

In this paper we discuss a formal representation of a
physical system with respect to the containers and barriers
that exist within the system. The formalism allows us to
reason efficiently about the accessibility relationships
between objects within the system. The formalism is
intended to be compatible with existing qualitative spatial
reasoning methods. It is motivated by a desire to extend
work that has been done to represent central notions in
biological structure (Cohn 2001) and biological process
simulation (Cui Cohn Randell 1992). However, we
anticipate that the formalism is sufficiently general to be
applicable to any system in which containment is relevant,
e.g., computer network security, building security analysis,
etc.

Containment
Before we introduce containment vocabulary, it is useful to
consider two notions of containment that are relevant to
reasoning about physical systems. The first is a strictly
spatial notion concerning the location of one object with
respect to the boundaries of another. Something contains
something else, depending on the context, if and only if the
object is inside, located within the convex hull of, encircled
by, wrapped by, or “located within” the second object. In
this sense of containment, a car contains passengers,
playgrounds contain children and a stew contains potatoes,

 Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

etc. Let us call this the locational sense of containment.
However, there is a second notion of containment
corresponding to the idea that a prison contains a prisoner
in a way that it does not contain a prison guard. This sense
of containment has to do not just with being located inside
something else but also with being constrained from
exiting the object within which it is inside. Let us refer to
this as the restrictive sense of containment. The restrictive
sense of containment should be of interest in attempts to
model dynamic physical systems. Useful models of such
systems may require the ability to represent and reason
about the accessibility of objects or spaces within the
system. This calculus is intended for such knowledge
representation efforts.

In the rest of this paper, unless otherwise noted, we use
‘containment’ in this specialized “restrictive” sense.
When we intend the locational sense of containment we
simply use ‘inside’ or, if absolutely necessary, refer to
“locational containment” to disambiguate from the
restrictive notion of “contains”.

Before launching into the formalization, it is useful to
consider the representational needs that motivate this
effort. Often containment requires considerations over and
above simple considerations of relative proximity as
formalized for instance in the RCC-8 (Cohn, Bennett,
Gooday, Gotts, 1997) or even quantitative size
considerations. Cell biology provides interesting examples
such as cases of diffusion across lipid bilayers. In a
standard cell biology textbook we encounter claims that
small nonpolar molecules, unlike charged molecules, such
as molecular oxygen and carbon dioxide, readily diffuse
across a lipid bilayer.

The smaller the molecule and, more importantly, the
fewer its favorable interactions with water (that is, the
less polar it is), the more rapidly the molecule diffuses
across the bilayer. (Alberts 1998)

and

From: AAAI Technical Report WS-02-17. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

… Lipid bilayers are highly impermeable to all ions
and charged molecules, no matter how small. (Alberts
1998)

These examples underscore some important facts about
containment. First, whether or not an object contains
another object is not solely a function of object size.
Hence, it is not possible to reason about containment solely
in terms of the size of the objects and the size of the pores
in the potential containers. An object’s ability to exit
another object may be based on its size or features of the
contained object that have little to do with size and non-
size related features of the container. Note, for instance,
that an mRNA molecule in a eucaryotic cell is able to leave
the cell after it has undergone capping and
polyadenylation. These processes do not decrease the size
of the molecule but they alter its stability and ability to
pass out of the nucleus intact. A simpler example of how
non-spatial changes, or at least changes that wouldn’t
likely be represented with spatial vocabulary, in the
container can change its containment status is unlocking
the door to a cell. The point is that state descriptions in a
qualitative reasoning system will often have to pay explicit
attention to issues of containment and permeability in any
given state description. Process descriptions will similarly
need to consider how processes affect containment and
permeability. It would be difficult to reduce these
properties to the properties typically considered in
qualitative spatial reasoning.

In the first section below, we present and define the terms
that we use for representing the relatively generic spatial
relations required to reason about containment and
accessibility and we compare and justify this scaled-back
spatial representation with the RCC-8. In the second
section we discuss the representation of containment and
accessibility and how to reason about these notions within
a system. We conclude with some comments and
suggestions for the implementation of these formalisms
within a simulation process or plan reasoning techniques.

We assume a second order logic which, for purposes of
facilitating reasoning could be divided into a many-sorted
first order universe containing physical objects partitioned
into non-containers and potential containers, objects that
could contain other objects. However, we do not separate
out these sorts here, quantifying over all objects in our
domain. The logic required for this representation
becomes second-order because we quantify over first-order
relations (relations that are defined as sets of n-tuples of
first order objects) in two supplementary definitions that
we introduce for type-level reasoning.

