
A Decidable Logic for Time Intervals: Propositional Neighborhood Logic

Angelo Montanari
University of Udine, Italy

Department of Mathematics and Computer Science
Via delle Scienze 206, 33100 Udine, Italy

ph. +39 0432 558477, fax +39 0432 558499
montana@dimi.uniud.it

Guido Sciavicco
University of Udine, Italy

Department of Mathematics and Computer Science
Via delle Scienze 206, 33100 Udine, Italy

ph. +39 0432 558451, fax +39 0432 558499
sciavicc@dimi.uniud.it

Abstract

Logics for time intervals provide a natural framework for rep-
resenting and reasoning about timing properties in various ar-
eas of artificial intelligence and computer science. Unfortu-
nately, most time interval logics proposed in the literature are
(highly) undecidable. Decidable fragments of these logics
have been obtained by imposing severe restrictions on their
expressive power. In this paper, we focus our attention on
the propositional fragment of Neighborhood Logic (PNL for
short). We show that PNL is expressive enough to capture
meaningful timing properties and that it is decidable. Decid-
ability is proved by developing an original tableau decision
method for PNL. We conclude the paper by pointing out in-
teresting relationships between PNL and compass logics for
spatial reasoning.

Introduction
Logics for time intervals provide a natural framework for
dealing with timing properties in various areas of computer
science and artificial intelligence, such as planning and nat-
ural language processing, where reasoning about time inter-
vals rather than time points is far more natural and closer
to common sense (point-based and interval-based temporal
logics are systematically analyzed in (van Benthem 1991)).

Unfortunately, most interval temporal logics and dura-
tion calculi proposed in the literature, such as Moszkowski’s
Interval Temporal Logic (ITL) (Halpern, Manna, &
Moszkowski 1983), Halpern and Shoham’s Modal Logic
of Time Intervals (HS) (Halpern & Shoham 1991), Ven-
ema’s CDT logic (Venema 1991), Chaochen and Hansen’s
Neighborhood Logic (NL) (Chouchen & Hansen 1998),
and Chaochen, Hoare, and Ravn’s Duration Calculus (DC)
(Chaochen, Hoare, & Ravn 1991), are (highly) undecidable.

ITL is provided with the two modal operators (next)
and (chop). An ITL interval is a finite or infinite se-
quence of states. Given two formulas and an interval

, holds over if and only if holds
over , while ; holds over if and
only if there exists , with , such that holds
over and holds over . The undecid-
ability of Propositional ITL has been proved by a reduction

Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

from the problem of testing the emptiness of the intersec-
tion of two grammars in Greibach form (Moszkowski 1983).
HS features three basic operators (after), (begin),
and (end), together with their duals , , and .
Given a formula and an interval , holds at
if and only if holds at , for some , holds
at if and only if holds at , for some , and

holds at if and only if holds at , for some
. A number of other temporal operators can be defined

by means of the basic ones. As an example, the subinterval
operator such that holds at a given interval if
and only if holds at a proper subinterval of can
be defined as or, equivalently, . HS has
been shown to be undecidable by coding the halting problem
in it. CDT has three binary operators , , and , which
informally deal with the situations generated by adding an
extra point in one of the three possible positions with respect
to the two points delimiting an interval (before, in between,
and after). Since HS is a subsystem of CDT, the undecid-
ability of the latter easily follows. NL is a first-order inter-
val logic with two expanding modalities and and a
special symbol which denotes the length of the current in-
terval. Given a formula and an interval , holds
at if and only if holds at , for some ,
holds at if and only if holds at , for some ,
and the valuation of over is . NL undecidability
can be easily proved by embedding HS in it. Finally, DC
extends ITL by adding temporal variables (also called state
expressions) as integrals of state variables in order to model
dynamic systems in a continuous time. Temporal variables
make it possible to represent the duration of intervals as well
as numerical constants. As an example (Sørensen, Ravn,
& Rischel 1990), the specification of the behavior of a gas
burner can include conditions as the following one: “for any
period of 30 seconds the gas may leak, that is, flow and not
burn, only once and for 4 seconds at most”. Such a condi-
tion is expressed by the DC formula:

, where Gas (the gas is flowing)
and Flame (the gas is burning) are two state variables.
In (Chaochen, Hansen, & Sestoft 1993) Chouchen et al.
showed that DC is undecidable, the main source of undecid-
ability being the fact that state changes in real-time systems
can occur at any time point.

