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Abstract 
The Scarabs Team robot (Ringo) was designed and built by a 
team of high school students on a limited budget. The goal 
was to keep the design simple yet easy for a single human 
operator to control. The team uses a custom joystick 
interface to control robot movement using a PC. A Linux-
based camera provides video to the operator and passes 
serial commands from the PC to the robot. 
 
The goals of the Scarabs Team are:  to build viable robots at 
minimal cost; to learn about math, computer science, 
electronic engineering, physics, artificial intelligence, system 
integration, international relations, character development, 
and teamwork; to have fun (!); and to make a positive 
difference. 

Introduction 
 
The Scarabs team is composed of high school students 
from the Los Angeles area.  The goals of the Scarabs Team 
are:  to build viable robots at minimal cost; to learn about 
math, computer science, electronic engineering, physics, 
artificial intelligence, system integration, international 
relations, character development, and teamwork; to have 
fun (!); and to make a positive difference. 
 
When we first heard of the RoboCup competition to build 
soccer-playing robots, we decided that would be a good 
project to work on. As high school students , we have 
relatively little experience with sophisticated vision systems 
or autonomous control of robots. Initially, we built a single 

robot with an omnidirectional vision system. The user 
interface did not allow a lot of real-time control because it 
was meant to be replaced by an autonomous interface when 
we figured out how to do one. We would also have to build 
three additional robots. And we would have to figure out 
the best way to build a kicker. 
 
We took that robot to RoboCup / AAAI in Seattle last year. 
A lot of people were favorably impressed by its speed. 
Several of them encouraged us to enter the robot in rescue 
competitions. In addition to solving current, real-world 
problems, the rescue competition only requires a single 
robot and does not require that the robot function 
autonomously. This made the rescue competition more 
accessible than the RoboCup mid-league soccer 
competition to us. 
 
We modified the robot to function better in a rescue 
environment, added an operator interface, and prepared it 
for competition. 

Robot Design 
Our current robot entry, Ringo, is built around the chassis 
and motors of a radio-controlled race car. (Nikko Hercules).  
The car is a four-wheel drive vehicle with a flat chassis 
protruding beyond the wheels in the front and back. Such a 
chassis is fine for an event such as RoboCup where the 
wheels do not interfere with a kicker or other special 
devices which may be added to the robot. It is less suited 
for rescue events because it does not function well on 
uneven terrain.  However, we chose to proceed with it due 
to budget constraints. 
 
The first modification was to replace the radio control with 
a Parallax BASIC Stamp 2 (BS2) microcontroller.  The BS2 
was chosen for motor operation because of its low-cost, 
ease of programming, and proven reliability.  The BS2 
controls the left and right wheel motors via two R/C 
electronic speed controllers.  The BS2 allowed a user to 
command the robot by entering single-character serial 
commands. 
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The robot was not sufficiently powerful to climb  over 
obstacles, so we decreased the wheel diameter by 
approximately 1 in., and increased the battery voltage for 
the motors from 7.2 to 8.4 volts. (This is the maximum 
voltage the electronic speed controllers are designed to 
handle.)  
 
Various methods were tried to give the wheels better 
traction. Because we were under severe budget constraints, 
we coated the wheels with hot glue and with rubber used to 
coat tool handles.   

 
Cable control of the robot was chosen to avoid real-world 
problems of interference / loss of signal.  When cable is 
used, it can become difficult to prevent it from tangling, 
especially if it's coiled. A common solution is to keep the 
cable as a figure-8, but this can be difficult to pre-stage and 
to transport. As a simple solution, we wrapped the cable 
around a piece of 3 in. PVC pipe about 2 ft. long using the 
pipe as a "kitestick," switching ends.  The result is a figure-
8 on the stick.  

Vision System 
For RoboCup, it is advantageous for the robot to always 
see what is happening in all directions. The original vision 
system was a small, lightweight camera connected to the PC 
using analog video. To achieve omnidirectional video 
input, the camera was mounted on top of the robot. A 
custom-made PET plastic cylinder, 6 in. diameter, and about 
2 ft. tall was mounted around the camera. A convex mirror 
was placed at the top of the cylinder. This arrangement 
allowed the system to “see” in all directions although the 
image is very distorted. Still, it is a very cost-effective 
solution to the problem of omnidirectional vision. 
 
Later, we requested and received a donation of several Axis 
2120 web cameras. These cameras are much more accurate 
and flexible than the original camera, but they are also 

considerably bigger and heavier. This made the robot much 
more likely to tip over.  

Software Interface 
The Axis camera is based on Linux. It delivers video to the 
PC via Ethernet. It is also possible to establish a telnet 
session from the PC. A command is provided to send user-
specified robot control data from a serial port on the 
camera. 
 
When we started thinking about how to control the robot’s 
movement remotely, some of the team members were joking 
about driving it like an RC car. It didn’t really take long for 
the joking to become serious. We purchased a standard 
USB-interface joystick for the PC and implemented a “tank 
mixing” algorithm to convert the joystick into BS2 pulse 
widths for each of the motors. The tank mixing is a natural 
control method, immediately understandable to any user. 
Pushing the joystick forward or backward moves the robot 
forward or backward proportionally. Pushing it left or right 
turns it. 
 
