
The Scarabs RoboCup 2002 Rescue Robot Team

K. Bird, J. Fonda-Bonardi, R. Fooroghi, I Forte, D. Goodwin, J. Griffin-Roosth,
V. Griffin, H. Liebowitz, M. Pettengil, N. Phillips, M. Randall

New Roads School

17213 Palisades Circle
Pacific Palisades, CA 90272

mr_mr@earthlink.net

Abstract
The Scarabs Team robot (Ringo) was designed and built by a
team of high school students on a limited budget. The goal
was to keep the design simple yet easy for a single human
operator to control. The team uses a custom joystick
interface to control robot movement using a PC. A Linux-
based camera provides video to the operator and passes
serial commands from the PC to the robot.

The goals of the Scarabs Team are: to build viable robots at
minimal cost; to learn about math, computer science,
electronic engineering, physics, artificial intelligence, system
integration, international relations, character development,
and teamwork; to have fun (!); and to make a positive
difference.

Introduction

The Scarabs team is composed of high school students
from the Los Angeles area. The goals of the Scarabs Team
are: to build viable robots at minimal cost; to learn about
math, computer science, electronic engineering, physics,
artificial intelligence, system integration, international
relations, character development, and teamwork; to have
fun (!); and to make a positive difference.

When we first heard of the RoboCup competition to build
soccer-playing robots, we decided that would be a good
project to work on. As high school students , we have
relatively little experience with sophisticated vision systems
or autonomous control of robots. Initially, we built a single

robot with an omnidirectional vision system. The user
interface did not allow a lot of real-time control because it
was meant to be replaced by an autonomous interface when
we figured out how to do one. We would also have to build
three additional robots. And we would have to figure out
the best way to build a kicker.

We took that robot to RoboCup / AAAI in Seattle last year.
A lot of people were favorably impressed by its speed.
Several of them encouraged us to enter the robot in rescue
competitions. In addition to solving current, real-world
problems, the rescue competition only requires a single
robot and does not require that the robot function
autonomously. This made the rescue competition more
accessible than the RoboCup mid-league soccer
competition to us.

We modified the robot to function better in a rescue
environment, added an operator interface, and prepared it
for competition.

Robot Design
Our current robot entry, Ringo, is built around the chassis
and motors of a radio-controlled race car. (Nikko Hercules).
The car is a four-wheel drive vehicle with a flat chassis
protruding beyond the wheels in the front and back. Such a
chassis is fine for an event such as RoboCup where the
wheels do not interfere with a kicker or other special
devices which may be added to the robot. It is less suited
for rescue events because it does not function well on
uneven terrain. However, we chose to proceed with it due
to budget constraints.

The first modification was to replace the radio control with
a Parallax BASIC Stamp 2 (BS2) microcontroller. The BS2
was chosen for motor operation because of its low-cost,
ease of programming, and proven reliability. The BS2
controls the left and right wheel motors via two R/C
electronic speed controllers. The BS2 allowed a user to
command the robot by entering single-character serial
commands.

From: AAAI Technical Report WS-02-18. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

The robot was not sufficiently powerful to climb over
obstacles, so we decreased the wheel diameter by
approximately 1 in., and increased the battery voltage for
the motors from 7.2 to 8.4 volts. (This is the maximum
voltage the electronic speed controllers are designed to
handle.)

Various methods were tried to give the wheels better
traction. Because we were under severe budget constraints,
we coated the wheels with hot glue and with rubber used to
coat tool handles.

Cable control of the robot was chosen to avoid real-world
problems of interference / loss of signal. When cable is
used, it can become difficult to prevent it from tangling,
especially if it's coiled. A common solution is to keep the
cable as a figure-8, but this can be difficult to pre-stage and
to transport. As a simple solution, we wrapped the cable
around a piece of 3 in. PVC pipe about 2 ft. long using the
pipe as a "kitestick," switching ends. The result is a figure-
8 on the stick.

Vision System
For RoboCup, it is advantageous for the robot to always
see what is happening in all directions. The original vision
system was a small, lightweight camera connected to the PC
using analog video. To achieve omnidirectional video
input, the camera was mounted on top of the robot. A
custom-made PET plastic cylinder, 6 in. diameter, and about
2 ft. tall was mounted around the camera. A convex mirror
was placed at the top of the cylinder. This arrangement
allowed the system to “see” in all directions although the
image is very distorted. Still, it is a very cost-effective
solution to the problem of omnidirectional vision.

Later, we requested and received a donation of several Axis
2120 web cameras. These cameras are much more accurate
and flexible than the original camera, but they are also

considerably bigger and heavier. This made the robot much
more likely to tip over.

Software Interface
The Axis camera is based on Linux. It delivers video to the
PC via Ethernet. It is also possible to establish a telnet
session from the PC. A command is provided to send user-
specified robot control data from a serial port on the
camera.