From: AAAI Technical Report WS-02-17. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

The problem of finding decidable fragments of these log-
ics has been raised by several authors, including Halpern
and Shoham (cf. Problem in (Halpern & Shoham 1991))
and Venema (cf. Question in (Venema 1991)). In gen-
eral, decidable fragments have been obtained by imposing
severe restrictions on the expressive power of the logics, e.g.,
(Moszkowski 1983; Bowman & Thompson 1998). As an ex-
ample, Moszkowski (Moszkowski 1983) proves the decid-
ability of the fragment of Propositional ITL with Quantifi-
cation (over propositional variables) obtained by imposing a
suitable locality constraint. Such a constraint states that each
propositional variable is true over an interval if and only if
it is true at its first state. This allows one to collapse all the
intervals starting at the same state into the single interval
consisting of the first state only. By exploiting such a con-
straint, decidability of Local ITL can be easily proved by
embedding it into Quantified Propositional Linear Temporal
Logic.

In this paper, we focus our attention on the propositional
fragment of Neighborhood Logic (PNL for short). Even
though PNL does not involve any locality constraint, its sat-
isfiability problem is decidable and its language is expres-
sive enough to capture meaningful timing properties. Decid-
ability is proved by developing an original tableau decision
method for PNL. Such a tableau method can be classified
as an “explicit” system (a detailed account of the existing
tableau methods can be found in (D’Agostino et al. 1999)).
Its general structure as well as the form of the proofs are
inspired by standard tableau procedures for first-order log-
ics with free variables and for modal logics. At the best
of our knowledge, there exist only two tableau methods for
time interval logics in the literature. In (Bowman & Thomp-
son 1998), Bowman and Thompson consider an extension
of Local ITL, which, besides the chop operator , contains a
projection operator and an empty interval modal con-
stant . They introduce a normal form for the for-
mulas of the resulting logic that allows them to exploit a
classical tableau method, devoid of any mechanism for con-
straint label management. In (Chetcuti-Serandio & Fariñas
del Cerro 2000), the authors identify a decidable fragment of
DC, which is expressive enough to model the above-given
condition on the behavior of a gas burner, that imposes no
restriction on state expressions, but encompasses a proper
subset of DC operators, namely, , and (chop). The
tableau construction for the resulting logic mixes the appli-
cation of the rules of classical tableaus and that of a suitable
constraint resolution algorithm.

The rest of the paper is organized as follows. We first in-
troduce PNL and we discuss its expressive power. Then, we
focus on decidability issues for PNL. We develop an original
tableau method for PNL and we prove that it is terminating,
sound, and complete. Finally, we establish a connection be-
tween PNL and suitable fragments of HS and of full com-
pass logic. In the conclusions, we provide an assessment of
the work and outline further research directions.

Propositional Neighborhood Logic
In this section, we define the syntax and semantics of PNL.
We also discuss its strength and limitations in expressive

power.
PNL is a proper fragment of NL. The language for

PNL consists of a set of propositional variables
, of the propositional connectives and (

and can be defined in the usual way), the left neighbor-
hood modality , and the right neighborhood modality .
PNL formulas, denoted as , are defined according to
the following abstract syntax:

Examples of well-formed PNL formulas are
and . In the following we will use the modal-
ities and as abbreviations of and , re-
spectively. We define the length of a PNL formula as the
number of its modal and classical operators, and we denote
it by ; for instance, .