 In our specification below we reserve lowercase variables,
from the end of the alphabet, v,w,x,y,z, to range over the
physical objects and uppercase letters from the middle of
the alphabet, P,Q,R, as variables ranging over the first-
order relations. We use a,b,c,d as constants denoting

specific physical objects. We denote numbered axioms
with an A, (A2) is the second axiom, definitions with a D
and provable propositions with a P.

Basic Spatial Relations

A prerequisite for restrictive containment is, of course, that
the contained object be in the appropriate spatial
relationship with potential container, i.e., that the contained
object be inside the potential container. The inside relation
denotes the relationship of locational containment and as
such is quite general by design. Just as we allude to
different senses of locational containment when we say that
a “building contains people” as compared to when we say
that the “salad contains carrots” or especially when we say
things like “the firewall contains the entire network”, we
want to avoid imposing a very particular spatial
implementation on the notion of inside as we develop it
below.

The inside relation is given as a primitive of the system.
We do not use mereological notions to clarify its intended
meaning because we make no assumptions about the kind
of simple “insideness” situations that it will be needed for
and because it supports our reasoning about containment2
without requiring such support. inside is an irreflexive
(A1) asymmetric (A2) and transitive (A3) relation as
specified in 1-3 below:

(A1) "x[ÿinside(x,x)]
(A2) "x"y[inside(x,y) Æ ÿinside(y,x)]

(A3) "x"y"z[[inside(x,y) Ÿ inside(y,z)] Æ
inside(x,z)]

The second relevant relation is the ‘outside’ relation.
Intuitively, it is the opposite of being inside and we detail
axioms constraining its use below. A good comparison
point here is the OUTSIDE relation presented in (Randell
et al 1992). In order to keep the vocabulary generally
applicable we leave our definition more general but it
should not be inconsistent with the more specific
definition. We discuss this further below. We intend that
outside apply to most situations in which two neither of
two distinct objects bear the inside relation to the other,
but see overlaps below. The outside relation is irreflexive,
above, and symmetric. Also, outside(x,y) is inconsistent
with ins ide(x ,y) , i . e . , i n s i d e and outside cannot
simultaneously hold of the same pair of objects.

(A4) "x[ÿoutside(x,x)]

(A5) "x"y[outside(x,y) Æ outside(y,x)]

(A6) "x"y[inside(x,y) Æ ÿoutside(x,y)]

For completeness sake, we introduce three other basic
spatial relations as well: overlaps, equals, and inside-1.

overlaps is irreflexive (A6), symmetric (A7) and neither
transitive nor antitransitive. Also,

(A7) "x[ÿoverlaps(x,x)]
(A8) "x"y [overlaps(x,y) Æ overlaps(y,x)]
(A9) "x"y[overlaps(x,y) Æ [ÿinside(y,x) Ÿ

 ÿoutside(y,x)]]

Typically, a necessary condition for the overlaps relation
holding of two distinct objects is that some proper part of
one of the object be found within the region defined by the
convex hull of the other. equals is the equality relationship
and is, of course, reflexive, symmetric and transitive.

(A10) "x[equals(x,x)]

(A11) "x"y[equals(x,y) Æ equals(y,x)]

(A12) "x"y"z[[equals(x,y) Ÿ equals(y,z)] Æ
 equals(x,z)]

(A13) "x"y[equals(x,y) Æ [ÿoverlaps(x,y) Ÿ
ÿinside(x,y) Ÿ ÿoutside(x,y)]]

We introduce the relationship of inverse insideness, inside-

1, so as to round out the set of basic relations. It can be
defined, however, in terms of the inside relation.

(D1) inside-1(x,y) ≡def inside(y,x)

(A14) "x"y[inside-1(x,y) Æ [ÿoverlaps(x,y) Ÿ
ÿequals(x,y) Ÿ ÿoutside(x,y)]]

(D2) atLeastPartiallyInside(x,y) ≡def [inside(x,y) ⁄
 overlaps(x,y)]

From (D1) and (A1-A3) it follows that inside-1 is
irreflexive, asymmetric and transitive. The result is a set of
relations, {inside, inside-1, outside, equals, overlaps}, that
is pair-wise disjoint and jointly exhaustive, i.e.,

(A15) "x"y [(inside(x,y) ⁄ outside(x,y) ⁄
 overlaps(x,y) ⁄ equals(x,y) ⁄ inside-1(x,y)]

To facilitate reasoning about restrictive containment we
introduce three other spatial relations. dirInside denotes
the relation of being directly inside. dirOutside denotes the
relation of being directly outside some other object and not
encompassed by any other object. The between relation is
ternary and holds when for a pair of objects there is some
third object such that one element of the pair is outside of it
while the other is inside it. The precise definition of these
relations is below:

(D3) dirInside(x,y) ≡def [inside(x,y) Ÿ
ÿ$z[atLeastPartiallyInside(z,y) Ÿ inside(x,z)]]

(D4) between(x,y,z) ≡def [inside(x,z) Ÿ outside(y,z)]

(D5) dirOutside(x,y) ≡def [outside(x,y) Ÿ
ÿ$z[between(x,y,z)] Ÿ ÿ$v[(between (y,x,v)]]

Because inside(x,y) is implied by dirInside(x,y) we can
demonstrate its irreflexivity (P1) and asymmetry (P2).1

(P1) "x[ÿdirInside(x,x)]

(P2) "x"y[dirInside(x,y) Æ ÿdirInside(y,x)]

We can demonstrate that it is anittransitive as follows:

Suppose that dirInside was not anittransitive, i.e., for some
a,b,c, dirInside(a,b) , dirInside(b,c) and dirInside(a,c).
Then ins ide(a,c) by (D3) and ÿ $v[inside(v,c) and
ins ide(a ,v)] . But, also from (D3) and the given
information, inside(b,c) and inside(a,b). Hence, there can
be no such a,b,c. dirInside is antitransitive.

(P3) "x"y"z [[dirInside(x,y) Ÿ dirInside(y,z)] Æ
 ÿdirInside(x,z)]

Given (D5), (A4) and (A5) it is also easy to show that
dirOutside is irreflexive and symmetric.

Figure 1 illustrates the difference between dirInside and
inside. In the pair of ovals on the left, dirInside(a,b) but on
the right, ÿdirInside(a,b) because between(a,b,c). Figure 2
helps to clarify the between relation. In Scenario 1 of
Figure 2, ÿbetween(a,c,b), despite its consistency with
natural language use of ‘between’, but the relation would
apply to the objects in Scenario 2 because inside(a,b) and
outside(c,b).

1 For instance, consider the proof for irreflexivity.
Suppose that dirInside was not irreflexive, i.e., for some a,
dirInside(a,a). By (D2) inside(a,a) but by (A1), ÿinside(a,a.
Hence, we can reject the hypothesis that dirInside is
irreflexive. The proof for the asymmetry of dirInside
would proceed similarly.

Figure 1: dirInside(a,b) and not
d ir Ins ide(a ,b)

Figure 2: The ‘between’ relation

Comparison with RCC-8
Readers interested in implementing a more carefully
defined notion of the locational sense of ‘inside’ may want
to refer to the notions of insideness as spelled out in
(Randell, Cohn and Cui 1992). They offer an
axiomatization that captures the typical meaning of
‘inside’. Let RegionFn(x) denote the region occupied by x
in our state description and ConvHullFn(x) denote the
region encompassed by the convex hull of the object x.
Their variables in the original definition range over spatial
regions rather than objects so we translate their definition
in (R).

(R) inside(x,y) ≡def
[discrete(RegionFn(x),RegionFn(y)) Ÿ
part(RegionFn(x), ConvHullFn(y)]

Presumably R will be consistent with many applications of
the inside relation we offer here but it can be easily
abandoned insofar as nothing in the remainder of the
accessibility and containment formalization we develop
depends on this. In other reasoning contexts, being P-
INSIDE (Randell, Chui and Cohn, 1992) may be
practically equivalent to inside. Nevertheless, for the
purposes of illustrating some of these relations we assume
that something like the R definition applies.

For most applications of this calculus, an object a is inside
an object b when all or almost all of a’s parts are found
inside the boundaries of object b. Of course, what we
mean by ‘almost all’, ‘part’ and ‘boundary’ is purposefully
left unspecified here. It suffices to note that whether or not
an object a is inside an object b in a system at a given point
in time will supervene on facts about a’s spatial location
relative to b at that point in time. The necessary and
sufficient conditions for insideness will depend on the kind
of accessibility that we’re interested in. In fact, perhaps the
notion of spatial insideness isn’t necessary for accessibility
reasoning at all. One could imagine applying the reasoning
system below to some network security system for bank
accounts in which the notion of insideness is a metaphor
for being guarded by some security system (e.g., inside the
firewall) in which case the spatial notion of insideness is
completely irrelevant. Nevertheless, in systems in which
we want to reason about containment some kind of
insideness will be a prerequisite.

