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Abstract

We present in this paper the crucial components of
“Mr.ArmHandOne” project. We shall discuss topics
concerning the robot architecture; the robot building
process, including the mechanics and electronics solu-
tions to the robot structure; the description of a dynamic
neural network for processing the raw data coming from
the sonars; the local map dynamic construction, and
the overall structure of the cognitive components. We
shall then describe ArmHandOne main task, consisting
in £nding and getting some object in a real non engi-
neered dynamic world. The test-bed of our research
is summarized in the proposed demo: £nding and rec-
ognizing objects displaced in an unknown labyrinthine
structure. The agent is initially positioned in a random
place inside a maze, and his goal is to £nd, grasp and
recover a required object, and taking it to an “Exit”
position.

Figure 1: Mr.ArmHandOne

Copyright 2002 c©ALCOR Laboratory. All Rights Reserved.

Introduction

In this paper we describe the cognitive robotics architec-
ture of Mr.ArmHandOne (Where M and R stand for Mazes
Roamer, and the entire nickname should sound like Mis-
ter Armandone, see Figure 1), and the tasks performed at
the AAAI-2002 Robot-Exhibition: exploring a completely
unknown maze, picking up objects in the hallways, and
£nd the exit (see Figures 2, 5, and 7). Armandone is an
autonomous mobile robot roaming non engineered indoor
mazes. The real novelty about Armandone consists in his
initial knowledge about the world. In fact, since Armandone
is prepared to explore a completely unknown environment,
his prior knowledge is concerned exclusively with physical,
structural, topological, and commonsense laws ruling his en-
vironment. It follows that he has no map of the domain (the
maze) and he doesn’t know the real world coordinates of his
initial position, but he knows properties of a maze, e.g., that
a crossing is a place where two hallways intersect, that the
exit is recognizable by a peculiar signal indicating it, that
the walls are perpendicular to the ¤oor, that if the map is
oriented with the north at the robot left then the south has to
be at the robot right, and so on and so forth.

Any fact about the world, like objects positions, distances,
shapes, etc., are dynamically acquired while the robot oper-
ates to achieve his goal.

Armandone crucial abilities are sensing (via sonars, cam-
eras, and encoders), processing the acquired information for
building a model of the environment, and inferring proper-
ties about the domain. Here the inference uses the robot’s
logical attitudes. Armandone’s skills, in fact, allow him to
£nd a strategy, challenged by imprecise sensors and actua-
tors, for traveling around, and for successfully completing
suitable tasks.

The paper is organized as follows. In the next section
we shall present the guidelines of the Cognitive Robotics
Architecture (CRA). As the architecture is organized in lev-
els which, in turn, are organized in components, there is a
section describing each level. Finally, the last sections are
dedicated to the description of the exhibition, and the paper
concludes with a discussion on the state of the art of Cogni-
tive Robotics.

From: AAAI Technical Report WS-02-18. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



A Cognitive Robotics Architecture
Our control system is built according to a cognitive multi
layered architecture integrating the cognitive and the reac-
tive control. In this paper we stress that a cognitive archi-
tecture is essential for the realization of a robot able to per-
form multiple tasks in the real world, and capable to handle
several unforeseen problems, that he would encounter while
trying to reach his goals.

We intend the CRA as a formal, structural and compu-
tational model specifying the knowledge, the behavior and
the functionalities which are necessary to a dynamical sys-
tem for autonomously interacting with the environment, and
with other agents, when required. The CRA that we pro-
pose, suitably exhibited by the task performed, is designed
on three levels: structural, reactive, and cognitive.

Each level, in turn, is speci£ed by the following three
components representation, reasoning, and perception.

The distinction between the structural and the other two
levels is straightforward. On the other hand between the re-
active and the cognitive level there are crucial differences,
that we summarize in the following table.

Cognitive representation: Reactive representation:
Symbolic Analytic

Qualitative Quantitative
Discrete Continuous

Cognitive reasoning: Reactive reasoning:
Logical Functions de£nitions

Bayesian Arti£cial Neural Networks
Deciding Kinematics (body control)

Mission planning Path planning
Explaining Head-Eyes coordination

Task planning Motion planning
Progressing Reaching
Forgetting Manipulating
Updating Grasping
Revising Holding

Cognitive perception: Reactive perception:
Focusing Image acquisition

Categorizing Noise Filtering
Interpreting Segmentation
Recognizing Feature extraction

To better illustrate the above tables, we shall consider Ar-
mandone mission: exploring a completely unknown maze,
£nding and getting a treasure, and reaching the exit. The
mission requires, as a fundamental task, the dynamic con-
struction of a map and a continuous updating of the robot
current state.