From a semantic point of view, we assume our domain to
be a nonempty point-based set with a total ordering .
Examples of possible domains are , , and . Given a
time domain , the set of all intervals over is given by

The meaning of propositional variables is given through a
valuation function, or value assignment, ,
namely, for any propositional variable , if ,
then is true in , otherwise it is false. We shall call
the pair an interval model or, simply, a model.

stands for the formula being satisfied over
the interval (called valuation or starting interval) with
respect to the model . Satisfiability can be defined in the
standard way by induction on the structure of the formulas:

1. iff , where is a proposi-
tional letter;

2. iff and ;

3. iff it is not the case that ;

4. iff there exists a point such that
;

5. iff there exists a point such that
.

We say that is valid (denoted by) if and only if for
any model and interval , .

It is worth noticing that, as in HS, ITL, and CDT, we as-
sume intervals to be closed (this implies, for instance, that
two meeting intervals, in Allen’s terminology (Allen & Fer-
guson 1994), share a point). Notice also that and are
the reflexive versions of and of HS, respectively.
We shall later show that the proposed tableau method can
actually be adapted to decide the subset of HS containing

and only.
A sound and complete axiom system for PNL can be

easily tailored from that for NL (Barua, Roy, & Chaochen
2000). The axiom system for PNL consists of the following
set of axioms:

1. axioms of propositional logic;

2. (distributivity of modalities);

3. (same point of starting);

4. (sum of intervals);

5. axioms 2, 3, and 4 with left modalities substituted for right
modalities, and vice versa,

and the following set of rules (stands for is derivable
in PNL):

1. if , then (monotonicity);

2. if , then (necessity);

3. if and , then (modus ponens);

4. schemes 1 and 2 with left modalities substituted for right
modalities.

By exploiting the results given in (Barua, Roy, &
Chaochen 2000), we can prove the following result.

Theorem 1 For all , if and only if .

PNL is expressive enough to capture relevant timing prop-
erties. As an example, conditions of the form “From now
on, it will be true that any occurrence of stop is always pre-
ceded by an occurrence of start” are quite common in the
area of formal specifications of reactive systems (we found
it in the context of the specification of a time-triggered proto-
col which allows a fixed number of stations to communicate
via a shared bus). Such conditions can be expressed in PNL
as follows:

Furthermore, a wholistic version of the until operator
can be expressed in PNL by means of the formula

. As an example, conditions like “each flight
from Milan to Moscow initiates a period of time during
which the traveller is in Moscow” can be expressed as fol-
lows:

- - - -

A wholistic version of the since operator can be obtained in
a similar way. Notice that a decomposable version of these
operators would require to force homogeneity either implic-
itly (via the assumption of the homogeneity principle (Allen
& Ferguson 1994)) or explicitly (by means of subinterval
operators).

As for the limitations in the expressive power of PNL,
it is possible to show that there exist operators of time in-
terval logics which cannot be expressed in it. As an exam-
ple, a bisimulation argument suffices to show that the proper
subinterval operator cannot be expressed in PNL. Con-
sider two models and such that

,
and , . It is
easy to see that , ,

, and . The function
such that

can be extended to a bisimulation relation between in-
tervals and the “formula” (which obviously does not
belong to) is satisfied in , but not in .

The Tableau Method for PNL
In this section, we develop a new tableau decision proce-
dure for checking the satisfiability of PNL formulas. The
tableau we propose is an explicit tableau. This means
that the accessibility relation is maintained by some exter-
nal device and that the nodes of the tableau contain la-
beled formulas. Labels are built over the language we de-
scribe below. We assume the existence of enumerable sets

of variables, of con-
stants, and of function symbols. Inter-
val terms (or, simply, terms) are defined as constants, vari-
ables, or function symbols applied to non-constant terms,
e.g., are terms, is not. The set of all
interval terms is denoted by . All formulas in the tableau
are labeled by a pair of terms , called reference interval,
which can be viewed as the tableau counterpart of valua-
tion intervals. A reference interval is called local if it does
not contain variables, non local otherwise. Terms and ref-
erence intervals reflect the semantics of PNL formulas. As
an example, evaluating means evaluating in all
intervals beginning with . A term of the form de-
notes a point to be placed in a suitable way with respect to
the point denoted by (it comes into play, for instance, in
the tableau for the PNL-formula). In the standard
way, we partition PNL formulas in four syntactic types: the
conjunctive type (called), the disjunctive type (called),
and the universal and existential types (resp. called and
). In the following, we will use the notation , where

, to state that is of type . Moreover,
we will indicate with the fact that is a subformula
of . Table 1 shows the immediate subformulas of a given
formula, together with their reference intervals. Evaluating
formulas of types and involves new terms.