Finally, if we wish to relate this system to a system for
reasoning in two dimensions and implement only the RCC-
8 relations we might naturally map our relations as follows.
Let us assume that we are considering a fixed system, i.e.,
a set of objects located at a specific space-time point.

inside(x,y) ≡def
properPart(RegionFn(x),ConvHullFn(y))

outside(x,y) ≡def discrete(RegionFn(x),RegionFn(y))

overlaps(x,y) ≡def
partiallyOverlaps(ConvexHullFn(x),ConvexHullFn(y))

Note that if we were to implement these above definitions
within our calculus we would be able to prove the
following assertion. However, we will posit it as an axiom:

(A16) "x"y"z[[inside(x,y) Ÿ inside(x,z)]Æ
ÿoutside(y,z)]

In summary, we have purposely kept our suite of spatial
representation relations vague so as to facilitate application
to a wider variety of applications and because our notions
of accessibility do not rely on the ability to make fine
grained spatial distinctions about juxtaposition and contact.
We also note that the mereological considerations are fairly
limited at present and we have done little to consider how
mereological consideration affects permeability and
accessibility. Finally, we stress that our arguments for our
spatial relations are the objects themselves rather than the
regions occupied by the objects. This is essential because
the permeability of barriers and containers requires
consideration of the objects rather than their regions.

a

b

c

a

b

ca

Scenari
o 1

b
c

a

b

a

Scenari
o 2

Accessibility

Here we turn to the question of accessibility. Informally,
when we claim that b is accessible to a we mean that either
there are no objects between, in the sense specified in (D4),
a and b or the objects between a and b are unable to restrict
a from getting at b. Formalizing the restrictiveness of
objects requires the introduction of two more primitive
relations, inPerm and outPerm. inPerm(x,z) is intended to
represent the fact that the perimeter of z is permeable to x
such that x could pass from being directly outside
(directlyOutside) z to being directly inside (directlyInside)
z. Similarly, outPerm(x,z) is intended to represent the fact
that the perimeter of z is permeable to x such that x could
pass from being directly intside (directlyInside) z to being
directly outside (directlyOutside) z. Both relations are
irreflexive. 2

(A17) inPerm(x,y) ≡def "x"y[ÿinPerm(x,x)]

(A18) outPerm(x,y) ≡def "x"y[ÿoutPerm(x,x)]

We require these extra notions because accessibility
concerns not just the spatial configurations but the extent to
which the configured objects present a barrier. The
materials in the cupboard under the sink become accessible
to the toddler if she is able to open the cupboard door,
whether the door is closed is irrelevant to accessibility
given the door-opening skill.3 We define permeable(x,y)
as follows:

(D6) permeable(x,z) ≡def [inPerm(x,z) Ÿ
outPerm(x,z)]

In many applications it is not felicitous to insist that either
inPerm(a,b) or ÿinPerm(a,b) for any two objects a and b
in the system. As our cell biology quotes above indicate,
the ability of molecules to diffuse through a cell membrane
is a state of affairs that requires representation of degree of
permeability. In general, permeability does in fact admit of
degree and within systems for which partial permeability is
relevant to a state description we may need to implement
this system in a Bayesian network so as to allow for the
specification of probabilities of penetration for given
objects or object types. Our thinking here is that
permeability is best understood in terms of breaching. If
an object is able to transverse another object only if a
breach of some sort has occurred, then we would not deem
the object permeable. If, as a default rule, object a is able
to pass through object b , then we might apply the

2 If we divide our domain of first order objects into potential containers
and non-containers then the second arguments for inPerm and outPerm
should be constrained to be containers.
3 We might spell out the meaning of these relations in modal terms, e.g.,
inPerm(x,y) means that given the current state of the system,
dirOutside(x,y) and some z, such that dirInside(z,y), ‡[dirInside(z,y)
Ÿcontact(x,y)]. However, we leave it as a primitive notion for now.

permeability relation. In general we would acknowledge
that it is very difficult to reason accurately about
containment, especially with respect to fluids and the like,
without invoking some uncertainty reasoning but we limit
our considerations to logical rules about containment for
the present.

We also note the significance of the ability to tease out the
inward-outward direction of the permeability relation. It is
an important characteristic of many physical systems, not
to mention an untold number of television programs
involving characters stuck in storage closets, that objects
are able to easily pass into a container but are able to leave
the container only with great difficulty. In other words,
inPerm(x,z) and ÿoutPerm(x,z).

 Given this notion of access and permeability, we can now
define containment as follows:

(D7) containedBy(x,y) ≡def [inside(x,y) Ÿ
 ÿoutPerm(x,y)]

(D8) blockedBy (x,y) ≡def [outside(x,y) Ÿ
ÿinPerm(x,y)]

In the sections below, when discussing an object, y, we
refer to the objects such that blockedBy(x,y) as a ‘barrier’
with respect to y and the objects such that containedBy(x,y)
as a ‘container’ with respect to y.