Let us disregard the way the data coming from sonars and
encoders are gathered by the structural level, and consider
what happens at the reactive level: a dynamic neural network
collects the raw data from the sonars and outputs a prob-
ability distribution on the obstacles localization. The map
delivered by the ANN is local as it concerns the immediate
surrounding of the robot. These data are suitably integrated
with the data collected by the encoders, in so generating a

dynamic global map which is continuously under develop-
ment and is used for both path and manipulation planning.
Motion, path and manipulation planning, in turn, need the
kinematics of the manipulator to be computed.

Still, at the reactive level, a parallel visual map is gener-
ated by processing the data acquired through the two cam-
eras: the vision system, via the reactive perception, is able to
determine whether a hallway is free (no obstacles), whether
the obstacle is, or not, the object looked for, whether there
is a crossing, the number of intersections at a crossing, and
whether the exit has been reached. The reactive level, in
other words, suitably process (reactive reasoning) all the
sensory information (reactive perception) for the motion
control, and it computes the current state of affair, that is, the
robot position and localization: the distance covered, what
he sees (just in terms of localization), where he is supposed
to be (at a crossing, in front of a block, in front of an exit,
too close to a wall, and so on and so forth).

Figure 2: Armandone has been put inside the maze he has to
£nd at least one block and bring it to the exit.

Once the state of affair is given by the reactive level, the
robot has to decide what to do and to understand his actual
state at a more abstract level, that is, w.r.t. the whole mis-
sion, that he has to accomplish. The meaning of understand,
here, is the following: the robot has to determine whether he
knows the exit or not, whether he has already found the trea-
sure or not, whether he has to go back following the same
path or not, whether he is inside a loop or not, whether he is
lost or not.

All these explanations and decisions require the robot to
reason about his current state, attributing suitable probabili-
ties to the truthfulness of what he has just gathered. In other
words, the robot needs to do theorem proving and Bayesian
reasoning. Reasoning, at the cognitive level (i.e. logical
and Bayesian), allows the robot to prove, given his a priori
knowledge and what he collected from his state of affair,
which properties (of the environment) currently hold, and to
what extent, and which properties (of the environment) will
hold after executing a speci£c action, and to what extent. I.e.
he has to prove, plan and decide.

We shall now describe how we have applied these con-
cepts to the construction of Armandone.



The structural level
The structural level concerns the mechanical, hardware and
software speci£cation of the machine structural functioning.

For example the choice of the arm degrees of freedom,
the kind of gripper or end effector, the choice of the wheels,
breaks etc. for the mobile platform, the kind of cameras and
sensors and so on and so forth. It concerns also the hardware
and software architecture, although the choices, in the spe-
ci£c case, were mainly driven by the limited potentialities
of Armandone. On this basis the three components of the
structural level can be de£ned as follows:

- Description. It deals with the mechanical parts of the
robot, so at this point we £nd speci£cation of joints, ser-
vos, sensors, and their mutual interactions.

- Reasoning. It deals with the electronic components, the
methodologies under which they are projected and the
robot hardware and software architecture.

- Perception. It deals with the sensors control.

The mechanical structure

Armandone body is based on an electro-mechanic structure
commercialized by Lynxmotion inc.

The carcass is essentially composed by an anthropomor-
phic arm installed upon a mobile base. Mobility is ensured
by two motorized wheels equipped with modi£ed Hitec HS-
422 servos and a passive caster, allowing the robot to per-
form a differential drive. The robotic arm is composed
of three links, and four revolute joints (4 DOF). The end-
effector is constituted by a small gripper; all the arm servos
are Hitec HS-422 stepper motors.

Figure 3: Mr.ArmHandOne embedded system electric
schema

Hardware and telemetry
The automaton is endowed with many sensors, and with
them the robot perceives the world (exteroceptive sensors),
and knows its internal state (proprioceptive sensors).

The exteroceptive sensors are:

1. Two cameras mounted on a pan-tilt head-like support
installed upon the base.

2. Seventeen sonars. One is used as a third eye between
the cameras, and the other sixteen are distributed along
a ring all around the robot, see Figure 1.