The key notion of the tableau method for PNL is that of
suitable substitution.

Definition 2 A set of term constraints is a set of inequal-
ities of the form , where are terms.

As an example, suppose to evaluate over the reference
interval , with . According to Table 1, this
means that has to be evaluated over the reference interval

, with .

Definition 3 A partial function is a suitable sub-
stitution if and only if , provided that all expressions
of the form have been eliminated1.

Consider, for instance, the set of term constraints
, graphically depicted in Figure

1. According to Definition 3, the substitution such that

Figure 1: The set of term constraints .

is a suitable substitution. On the contrary, neither
1With an abuse of notation, we use to indicate the applica-

tion of to the variables of .

type labeled formulas labeled immediate subformulas new terms

Table 1: types, labeled formulas, labeled immediate subformulas, and new terms.

the substitution such that nor the substitution
such that is a suitable substitution, because

both the constraint and the constraint do not
belong to .

As a matter of fact, suitable substitutions look for contra-
dictions over a given interval. The inclusion condition, that
identifies the finite set of suitable substitutions, prevents us
both from collapsing distinct intervals and from introduc-
ing new intervals (through the transitivity of the ordering
relation) over which the given formula does not state any-
thing. Furthermore, the elimination of any constraint of the
form follows from the reflexivity of the PNL opera-
tors. As an example, suitable substitutions must take into
account that an expression of the form states that

holds over all future intervals, including those which are
met by the current one. In order to simplify the notation,
in the following we will use to indicate the reference
interval obtained by applying to and/or if and/or are
variables.

A tableau for a PNL formula is a pair , where is
a finitely-branching tree and is a set of term constraints.
Ancestors in the tree are defined in the standard way. The
tree is generated by the expanding rule below. The nodes
of are labeled formulas of the form , where is a
PNL formula and is a reference interval. We say that a
node is local or non local depending on its reference interval
being local or not. The basic operation of the expanding
rule consists in extending the branch with a finite path of
one or more nodes , denoted by

. Furthermore, we will use the notation
to denote the result of adding sons to . Finally, we will
denote by the operation of replacing the branch
by the branch .
We term fresh a non local node if and only if
has no ancestor , with . A node on
which the expanding rule has been applied is said to be used;
a modal operator is used if and only
if there is at least a used node of the form or

.
The expanding rule for a node and term con-
straint set consists of the following steps:

(a) case of

for all branches containing ,
, where are the immediate

sub-formulas of ;
for all branches containing ,

, where are the
immediate sub-formulas of ;
for all branches containing , ,
where is the immediate subformula of and
is the correspondent reference interval; then update
accordingly (cf. Table 1);

(b) if is non local and fresh, then for all branches con-
taining and all suitable substitutions ,

;

(c) if is non local and fresh, then for all branches con-
taining , if there is at least one not used modal operator
in , then .

The intuition behind steps and of the expanding rule is
the following one. Consider a node . Such a node
states that must hold over every interval beginning with .
Hence, all suitable substitutions must be considered, and,
for each of them, must be added to all branches

including the node (step). Suppose also that there is a
non used modal operator in a branch . In such a case, it
can be the case that step has to be repeated later on. Step
guarantees that a fresh copy of the node occurs in
the branch .

Definition 4 A tableau for the PNL-formula is a pair
generated by the following algorithm:

1. given an input formula , build a tree with one node (the
root) labeled with ;

2. let ;

3. while there is at least a non used node , apply
the expanding rule on it;

4. the output is the resulting pair .

and

(1)

(2)

(2)

(3)

(4)

(5)

closed closed

(6)

Figure 2: The tableau for .