These new relations give us a means by which to define
accessibility for any two objects. Consider the following
relation:

(D9) inBarrierBetween(x,y,z) ≡def [blockedBy(x,z) Ÿ
 inside(y,z])

Assertions of the form inBarrierBetween(a,b,c) can be
interpreted as “a cannot access b because c is between
them and blocks its progress.”

(D10) outContainerBetween(x,y,z) ≡def
 [containedBy(y,z) Ÿ outside(x,z)]

Assertions of the form outContainerBet(a,b,c) can be
interpreted to mean that b cannot access a because b is
contained by c . Finally we define the notion of
accessibility of one object to another:

(D11) acc(y,x) ≡def ÿ$z[inBarrierBetween(x,y,z) ⁄
outContainerBetween(y,x,z)]

As we would expect, from these definitions, we can prove
assertions such as the following4:

4 P roo f tha t "x"y"z[[inPerm(x,z) Ÿ d ir Ins ide(y.z) Ÿ
dirOutside(x,z)] Æ acc(y,x)]
Consider a,b,c, such that inPerm(a,c), dirInside(b,c),
dirOutside(a,c). Can we show that acc(b,a)?

(P4) "x"y"z[[inPerm(x,z) Ÿ dirInside(y.z) Ÿ
 dirOutside(x,z)] Æ acc(y,x)]

(P5) "x"y"z[[outPerm(x,z) Ÿ dirOutside(y.z) Ÿ
 dirInside(x,z)] Æ acc(y,x)]

The utility of the relations described in (D7)-(D11) is that
they allow us to describe the state of a physical system at a
given moment in time and analyze it for potential problems
and possibilities in terms of the accessibility of certain
objects. For example, we can consider vulnerabilities in a
computer network, the effectiveness of a security alarm
system or perform more accurate in silico experiments
about biological systems. Given a representation of a
system in terms of the inside and outside relation as well
as the expression of the capabilities of the objects in the
system to easily transverse containers, we are now able to

Let us assume that ÿacc(b,a). Hence, let us suppose that
there is some d such that [inBarrierBetween(a,b,d) ⁄
outContainerBetween(b,a,d)] (1)

Suppose that inBarrierBetween(a,b,d)
Then, by (D9) blockedBy(a,d) (2) and inside(b,d) (3). By
(D7) and (2), outside(a,d) (4) and ÿinPerm(a,d) (5).
Consider the relationship between d and c. By (A15),
either inside(d,c), outside(d,c), inside-1(d,c), equals(d,c),
overlaps(d,c).
If equals(d,c), then inPerm(a,d) and ÿinPerm(a,d). So
ÿequals(d,c).
From (D2), (3) and the fact dirInside(b,c) we can infer
that ÿatLeastPartiallyInside(d,c), i.e., ÿinside(d,c) and
ÿoverlaps(d,c).
But inside-1(d,c), means that inside(c,d) (D1), so, given
(4), we can show that between(c,a,d) contrary to the fact
that dirOutside(a,c) which, by (D5) implies that ÿ$z
between(c,a,z). So ÿinside-1(d,c).
So, ÿinBarrierBetween(a,b,d).

I f (1) and ÿinBarrierBetween(a,b,d), then,
outContainerBetween(b,a,d).
Suppose outContainerBetween(b,a,d), then, from (D10),
containedBy (a,d) (6) and outside(b,d) (7)
and from (6) and (D7), inside(a,d) (8) and
ÿoutPerm(a,d) (9).

Consider the relation between d and c.
If ÿ equals(d,c), then, from (D4), (7) and (8),
between(a,b,d). But dirOutside(a,c), (hyp.)
so, from (D5), ÿ $ v[between(a,b,v)]. Hence
ÿÿ(equals(d,c).

But, suppose equals(d,c). From our initial hypothesis,
dirOutside(a,c) and so, from (D5), outside(a,c). But
assuming equals(d,c) and (8), we can show inside(a,c).
But given (A6), this generates a contradiction. Hence,
ÿoutContainerBetween(b,a,d).

Hence, the assumption that ÿ acc(b,a) leads to a
contradiction. So acc(b,a) and we demonstrate the
theorem by universal generalization.

pose queries about unidirectional accessibility. For
example, if we are concerned about preventing object a
from accessing object b, we can ask:

inbarrierBetween(a,b,?x)

In other words, “Which barriers block a from coming in to
meet b?” If we want to query as to whether there is
anything that keeps b in and prevents it from accessing a,
we can ask:

outContainerBetween(b,a,?y)

If there are no bindings for either of these we conclude
acc(a,b). Note that acc is not a symmetric relationship as
there may be objects, z such that inside(a,z), inPerm(b,z)
but ÿoutPerm(a,z). In other words, a is accessible to b but
b is not accessible to a.