The Proprioceptive sensors are:

1. The encoders (see Figure 4), providing high precision
information on wheels position w.r.t. the wheels axle,
by the way they are engaged to observe movements
of the entire robotic structure w.r.t. the surrounding
(odometry). Encoders are not skillful, indeed they
can’t detect longitudinal slipping, neither lateral skid-
ding with the ground, forcing us to use quite carefully
metrical data.

Figure 4: Encoder

The other electronic components are:

• An Electronic board (see Figure 3) carrying the Cen-
tral Processing Unit (CPU) with RISC architecture corre-
sponding to the PIC 16F877. The CPU collects data from
sensors communicating, via a radio modem link, with a
remote PC.

• A Serial Servo Controller Mini SSC II controlling up to
sixteen pulse-proportional motors with a command trans-
mission speed between 2400 and 9600 baud.

• Two receiver-transmitter, one for each TV-camera, to ac-
quire and transmit in real time, to the remote PC, a com-
plete binocular vision.

The Reactive level
The reactive level concerns basic and primitive behaviors,
i.e. non further decomposable, besides perception and in-
vestigation of the nearest space.

Inverse kinematics, for instance, resides in this level. So
at this stage robot navigation is adapted to sensed surround-
ings, and arm joints angle are calculated according to the
end-effector position.

Hence the three constituent sub-components are:

- Description. It concerns the metric representation of the
work-space, local map construction, as well as the repre-
sentation of the robot con£gurations and details regarding
robot dimensions.



- Reasoning. It manages obstacles reaction, and it solves
the manipulator direct and inverse dynamic and kinematic
problems.

- Perception. It concerns sensors querying and data pro-
cessing, in particular metric map learning, features recog-
nition and object focusing.

Navigation: moving around
Armandone rambles around via the two independent motor-
ized wheels and a caster, performing safe tours using his
senses: vision, sonars and encoders. Combining motion and
sensors abilities we have developed some primitive naviga-
tion behaviors:
move(. . . ) The robot goes straight ahead until it reaches a

given distance, or until it senses an obstruction along the
path. The route length is obtained querying the encoders
mounted on the wheels, and impediments are felt with
frontal sonars.

moveCheck(. . . ) This function is almost like the previous
move, but it adds an important element, in fact moveCheck
inspects incessantly for an important space characteristic
of our system, lateral discontinuities, so when the robot
lateral sonars perceive an evident irregularity the wheels
stop.

turn(. . . ) It performs the turn on a dime action thanks to
the differential drive skill. Particularly useful when the
automaton is in a dead-end way.

align(. . . ) Performing the align behavior Armandone man-
ages the catastrophic orientation errors. The procedure
works in two steps: £nding a wall, avoiding corners, and
turning the mechanical structure in order to have the robot
parallel or perpendicular to the found wall, with an end re-
sult to correct the automaton direction.

head(. . . ) It regulates the head pan and tilt.
The two cameras are essential for navigation. In fact, edge

detection recognizes hallways, and discriminate between ob-
stacles and walls. Image elaboration, together with blob
analysis, guides also the robot during the last centimeters
on the way to pick up an object, and employing the pat-
tern matching strategy. Cameras can £nd out useful sign
for roaming. Throughout navigation the robot records and
works on a metrical local map. This map is output by an ar-
ti£cial neural network. Subsequently the automaton merge
all his local maps, with the help of local odometric informa-
tion, to progressively build a global metric map of the work
space.

The Local Map: sonar Data on the spot
To build a local metric map of the agent surroundings we
use data from the 16 sonars all around the robot. These
low-level sensory data are interpreted in a consistent way
adopting a neural network, and following the approach pro-
posed by Thrun (Thrun 1998). This methodology applies a
dynamic arti£cial neural network to interpreting sonars sen-
sory data: when trained, the dynamic ANN agrees to char-
acterize every space region near the robot with a probability
value representing region occupation degree.

Figure 5: Armandone is looking for the small block, on the
left of the picture.

Inputs to the network consist of:

• Two values encoding the position 〈x, y〉 of the inspected
spot in polar coordinates, relative to the robot: the dis-
tance from the robot center and the angle from the £rst of
the used sonars;

• The three sensor measurements coming from the sonars
closest to 〈x, y〉.

The network can be built during the learning phase and
then reduced later (pruning step) until an optimum solution
is gained.