If is a set of PNL formulas and there exists a tableau for
all , we say that there exists a tableau for .

A contradiction is a pair of nodes of the forms
and , where is a propositional letter. We name
open a branch of a tableau if there is no contradiction on
it, and closed otherwise. Accordingly, a tableau is open if
and only if it has an open branch, and closed otherwise.

As an example, in Figure 2 we show the tableau for the
PNL-formula . The choice of the node
to expand has been done according to an “uppermost left-
most” policy. As another example, the tableau for
the formula is given in Figure 3. It
is worth noting that the resulting set of term constraints is
the set of constraints represented in Figure 1. Furthermore
in step we substituted , but not , for . Indeed,
is not a suitable substitution, because it would introduce the
new constraint .

The proposed algorithm always terminates. Termination
easily follows from two observations: (1) the application of
step (a) to a node produces only nodes

such that , and (2) steps (b) and (c) can
be applied only a finite number of times to any given node
(being finite the number of possible terms in).

The proof of the soundness and completeness of the pro-
posed tableau method takes advantage of the following no-
tion of Hintikka set for PNL.

Definition 5 An Hintikka Set for PNL consists of a
downward saturated set of nodes without contradictions
and the corresponding set of term constraints (hereafter

and

(1)

(2)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 3: The tableau for .

we write “Hintikka set” for “Hintikka set for PNL”). It can
be generated by the following inductive clauses:

1. if contains then contains the term con-
straint ;

2. if contains and , then for all immedi-
ate subformulas of , contains ;

3. if contains and , then contains at least
one , where is an immediate subformula of ;

4. if contains and belongs to or , then
contains , where is the immediate subfor-
mula of and is the corresponding reference in-
terval, and contains the corresponding constraint on

;
5. if contains a non local node and does

not contain any node with then,
for all suitable substitutions , contains

;
6. contains no pair of local nodes and

.

It is possible to prove the following lemma (the proof is
rather straightforward and thus omitted).

Lemma 6 If is a satisfiable PNL formula, then there exists
an Hintikka set containing .

Observation 7 An Hintikka set is the (set-theoretic) seman-
tic counterpart of an open branch in a tableau for PNL. In
particular, step (b) and (c) of the expanding rule are cov-
ered by rules (4) and (5) for Hintikka sets, while rule (6) is
exactly the definition of open branch.

Lemma 8 (Hintikka’ s Lemma for PNL) If is an
Hintikka set, then there exists a model satisfying all PNL

formulas such that (we say that is
satisfiable).

Proof.
Let be an Hintikka set. Define as the

set of all nodes in such that is at most ,
and as the term constraint set associated to .
By definition, is downward saturated. We show by
induction that is satisfiable for every .

Base case. Let be a PNL formula such that
and . Clearly, , with propositional vari-

able. By definition of Hintikka set (absence of contradic-
tions), does not contain ; thus, a model stating

for all intervals denoted by , with the possible excep-
tion of those local intervals such that
(may contain at most a finite number of “local” contradic-
tions), satisfies .

The inductive case () depends on the syntactic type
of :

. By definition, contains all pairs , with
immediate subformula of . By the inductive hypoth-

esis, there is a model satisfying all , and thus is satis-
fiable as well.

. By definition, contains at least one pair
, with immediate subformula of . By the

inductive hypothesis, is satisfiable, and the satisfiabil-
ity of follows.

. Let us consider . By the inductive hy-
pothesis, is satisfiable at the reference interval ,
that is, is satisfiable at all intervals beginning with ,
and thus there is a model satisfying (the other cases can
be treated in the same way).

. Let us consider . By the inductive hy-
pothesis, is satisfiable with respect to the reference in-
terval (or is is a variable), and thus there
is a model satisfying (the other cases can be treated in
the same way).

Theorem 9 (Soundness and Completeness) is a satisfi-
able PNL formula iff there exists an open tableau for

.