The camera includes an interface to place the data in an 
ActiveX control which can be put into a Visual Basic 
program. 
 
The joystick control is in two parts. Visual Studio 6.0 puts 
the joystick interface into the multi-media routines. These 
routines are not directly available to the ActiveX interfaces. 
Therefore, we had to implement the “raw” joystick 
functions in a DLL which is then called from an ActiveX 
control. The joystick control displays the stick in an x/y 
square. The Z input can be used to scale the maximum 
value of the square. This permits the operator to set the 
robot to move more slowly in complicated areas. All 
buttons on the joystick are exposed. Buttons, exceptions, 
and significant changes in the joystick position cause 
events which can be captured externally. The joystick 
control can initiate a telnet connection to cause the camera 
to send serial data to the BS2. 
 
One of the complications was that the BS2 microcontroller 
has to generate a pulse-width-modulated (PWM) signal 
every 20 msec. to control the motors.  Because the BS2 
cannot process interrupts or do multi-tasking, command 
inputs from the operator must be received in the ~18 msec 
interval between pulses.  (Each pulse is 1-2 msec wide). At 
9600 baud, it can process at most about 14 characters of 
data across the serial input in any 20 msec cycle.  
 
The PC has to update its display of the camera image and 
any joystick input. This can require up to 200 msec, 
depending on the PC speed. The joystick interface includes 
the msec between its interrupts. The BS2 protocol includes 
the number of pulses to send between PC inputs. This 
permits both systems to retain appropriate frame times. 



 

 
We noted several other shortcomings for the BS2 in this 
application: 
• it does not accept input from the PC other than using its 

own development environment or mixed with output; 
• it cannot do any floating-point math (therefore, the PC 

had to provide any data in a form simple enough for the 
BS2 to use almost directly); 

• it appears to use BIOS features unique to “real” serial 
ports. (We were unable to get the BS2’s development 
environment to recognize any connection using a USB 
serial interface. This means that any computer controlling 
the current version of the robot must have a serial port, a 
USB port, and an Ethernet connection. Only the oldest, 
slowest laptop owned by a team member actually has a 
serial port. As a result, the video display has a noticeable 
lag compared to the faster desktop on which 
development was done. The joystick also had to be 
slowed down to accommodate window display time); 

• the timing issue prohibits use of output. 

Results in Edmonton 
At Edmonton, we were unable to communicate from the 
camera to the BS2 microcontroller. We also noticed that one 
motor had stopped working.  We saw that a wire had come 
loose in the interface cable between the camera and the 
BS2.  Even after replacing that cable with a manufactured, 
tested, cable, we were still unable to get that essential level 
of communication working.  
 
We had a spare BS2 processor available. Replacing it 
caused the second motor to start working again but did not 
fix the communications problem. It appears likely that 
something was damaged in the handshaking process, 
possibly by the broken wire.  This meant that the robot 
could not move under computer control. 
 
Because the robot did not actually run, we also didn't get a 
chance to see how well our stick-based cable handling 
method works in practice. We believe we can feed the 
tether directly off the stick. If that's not possible, the stick 
can still be used to create a transportable figure-8. 

Conclusions 
We have learned a lot about robot design and building. 
This robot has some strong points  in its vision system and 
human interface. 
 
Perhaps the chassis could be modified to move the camera 
down into the robot body, exposing only the lens at the 
top. This would require a wholesale redesign because there 
isn’t a large enough empty space to hold the camera. 
 

A computerized vision system can be taught to recognize 
objects correcting for quantifiable distortion. While it is 
possible for a human operator to learn to deal with the 
distortion, it can never be easy or automatic.  
 
In practice, it was much easier to drive the robot using a 
forward-facing camera. Pan and zoom kits are available for 
the camera. It might also be possible to mount additional 
cameras to the robot or to modify the display to reduce 
distortion for a human operator.  (A forward-facing camera 
will also make the robot more stable). 
 
It will be useful to provide video and snapshots to disk for 
later review. Of course the information would have to 
include location data and time. 
 
The robot platform needs to be replaced with a system 
designed to work in a search and rescue environment. It 
needs to be able to deal with uneven terrain.  
 
The on-board processor will be replaced with something 
more powerful, able to handle multiple processes, including 
input from additional sensors, and to assist a human 
operator in evaluating a disaster scene. (These sensors 
could include sound, temperature, inertial guidance, etc.) 
 
The joystick control will be upgraded with an automatic 
mapping feature. 
 
The robot also needs a light, possibly controlled by a 
joystick button. 
 
Our goal is to create a simple, cost-effective robot with 
some level of autonomy. This robot would work with a 
human operator, displaying video of its surroundings and 
values of any sensory data. Eventually, some autonomy in 
movement may be added to enable a single human operator 
to control multiple robots. 