To decide if the net needs to grow, we analyze the net
error state through a temporal window. If this error ceases
to descend quickly enough during the width of this history a
new node is added to the hidden layer.

We use two methodologies to create a new node. In the
£rst (Wynne-Jones & Mike 1993), the algorithm calculates
the relevance of every hidden node, and chooses to split the
node with the biggest relevance value. The second one cre-
ates a new node if the relevance of the node to be split is
less than a threshold, established by experimentation. The
algorithm creates a new node in a new hidden layer or a new
node in the hidden layer, that has the less number of hidden
nodes, and calculates the weights of the new node randomly.

If over£tting occurs, that is to say net error goes under a
tolerance value, the net needs to prune. So, considering the
same relevance function used for splitting, the node with the
least relevance value is found and eliminated.

After a pruning the net will be trained again and, if in the
new net the error is bigger than a maximum tolerance value,
the algorithm will restore the old net structure.

The network designed in this way performs very well
w.r.t. over£tting.

Pick an object: Kinematics
When an interesting object has been individuated and recog-
nized, the robot has to pick it up. To perform the collecting
task Armandone is endowed with an anthropomorphic four
degree of freedom arm. We have four revolute joints: base,
shoulder, elbow and wrist. We achieve the pick and place ac-
tion conceptually dividing the arm into two parts, a rotating
base and a three degree of freedom manipulator.

The £rst step consists in positioning the block, that has to
be picked up, in the planar work space of the 3R manipu-



lator; this position is reached at £rst with the wheeled base,
and then the approach is re£ned, working with the rotating
arm base.

The second step requires the computation of the inverse
kinematics of the arm. In other words, we have to £nd
a suitable arrangement of each single joint, that £ts with
the given end-effector position. The manipulation problem
requires a representation of the position and orientation of
each single link of the arm, and how these links reciprocally
interact. Since a stiff body in the space is fully described
by the position vector of one of its points, and the orien-
tation of a triple located on it (local-triple), w.r.t. a world-
£xed Cartesian triple (world-triple), we start assigning local
triples to our arm according to the Denavit-Hartenberg con-
vention (Denavit & Hartenberg 1955). On the basis of geo-
metrical and algebraic considerations, once the links length
are assigned, likewise the desired end-effector position and
orientation w.r.t. to the base triple, it is easy to determinate
the angles for all the three revolute joints. The end-effector
orientation is not imposed by the pick and place task. Ac-
cording to the result of several tests we have decided to keep
the grabber as parallel to the ground as the robot structural
limits allow.

Vision processing: identifying crossings, the exit
and the blocks

We have already described the head and eyes control, the
two functions pan and tilt are, in fact, used to suitably
move around the head in order to acquire those visual data
which are necessary to perform the three basic recognition
tasks: crossing and corridor detection, treasure detection
(the block) and EXIT detection.

The Matrox Imaging Library (MIL) is used in the early
stages of recognition to acquire raw vision data and to per-
form some basic operations, such us £ltering and edge de-
tection. After that, a speci£c algorithm for each recognition
task is applied, in order to extract relevant information.

For the treasure and EXIT detection, blob analysis and
pattern matching, both endowed by MIL, are used. In par-
ticular, while the £rst one allows for the identi£cation of spe-
ci£c regions in the image, based on geometric properties, the
second one allows for the recognition and localization of the
required pattern (the EXIT sign) in the image.

A reasoning system is implemented by an Algebra of Fig-
ures (AF)(see (Pirri & Romano 2002), and used for hallway
and crossing detection. The algebra AF is based on the no-
tion of primit (primitive traits), which is considered to be
t he elementary feature of an image, and it can be either a
straight line or an arc of ellipse. Primits can be further com-
bined using connection, parallel, symmetry and orthogonal
operators. Once combined they generate more complex fea-
tures, i.e. boundits, faces and aspects.

Descriptions of several panel con£gurations are given in
AF . These allows the robot to reason about the presence of
a straight corridor and left or right recesses. Note that in this
domain the reasoning process in simpli£ed because elliptic
arcs are not mentioned in descriptions.

The Cognitive level
The cognitive level is concerned with the design and imple-
mentation of the ontology, and of the methodologies adopted
for reasoning, that is, what the agent knows about the world,
and how he uses both his knowledge, and perception, to
learn new properties about the world.