Proof.
First suppose that is satisfiable. By Lemma 6, there is

an Hintikka set containing . By exploiting
Observation 7, it follows that a tableau for contains at least
an open branch. The opposite direction is proved by contra-
diction. Suppose that there exists an open tableau
for and is not satisfiable. By exploiting Observation 7,
the open branch in corresponds to an Hintikka set

containing . By Lemma 8, it follows that
is satisfiable, which is a contradiction.

In order to make clearer how to build a model for a sat-
isfiable PNL formula, consider the example of Figure 2.
In this case, the leftmost open branch contains ,

, and . A model for the starting formula

Current
Relation

Table 2: IA relations and the fragment of HS.

can be built on as follows: take a pair ; assign arbi-
trary (distinct) values in the domain to the constants
(respecting the ordering relation); assign to all intervals
beginning with , except for over which must hold.

PNL and HS
The tableau method for PNL can be easily adapted for the
HS fragment provided with the two operators and
only, interpreted over linear structures . To obtain a
terminating, sound, and complete method for this logic, it
suffices to replace the symbol by the symbol in term
constraints and to replace Definition 3 by the following one:

Definition 3 A partial function is a suitable
substitution if and only if .

Notice that the difference between the two logics is not
trivial. As an example, the PNL formula

is not satisfiable, while the formula
is satisfiable in the fragment of HS.

The tableau for includes
. The substitution such that and is

suitable, since the constraint must be eliminated from
. The fact that can assume the value forces us to

include the intervals of the form in the set of intervals
at which the subformula must be evaluated. The
tableau for includes .
According to Definition 3 , the above substitution is not
suitable (the constraint is new). Indeed, in HS, as well
as in all its fragments, and range only over non de-
generate intervals, and thus the subformula must
not be evaluated at any interval which is met by the current
one.

It is worth comparing such a fragment of HS with Allen’s
Interval Algebra (IA) (Allen & Ferguson 1994). It is well
known that all the relations of IA can be captured in HS.
This is not the case with the fragment of HS which
is not able to express full IA, but only part of it. As an exam-
ple, the condition is met by can be expressed by
the formula , where stands for . However,

there exist properties of intervals, which are not expressible
in IA due to its syntactic restrictions, that can be specified
in the fragment. Consider, for instance, three in-
tervals , and . The condition ,
which cannot be represented in IA, can be codified by the
formula .

The fragment of IA which is captured by the
fragment of HS can be characterized as follows. Let us con-
sider a formula of the form , where, for all

, is either or . If , the for-
mula is evaluated at (identifies) the starting interval . If

, the formula (resp.) is evaluated at a
time interval (resp.) which is met by (resp. meets)
the interval . Hence, the formulas and re-
spectively capture Allen’s relations and between the
interval reached by applying (resp.) and the starting
interval. If , let be the set of Allen’s re-
lations that may possibly hold between the interval reached
by applying the sequence and the starting
one. Allen’s relations between the interval reached by apply-
ing the sequence and the starting one can be
determined by composing the set of relations
either with (if) or with (if). The
whole set of composition rules is given in Table 2.

PNL and Compass Logics
There exist interesting relationships between PNL and a
well-known class of logics for spatial reasoning, namely,
compass logics. Compass logics have been originally pro-
posed by Venema in (Venema 1990) and later studied by
Marx and Reynolds in (Marx & Reynolds 1999). Full com-
pass logics are provided with four operators , and .
They are interpreted over pairs of linearly ordered domains

, where is the valuation func-
tion, with the standard semantics for propositional formulas
and the following semantics for modal formulas:

1. iff there exists such that
;

2. iff there exists such that
;

3. iff there exists such that
;

4. iff there exists such that
.

Full compass logic has been shown to be undecidable in
(Marx & Reynolds 1999), where some variants and frag-
ments of full compass logic are introduced.

It is possible to establish an interesting connection be-
tween time interval logics and compass logics. On the one
hand, the interpretation domain must be restricted to the
northwestern halfplane defined by the first diagonal. On the
other hand, additional modal operators must be provided.
Consider the case of a compass logic, interpreted over north-
western halfplane, provided with the operators and , and
an additional pair of projection operators defined as follows:

iff ;

D

D

p l
p

p
r

Figure 4: PNL as a fragment of compass logic

iff .