When we started thinking about how to control the robot’s
movement remotely, some of the team members were joking
about driving it like an RC car. It didn’t really take long for
the joking to become serious. We purchased a standard
USB-interface joystick for the PC and implemented a “tank
mixing” algorithm to convert the joystick into BS2 pulse
widths for each of the motors. The tank mixing is a natural
control method, immediately understandable to any user.
Pushing the joystick forward or backward moves the robot
forward or backward proportionally. Pushing it left or right
turns it.

The camera includes an interface to place the data in an
ActiveX control which can be put into a Visual Basic
program.

The joystick control is in two parts. Visual Studio 6.0 puts
the joystick interface into the multi-media routines. These
routines are not directly available to the ActiveX interfaces.
Therefore, we had to implement the “raw” joystick
functions in a DLL which is then called from an ActiveX
control. The joystick control displays the stick in an x/y
square. The Z input can be used to scale the maximum
value of the square. This permits the operator to set the
robot to move more slowly in complicated areas. All
buttons on the joystick are exposed. Buttons, exceptions,
and significant changes in the joystick position cause
events which can be captured externally. The joystick
control can initiate a telnet connection to cause the camera
to send serial data to the BS2.

One of the complications was that the BS2 microcontroller
has to generate a pulse-width-modulated (PWM) signal
every 20 msec. to control the motors. Because the BS2
cannot process interrupts or do multi-tasking, command
inputs from the operator must be received in the ~18 msec
interval between pulses. (Each pulse is 1-2 msec wide). At
9600 baud, it can process at most about 14 characters of
data across the serial input in any 20 msec cycle.

The PC has to update its display of the camera image and
any joystick input. This can require up to 200 msec,
depending on the PC speed. The joystick interface includes
the msec between its interrupts. The BS2 protocol includes
the number of pulses to send between PC inputs. This
permits both systems to retain appropriate frame times.

We noted several other shortcomings for the BS2 in this
application:
• it does not accept input from the PC other than using its

own development environment or mixed with output;
• it cannot do any floating-point math (therefore, the PC

had to provide any data in a form simple enough for the
BS2 to use almost directly);

• it appears to use BIOS features unique to “real” serial
ports. (We were unable to get the BS2’s development
environment to recognize any connection using a USB
serial interface. This means that any computer controlling
the current version of the robot must have a serial port, a
USB port, and an Ethernet connection. Only the oldest,
slowest laptop owned by a team member actually has a
serial port. As a result, the video display has a noticeable
lag compared to the faster desktop on which
development was done. The joystick also had to be
slowed down to accommodate window display time);

• the timing issue prohibits use of output.

Results in Edmonton
At Edmonton, we were unable to communicate from the
camera to the BS2 microcontroller. We also noticed that one
motor had stopped working. We saw that a wire had come
loose in the interface cable between the camera and the
BS2. Even after replacing that cable with a manufactured,
tested, cable, we were still unable to get that essential level
of communication working.

We had a spare BS2 processor available. Replacing it
caused the second motor to start working again but did not
fix the communications problem. It appears likely that
something was damaged in the handshaking process,
possibly by the broken wire. This meant that the robot
could not move under computer control.

Because the robot did not actually run, we also didn't get a
chance to see how well our stick-based cable handling
method works in practice. We believe we can feed the
tether directly off the stick. If that's not possible, the stick
can still be used to create a transportable figure-8.

Conclusions
We have learned a lot about robot design and building.
This robot has some strong points in its vision system and
human interface.

Perhaps the chassis could be modified to move the camera
down into the robot body, exposing only the lens at the
top. This would require a wholesale redesign because there
isn’t a large enough empty space to hold the camera.

A computerized vision system can be taught to recognize
objects correcting for quantifiable distortion. While it is
possible for a human operator to learn to deal with the
distortion, it can never be easy or automatic.

In practice, it was much easier to drive the robot using a
forward-facing camera. Pan and zoom kits are available for
the camera. It might also be possible to mount additional
cameras to the robot or to modify the display to reduce
distortion for a human operator. (A forward-facing camera
will also make the robot more stable).

It will be useful to provide video and snapshots to disk for
later review. Of course the information would have to
include location data and time.

The robot platform needs to be replaced with a system
designed to work in a search and rescue environment. It
needs to be able to deal with uneven terrain.

The on-board processor will be replaced with something
more powerful, able to handle multiple processes, including
input from additional sensors, and to assist a human
operator in evaluating a disaster scene. (These sensors
could include sound, temperature, inertial guidance, etc.)

The joystick control will be upgraded with an automatic
mapping feature.

The robot also needs a light, possibly controlled by a
joystick button.

Our goal is to create a simple, cost-effective robot with
some level of autonomy. This robot would work with a
human operator, displaying video of its surroundings and
values of any sensory data. Eventually, some autonomy in
movement may be added to enable a single human operator
to control multiple robots.