Observe that the above rules concerning accessibility
assume that in the attempt to generate a path through
containers and barriers, the barriers and containers cannot
themselves be used to transport objects in the system and
that the accessed object will not itself move so as to
become more accessible. However, let us briefly consider
how to reason about accessibility in the situations in which:

a) Both objects move: the containers and barriers
remain fixed but the two objects of interest could
both exploit permeability properties in generating
a path to a state in which both objects are
accessible to each other. We call this “weak
accessibility.”

b) Containers move: Some or all of the containers (in
the locational sense, at least) and barriers do not
remain stationary but are also able to exploit
permeability properties and transports container
contents such that contained objects become
accessible to each other. For example, consider a
border crossing that must be crossed by car and
not on foo t . We migh t say
o u t P e r m (c a r A , B o r d e r C) or
outPermeableType(Car,BorderC)(where ‘Car’
denotes the property “being a car”, see below).
The border is outPerm for the car but not for the
pedestrian. However, since the car is inPerm and
outPerm for the pedestrian, s/he can use this car to
cross the border. Of course, this is the
accessibility maneuver exploited in the Trojan
Horse story of mythology. Let us call this
“indirect accessibility.”

Weak Accessibility
Suppose that we now want to consider two objects a and b
from the perspective of determining whether or not they
are able to exploit existing permeability properties in the
various objects that serve as potential barriers and

containers so as to be able to move to a state such that
ÿ$[between(a,b,x)]. When it is possible for a and b to get
from their initial location by traversing permeable
boundaries, then we say that weaklyAcc(a,b).

But when else can we claim that the weaklyAcc relation
holds between two objects? We need to determine whether
there are any objects in the system that are accessible to
both of the objects.

(D12) weaklyAcc(x,y) ≡def $z[[directlyInside(x,z) Æ
acc(x,y)] Ÿ [directlyInside (y,z) Æ acc(y,x)] ⁄
[[directlyOutside(y,z) Æ acc(y,x)] Ÿ
[directlyOutside(x,z) Æ acc(x,y)]]]

This definition states that if there is some point in the
system accessible to both a and b, z in the definition, then
the objects are accessible to each other. From the
definition of weaklyAcc it is straightforward to prove the
symmetry of weaklyAcc and that weaklyAcc(x,y) is implied
by acc(x,y) and acc(y,x).

(P6) "x"y[weaklyAcc(x,y) Æ weaklyAcc(y,x)]

(P7) "x"y[[acc(x,y) ⁄ acc(y,x)] Æ weaklyAcc(x,y)]

In the section ‘Graph Theory Tests for Accessibility’ below
we discuss how to articulate a query about weak
accessibility in graph theoretic terms.

Indirect Accessibility
The other accessibility problem that we want to address is
that of the potential ability of objects to move objects that
they contain. Consider Figure 3. Suppose that we wanted
to know whether acc(c,d) . Further suppose that
outPerm(c,b), ÿinPerm(d,a) and that outPerm(b,a) but
ÿoutPerm(c,a). This means that c would not be able to
exit b and then pass through a. However, if b were to exit
a while containing c, and then a were to exit b, a would be
able to access d . Let us call such accessibility,
indirectAccessibility.

Figure 3: Illustration for explaining
Trojan Horse (indirect) accessibility

We define indirect accessibility, indirectAcc as follows:

(D13) indirectAcc(x,y) ≡def vz[[[inside(x,v) Ÿ
inside(y,z) Ÿ weaklyAcc(y, z)] Ÿ
[directlyOutside(x,z) Æ acc(y,x)] Ÿ

[directlyOutside(y,v) Æ acc(x,y)]] ⁄
[[inside(x,v) Ÿ weaklyAcc(v,y)] Ÿ
[directlyOutside(y,v) Æ weaklyAcc(x,y)]] ⁄
[[inside(y,z) Ÿ weaklyAcc(v,x)] Ÿ
[directlyOutside(x,z) Æ weaklyAcc(x,y)]]]

The three main disjuncts in this lengthy definition
correspond respectively to the situations in which both x
and y could be transported by one of the objects to which
they bear the inside relation, the situation in which just x
would need to be transported by one of its containers and
the situation in which just y would need to be transported
by one of its containers. Of course we can imagine this
being iterated again so that we determine whether the
containers of x and y are indirectly accessible, etc.