We can define a suitable fragment of such a logic provided
with a pair of operators and , graph-
ically depicted in Figure 4, whose decidability immediately
follows from the decidability result obtained for PNL.

Conclusions
In this work, we studied the propositional fragment of
Neighborhood Logic (PNL). PNL does not involve any lo-
cality constraint, and it is expressive enough to capture in-
teresting timing properties. We proved that the decidability
problem for PNL is decidable by developing a terminating,
sound, and complete tableau method. Furthermore, we es-
tablished interesting connections between PNL, HS, and a
class of spatial logics. In particular, we showed that PNL
can be viewed as a variant of the fragment of HS.
We are currently investigating expressiveness and decidabil-
ity issues for other, more expressive fragments of HS. In
particular, we are studying the possibility of extending the
proposed decision algorithm to a fragment of HS including
the operators and . Furthermore, we are consider-
ing alternative approaches to the problem of identifying de-
cidable fragments of (undecidable) interval temporal logics.
On the one hand, we are exploring syntactic characteriza-
tions of meaningful interval logics via guarded fragments
of first-order logic; on the other hand, we are studying pos-
sible semantic restrictions of well-known interval modali-
ties/structures.

References
Allen, J. F., and Ferguson, G. 1994. Actions and events in
interval temporal logic. Journal of Logic and Computation
4(5):531–579.
Barua, R.; Roy, S.; and Chaochen, Z. 2000. Completeness
of neighbourhood logic. Journal of Logic and Computation
10(2):271–295.
Bowman, H., and Thompson, S. 1998. A tableau method
for interval temporal logic with projection. Lecture Notes
in Computer Science 1397:108–134.

Chaochen, Z.; Hansen, M. R.; and Sestoft, P. 1993. Decid-
ability results for duration calculus. In Enjalbert, P.; Finkel,
A.; and Wagner, K. W., eds., STACS, volume 665 of Lec-
ture Notes in Computer Science, 58–68. Springer.
Chaochen, Z.; Hoare, C. A. R.; and Ravn, A. P. 1991.
A calculus of durations. Information Processing Letters
40(5):269–276.
Chetcuti-Serandio, N., and Fariñas del Cerro, L. 2000. A
mixed decision method for duration calculus. Journal of
Logic and Computation 10:877–895.
Chouchen, Z., and Hansen, M. R. 1998. An adequate first
order interval logic. Lecture Notes in Computer Science
1536:584–608.
D’Agostino, M.; Gabbay, D.; Hähnle, R.; and Posegga, J.,
eds. 1999. Handbook of Tableau Methods. Kluwer, Dor-
drecht.
Halpern, J. Y., and Shoham, Y. 1991. A proposi-
tional modal logic of time intervals. Journal of the ACM
38(4):935–962.
Halpern, J. Y.; Manna, Z.; and Moszkowski, B. 1983. A
hardware semantics based on temporal intervals. In Diaz,
J., ed., 10th International Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 154 of Lecture
Notes in Computer Science, 278–292. Barcelona, Spain:
Springer.
Marx, M., and Reynolds, M. 1999. Undecidability of com-
pass logic. Journal of Logic and Computation 9(6):897–
914.
Moszkowski, B. 1983. Reasoning about Digital Circuits.
Ph.D. Dissertation, Stanford University, Stanford, CA.
Sørensen, E.; Ravn, A.; and Rischel, H. 1990. Control
program for a gas burner. part i: Informal requirements,
process case study 1. Technical report, ProCoS Report
ID/DTH EVS2.
van Benthem, J. 1991. The Logic of Time (2nd Edition).
Kluwer Academic Press.
Venema, Y. 1990. Expressiveness and completeness of an
interval tense logic. Notre Dame Journal of Formal Logic
31(4):529–547.
Venema, Y. 1991. A modal logic for chopping intervals.
Journal of Logic and Computation 1(4):453–476.