The formal representation
The design of the ontology requires to de£ne the minimal
set of rules governing the agent domain. Adopting the Oc-
cam’s razor view, these rules should be primitive. In other
words, they should be the axioms from which all the abilities
and skills, needed by the agent to accomplish his mission,
can be derived. The problem is: is there a set of primitives
general enough to be used in any circumstance, that is, in
any domain of application? Unfortunately, so far we have
not been able to devise such a minimal and general set. It
follows that we still list down a set of primitives according
to a speci£c domain. For example, designing the ontology
of an indoor maze, even if it has several common aspects
with an outdoor maze, requires a knowledge about relative
directions, that for an outdoor maze, in which a GPS or an
electronic compass could be used, are not needed. Likewise,
in an outdoor maze a knowledge about shadows is needed,
in order to determine crossings, while in an indoor maze, in
which the light is £xed, it would be redundant. It is easy to
see that both for shadows and orientation, one de£nition is a
speci£c case of the other, however in general it is simpler to
think about the speci£c laws ruling a given domain.

We use the Situation Calculus (McCarthy 1969; Reiter
2001; Pirri & Reiter 1999) as our formal tool to describe the
agent’s ontology and both Eclipse Prolog (of IC·parc) and
Golog (alGOl in LOGic) (Levesque et al. 1997), wrapped
into C++, to implement the agent’s reasoning. This is for-
mally de£ned using a particular (speci£c to the Situation
Calculus) form of reasoning, called regression, that allows
any property to be transformed into a sentence holding in
the initial state.

The Situation Calculus is a formal theory of actions that
we have suitably extended to handle both stochastic ac-
tions and sensing actions, therefore introducing probabili-
ties and another level of reasoning (perceptual reasoning)
concerned only with sensory information. The ontology is
given through three sets of axioms. The £rst set is de£ned
by the set of properties and facts that holds about the ini-
tial situation (called S0). The second set is formed by the
Successor state axioms (SSA) and the third by the Action
precondition axioms (APA), one for each action speci£ed in
the language. The SSA stipulate the effects, on the domain,
of the execution of an action, and the APA stipulate the pre-
conditions for an action that have to be satis£ed for execut-
ing it. Other axioms are needed to specify the constraints of
the state transition: these constraints are independent of the
domain.

Representing, reasoning and executing
Like the other levels of the architecture, also the cognitive
level is composed of the following three main parts:



- Representation. It involves the ontology, therefore the de-
scription of the domain salient aspects. It concerns, in
particular the description of objects, properties, dynamic
laws ruling state transitions (both successor state ax-
ioms and action precondition axioms), constraints (unique
name for actions, and fundamental axioms), and other ax-
ioms concerning the speci£cation of a stochastic domain
and perception.

- Reasoning. It is speci£ed using classical theorem proving
in £rst order logic, in particular regression is the main for-
mal tool. Because the domain is £nite, all the automatic
theorem proving is maintained decidable, furthermore as
far as the implementation is concerned, negation by fail-
ure is used whenever properties of the domain cannot be
proved to hold. Unfortunately negation by failure con-
¤icts with perception, since new acquired data can crash
against data obtained with negation by failure. Observe,
however, that the current state, delivered by the reactive
level is dominant w.r.t. the properties proved by deduc-
tion. In other words if a wall is detected and asserted in
the current state – as delivered by the reactive level – and
the cognitive level proves that there is no wall (because of
negation by failure..) then the initial state is updated with
the regression of the current state.

- Perception. Is concerned with objects and scenes recog-
nition. Here the formal tools are based on recognition by
components (many-dimension primitives). The formal-
ization of perception takes care of internal state transitions
induced by sensing actions, and by the effects of reason-
ing about observations. Armandone lacks a formalization
of perception at the cognitive level since his domain is
limited to blocks and walls, and such a simple domain is
completely managed at the reactive level, as far as visual
processing is concerned.

The cognitive level involves also the execution monitor-
ing (high level control), that controls the execution of the
tasks, non deterministically chosen by the monitor. A task,
in turn, is a sequence of actions sometimes generated by a
planner (constructed in Golog), sometimes speci£ed by a
Golog program. The execution monitor is the outer control
which starts the robot mission, and it is written in Eclipse

Prolog. In the following table we quote Armando’s monitor.

monitor(St):-
goal(St), !.

monitor(St):-
task(Task,St,NewSt),
executor (Task,St,NewSt, CurrSt),
checkState(CurrSt),
monitor(CurrSt).