Graph Theory Tests for Accessibility
If our objective is to determine whether or not weak
accessibility or indirect accessibility exists we would be
hard pressed to use a first order reasoner to efficiently
launch a query based on our definitions in (24) and (25).
We note that the problem of searching for weak
accessibility between two objects can be easily translated
into a simple graph theory question. If we’re interested in
whether or not a and b are accessible or weakly accessible
to each other we take all the objects z such that
between(a,b,z) or between(b,a,z) as well as a and b and
make them nodes in a graph. We then insert directed links
in the graph in the following way. If directlyInside(x,y) and
both inside(b,y) and outPerm(b,x) or both inside(a,y) and
outPerm(a,x) we insert a link from the x node to the y node.
Also, if directlyOutside(x,y) and both outside(b,x) and
inPerm(b,y) or both outside(a,x) and inPerm(a,y), we insert
a link from x to y. Given such a representation, whether or
not acc(x,y) becomes a question of whether there is a path
from the x node to the y node. Whether or not
weaklyAcc(x,y) is a question of whether or not there is a
node z in the graph such that there is a path from x to z and
a path from y to z. This could be applied to questions about
indirectAccessibility(x,y) as well by performing the above
procedure two or more times, first to the containing1
objects that contain our objects of interest and then to the
objects of interest, in accordance with the definition given
above.

Relations for Second Order Objects
Of course, much reasoning about accessibility and
containment occurs at the type level. For example, that a
lipid bilayer can allow a particular water molecule to pass
through should be derivable from a more general law
relating cells with lipid bilayer membranes and water rather
than from an explicit assertion about each water molecule
in the system we’re representing. Hence, we appeal to
second order objects or relations in our domain. We posit
relations that hold first between first order objects and
unary relations and between pairs of relations.

a b
c

d

(D14) inPermeableType(P,x) ≡def "y[P(y) Æ
inPerm(y,x)]

and we’d define outPermeableType(P,x) in a similar
manner, substituting outPerm in for inPerm in the
definition in (26).

This instance-type level definition would be useful if we
wanted to note that a particular object has achieved inward
or outward permeability for a certain kind of object. For
example, a leaky raincoat allows water to go through it.
However, permeability is typically easily represented as a
relation between types. For example, let the relation C be
the property of being a cell, or perhaps being encompassed
by a lipid bilayer. Let the relation ‘IM’ denote the property
of being an ionic molecule. Then we note,
inPermeableTypes(IM,C). More generally, we define the
outPermeableTypes in (27) and this applies, mutates
mutandis, to inPermeableTypes as well.

(D15) outPermeableTypes(P,Q) ≡def "x"y [[P(x) Ÿ
Q(y)] Æ outPerm (x,y)]

Application for Process Reasoning

Finally, we have presented these relations as binary and
ternary relations that hold between ordered pairs and
ordered triplets of objects. These relations describe system
states at a given moment in time. However, it is also
important to note that the accessibility and permeability
relations are best understood as constraints on how the
system can progress over time assuming no changes in
permeability relations. For example, when we say that
acc(a,b) we mean that given the current state of the system
there is a possibility that a future state of the system will
have a and b in contact with each other. Similarly,
inPerm(a,b) means that future states requiring a passage
from a into b are not ruled out. As such we want to be
more explicit about how these relations might be
implemented in a planning or process-reasoning
environment. Below we give some examples of how the
vocabulary used above might be implemented in actual
process reasoning. We indicate how a STRIPS-like
planning vocabulary might implement the accessibility
vocabulary and some examples of how the vocabulary
above might help in representing some example process
descriptions in virology and cell biology.
operat ion : gainsShell (A, B) (a new container is
generated.)

precondition:
add: (inside A,B)

operation: enters (A,B) (an object enters another objects)
precondition: (overlaps(A,B) ⁄directlyOutside(A,B)),
inPerm(A,B)
add: inside(A,B)

delete: outside(A,B)

operation: losesShell (A,B) (some container1 or
containment1 is removed from the system. This kind of
operation is particularly salient to cell biology where
membranes often dissolve or dissipate.)

precondition: inside(A,B)
add:
delete: inside(A,B)

operation: (exits A,B) (Object A leaves B, but B still
exists.)
precondition: directlyInside(A,B),outPerm(A,B)

add: outside(A,B)
delete: inside(A,B)

operation: losesContainmentStatus (A,B) (B becomes
permeable to A, i.e. will allow A to exit if A is inside B.)

precondition:
add: outPerm(A,B)

delete: ÿoutPerm(A,B) (if that was stated in the system)

operation: losesBarrierStatus (A,B) (B becomes
permeable to A, i.e. will allow A to enter if A is outside B.)