Here the term goal(St) speci£es the robot mission
starting in the initial state St. In this case, the mission con-
sists of exploring a given maze (observe that the maze can
be recon£gured any time Armandone starts a new mission),
£nding and picking up one or more treasures and stepping
on an Exit position, indicated by an exit-sign.

The term task(Task,St,NewSt) speci£es the non-
deterministic choice of one of the expected tasks: exploring

the maze, picking up the block, going to the exit. It is inter-
esting to notice that two distinct possible events can happen
while the robot is exploring the maze:

1. The exit is found before the £rst block is found (EB).

2. One or more blocks are found before the exit (BE).

Depending on which of the above events happens a given
combination of tasks is effectively executed. The term
executor(Task,St,NewSt, CurrSt) speci£es the
transition of states induced by the task execution and, £nally,
the term checkState(CurrSt) verify the consistency
of the current state, delivered by the reactive level, with the
knowledge inferred and stored by the cognitive level.

Maze dif£culty
The problem of how best traversing a maze, and the com-
plexity of £nding a path between two positions, is well
known in the literature (see e.g. (Aleliunas et al. 1979;
Hemmerling 1989; Blum, Raghavan, & Schieber 1991;
Blum & Kozen 1978; Rabin 1967), and the history of maze
traversal can be found in (S. Bhatt & Tayar 2000)). In partic-
ular Rabin (Rabin 1967) has proved that there is no £nite au-
tomaton, that can thread all £nite undirected graphs (unless
some unbounded information can be stored in its vertices).
This impossibility result can be overcome by storing suitable
information, via the global and topological map. The prob-
lem is, therefore, what kind of information can be stored in
the vertices, in order to allow a robot to explore any kind of
£nite maze, with any number of cycles.

In the case of a real-world-maze, the agent has access
to an (approximately correct) local map that is dynamically
build. In other words the robot build the graph of the maze
while traversing it, and it stores information about positions,
length of corridors, number of intersections at a crossing etc.
This information, however might be ambiguous. The agent
might be unable to disambiguate a location, e.g. when pass-
ing through the same crossing. Despite the exploration of a
maze can be suitably represented as the traversal of a graph,
the dif£culty here, consists in the robot ability of singling
out edges from the hallways and vertices from crossings.
Each time the robot passes through the same crossing he has
to recognize that, indeed, is the same. Furthermore a very
short hallway could be mismatched with a crossing, and a
very wide crossing might mislead the recognition of the in-
tersections (the out-degree of the vertex associated with the
crossing). Therefore the problem of reaching a position in
the maze can be divided into two sub-problems: 1) Man-
aging the ambiguity of information collected from sensors;
2) managing the errors that can further blur sensory infor-
mation (e.g. in a short corridor a wrong wall alignement
followed by a wrong twist might induce the robot to sign a
position that will be no more recovered). Observe that if all
the actions were deterministic (i.e. with the expected effect)
and all sensory information perfectly reliable, then the prob-
lem could be reduced to that of threading a directed Eule-
rian graph. Obviously, in a real-world-maze actions are non-
deterministic and sensory information is unreliable. To face
the above problems, we had to introduce a notion of maze
dif£culty based both on a graph and a geometrical model.



The graph model abstracts away metric information, retain-
ing only topological information of the environment, while
the geometric model retains only the metric details. As far
as the graph model is concerned, the maze can be assumed
to be an indirect connected graph. On the other hand, the ge-
ometric model has to do with the degree to which a maze has
short and quick twists and turns: an hallway of short length
can induce more ambiguity than a longer one.

Let M(V,E) be the graph representation of the maze,
where V are the crossings and E ⊆ V 2 is the set of all hall-
ways. A cycle Ci,k in M(V,E) is a path vi, vi+1, · · · , vk

such that (vk, vi) ∈ E.
The topological dif£culty D of the maze is de£ned as fol-

lows:
D = |E| × e|Ci,k|

The overall dif£culty DA of the maze is instead measured
by taking into account also the hallways, and their length.
Let d = lnD and length(vi, vj) the length of the hall-
way (vi, vj), then DA = f(d, length(vi, vj), |E|), i.e. it
is a function of the topological dif£culty, and of the length
and number of the hallways. This function is de£ned for
length(vi, vj) > 0 and it is decreasing, according to pa-
rameters depending on d and |E|, till the medium corridor
length does not reach an optimal dimension and then it in-
creases again.

block→exit
d = |Ci,j |+ ln|V | length(vi, vj)
|V | |Ci,j | d 0.5 1.2 1.6 2.1 2.8
5 0 1.6 0 0 0 0 0
9 1 3.2 0.32 0 0 0 0
15 2 4.7 1.67 1.67 1.32 1.32 1.32
21 2 5.0 3 3 2.67 2.67 2.67
24 3 6.2 5.32 5.32 5 5.32 5

exit→ block
5 0 1.6 0 0 0 0 0
9 1 3.2 0.32 0.32 0 0 0.32
15 2 4.7 2 2 2 1.67 1.67
21 2 5.0 3.32 3.32 3 3 3
24 3 6.2 5.32 5 5 5 5
The above table shows a benchmark on the percentage of

restarting to which Armandone is subject, depending on the
dif£culty of the maze. There are, indeed, two benchmarks,
depending on whether the block was found before the exit
or the other way round. The notion of dif£culty of the maze
is thus adopted to show the behavior of the robot in terms of
numbers of restarting. Where a restarting witnesses the in-
ability of the robot to recognize an already visited crossing.
We tested each con£guration at least 3 times, and for each
con£guration we report the restarts percentage.

In the next section a more detailed presentation of the
way the cognitive level operates on the maze exploration,
is given.

The challenge
The demo we have been building up serves to test the cog-
nitive architecture. In fact, it involves an active veri£cation

of all the levels of the architecture and their mutual inter-
action. The demo consists of the following steps. First a
maze is built using straight or angular supports that glue to-
gether two sheets of polystyrene (see Figures 2, 5 and 7).
The maze can be as complicated and intricate as one likes.
An exit-sign is attached to a wall and small blocks, of the di-
mension of a lego-block, are thrown on the hallways. When
the scenario is ready, Armandone is put inside the maze at
a random position and it is started, by switching on the bat-
teries. Armandone is, now, ready to execute his task. At the
very start, he sets his directions as follows, independently of
his real position: the pseudo-north is in front of him and it is
set as his pseudo-absolute direction.

Then he starts exploring the maze to £nd the treasures (the
blocks), while looking for the blocks he might encounter the
exit, in this case he mentally marks the exit position. Oth-
erwise after having recovered a block he continue exploring
until he £nds the exit. If in the meanwhile he £nds other
blocks he will pick them up and save them in his basket.

The crucial steps of Armandone’s life cycle are:

1. Building a metric-local map (to follow a path) and a
topological-symbolic map (to mentally mark the places
already visited, and reason about his current achieve-
ments).

2. Building the current state of affair, by fusing several data
obtained from different processes of computation, and
reason about it, to actuate an exploration strategy.

3. Checking the consistency of the state with the inferred
knowledge. When consistency is lost (the expected state
does not match with the perceived state) then the robot
restarts, erasing the current map, and positioning him self
in an initial position (0, 0) with the north in front.

Figure 6: One task has been achieved: picking up at least a
block. Now Armandone is looking for the exit.

Tasks and Monitor cycle. At the beginning of every step
the robot senses and percepts the environment, builds the
local (metric) map, and computes the current state of affairs.

The current state is checked for consistency against the
amount of knowledge derivable at the cognitive level. If it is



consistent then the current state is used to integrate the cur-
rent topological map with new data, otherwise the monitor
is restarted and all the knowledge inferred so far is erased.
The topological map is a set of de£nitions involving either
the crossings encountered so far or the pseudo-relative and
pseudo-absolute directions of the robot. Remember that at
the beginning of the mission, in fact, Armandone sets his
pseudo-absolute directions. The pseudo-relative directions
are his current left and right. According to the current state
a task is chosen. The reactive (and structural) level adapts
the selected task according to the environmental conditions
(obstacles, discontinuities, crossings . . . ), and send the com-
mands to the actuators.

Exploration strategy. The maze exploration is performed
according to the following strategy, de£ned at the cognitive
level:

- Initialize a crossing counter to 1.

- Whenever a crossing is reached, if it is unknown (i.e. there
is a hallway intersecting the crossing, that has not yet been
explored), then mark the crossing with the smallest avail-
able number n, with the length of the hallway covered so
far (from the previous crossing) and mark the number of
unexplored hallways intersecting at the crossing.
If the crossing is known (i.e. all the corridors intersect-
ing the crossing have been explored) then go back to the
£rst unknown crossing, numbered n-k, k ≥ 1, delete the
numbers marked on all the known crossings encountered
in the way back, and suitably update the counter.
If all the crossings are known then:

. If the exit is known and a block has been recovered,
then stop the exploration and plan to reach the exit.