precondition:
add: inPerm(A,B)

delete: ÿinPerm(A,B) (if that was stated in the system)
More particularly, we also note how aspects of processes in
cell biology or virology can be represented by this
vocabulary. Virus life cycles require consideration of
membrane components and virus types in order to reason
about the inPerm relation with respect to the virus and a
cell. The viral life cycle involves the formation of several
new containers and the destruction or penetration of the old
ones and the abilities of various parts of the cell or virus
change rapidly with respect to their ability to enter or exit
various parts of the cell. Two example passages, Passage
A and B, taken from a description of the vaccinia virus life
cycle taken from (Flint 2000) are given and represented
below:

Passage A: The mechanisms by which vaccinia virus
attaches to and enters susceptible host cells are not
well understood. The result is release of the core into
the cytoplasm, indicating that entry requires fusion of
viral with cellular membranes.

To start, we would represent this passage by noting:

inPermeableType (Cell, VacciniaVirus)

where ‘Cell’ denotes the property of being a cell and
‘VacciniaVirus’ denotes the property of being a vaccinia
virus. The second sentence might be represented as:

"x"y"z [[Cell(x) Ÿ VacciniaVirus(y) Ÿ attached(x,y)]
Æ inPerm(y,x)]

Passage B: a spherical particle that is believed to
possess a double membrane acquired upon wrapping
of the membranes of the cellular components of the
cis-Golgi network about the assembling particle. The
virus particle then matures into the brick-shaped
intracellular mature virions (IMV), which is released
only upon cell lysis.

Two of the salient points from Passage B can be
represented as:

"x[SphericalParticle(x) Æ xy[Membrane(x) Ÿ
Membrane(y) Ÿ dirInside(x,y)) Ÿ dirInside(z,y)]

"x"y [[Cell(x) Ÿ inside(y,x) Ÿ IMV(y) Ÿ CellLysis(z)
Ÿ patient(x,z)] Æ holdsAfter(z, outPerm(y,x)]

Conclusion

Above we have noted that existing approaches to
qualitative spatial reasoning allow us to represent and
reason about the fact that objects are located inside
container objects. However, such representation methods
will not allow us to represent containment in the sense of
restriction. We have attempted to define this important
notion in terms of the objects and permeability properties
of physical systems and in terms of different ways in which
objects can contain other objects, e.g., inward vs. outward
permeability. We have also teased out three different
notions of accessibility between objects within a given
physical system and suggested methods for investigating
whether or not two given objects in a system bear these
three kinds of accessibility relations.

We contend that the ability to perform this kind of
knowledge representation could be useful in a very wide
range of reasoning contexts. This includes computer
security, cell biology, virology, building security analysis,
chemical storage.

Future work will include an exploration of what we have
called “indirect accessibility” with respect to a highly
dynamic system in which no objects are stationary. We
will also investigate how reasoning about the stationary
status of objects and an ontology of physical objects
designed in terms of containment capabilities could further
facilitate reasoning in this area. As noted above, a further
area of investigation concerns the means by which we
could integrate notions of partial permeability within such
a system.

Acknowledgements

This paper benefited from discussions with and comments
from Pierre Grenon, Pierluigi Miraglia and Joshua Powers.
Some of this research was supported by a contract
(Contract Number F30602-00-C-0173) for DARPA’s
Rapid Knowledge Formation Project.

References

Alberts B., Bray D., Johnson A., Lewis J., Raff M., Roberts
K., Walter P. .1998. Essential Cell Biology. New York:
Garland.

Cohn A., Bennett B., Gooday J., and Gotts M. (1997).
Representing and Reasoning With Qualitative Spatial
Relations About Regions. In O. Stock, editor, Spatial and
Temporal Reasoning, pp. 97-134. Kluwer, Dordrecht.

Cohn, A. 2001. Formalising Bio-spatial Knowledge. In
Proceedings of the Second International Conference on
Formal Ontology in Information Systems (FOIS’01), C.
Welty and B. Smith, eds., 198-209, ACM.

Cui Z., Cohn A.G., Randell D.A. 1992. Qualitative
Simulation Based on a Logical Formalism of Space and
Time, In Proceedings of the Tenth National Conference on
Artifical Intelligence, 679-684. Menlo Park, Calif.: AAAI
Press.

Flint, S.J. et al. 2000. Principles of Virology, Molecular
Biology, Pathogenesis, and Control. Washington, D.C.:
ASM Press.

Randell D., Cohn A.G., Cui Z. 1992. A Spatial Logic
based on Regions and Connection. In Proceedings of the
3rd Int. Conference on Knowledge Representation and
Reasoning. 165-176. San Mateo: Morgan Kaufmann.