. If the exit is unknown or no block has been recovered,
then an error occurred, restart the monitor according to
the following conditions:

* If a block has been recovered, then restart with the
proviso that only the exit has to be found, and erase
the current topological map.

* If no block has been recovered, then restart the moni-
tor just erasing the current topological map.

At a crossing choose an unknown path according to the
following priorities: “go straight”, else “go right”, else
‘go left”.

If the treasure has been found the robot must plan to pick
it up and put the object in the basket; this task involves the
kinematics of the manipulator and manipulation planning,
already described in a previous section (see the Reactive
Level pg.3).

Planning to reach the exit, on the other hand, is achieved
according to the planning strategies, described in (Reiter
2001; Finzi, Pirri, & Reiter 2000) and implemented in
Golog.

Discussion
Cognitive Robotics addresses the design of an ”embodied
arti£cial intelligence” and demands a great effort both in

developing new concepts, methodologies, tools and tech-
niques, and in putting them all together. A sheared idea is
that high-level control is pervasive: the integration of cogni-
tive skills (reasoning, perception, decisions etc.) in¤uences
the whole architecture of the control system. Hence, the em-
bodiment should lead to a more detailed analysis of the inter-
action between high-level and low-level processes (provid-
ing more detailed models for them) in order to make them
meet at halfway (e.g. cc-GOLOG language (Grosskreutz
& Lakemeyer 2001)). This investigation should yield to a
deeper understanding of the relationships among symbolic
and numerical approaches.

As a result of this research effort, the high level control
system is enhanced with capabilities suitable for managing
tasks that are traditionally (Gat 1998; Firby, Propopowicz,
& Swain 1998) reactively accomplished. Earliest examples
of agent of this kind can be found in (Simmons et al. 1997;
Burgard et al. 1998). (De Giacomo, Reiter, & Soutchan-
ski 1998; Lespérance, Tam, & Jenkin 1999; Finzi & Pirri
2001) emphasize the role of high level monitoring systems,
allowing for a strict interaction between deliberation and ex-
ecution. Here the on-line behavior of the system can be
formally veri£ed and adapted to new events in a ¤exible
way without affecting the system basic constraint (e.g. in
(Ingrand & Py 2002; Williams, Chung, & Gupta 2001)).
These approaches aims at providing alternatives to rigid lay-
ered architectures where the supervision and execution are
managed by separated modules (e.g.(Burgard et al. 1998;
Gat 1998)). An example of this trend can be observed
considering the evolution of the supervision module from
RHINO (Burgard et al. 1998) to MINERVA (see (Thrun et
al. 1999)). In the work presented above we discussed an
approach to high level control in the context of navigation
tasks performed in an unknown environment. High-level
control supports navigation and (topological) map building
tasks in several ways: checking consistency, driving the ex-
ploration, taking decisions in the case of incorrect or sus-
picious behavior (in (Thrun et al. 1999) supervision sys-
tem plays a similar role) etc. Our exploration strategy can
be assimilated to a version of the greedy mapping method
(Koenig, Tovey, & Halliburton 2001) managed by the high-
level monitor. Furthermore, our architecture enables us to
employ the high-level perceptive information, gathered dur-
ing the exploration, for the topological map building activity.
The problem of navigation in an unknown environment can
be decomposed into the SLAM (Simultaneously Localiza-
tion And Mapping problem) and the decision-making about
where to go (for example path planning) when the robot
needs either to reach a desired location or to explore the en-
vironment. Some approaches have been recently proposed
in the probabilistic robots programming framework ((Thrun
2000; Thrun et al. 2000)). In these works the knowledge
about the position and the map is represented by one or more
probability distributions, which play the role of beliefs, and
are continuously improved through successive Bayesian up-
dates which exploits current data from sensors. Although
this approach seems to be very promising, two major draw-
backs still remain to be challenged, that are how to scale up
ef£ciently to real large and unsafe environments integrating



slam and path planning and how to integrate a priori knowl-
edge of the constraints ruling the physical structure of the
domain, when this happens to be available. An interesting
way for further research could be to investigate to what ex-
tent these ideas can be carried in our framework (or vice
versa).
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