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Abstract

Effective algorithms for modular self-reconfiguring
robots should be distributed and parallel. In previous
work, we explored general algorithms for locomotion
and self-replication and explained their instantiations to
systems in which modules move over the surface of the
robot. In this paper, we describe the instantiation of one
such locomotion algorithm to the Crystal robot: a dis-
tributed locomotion algorithm designed specifically for
unit-compressible actuation. We also present the inte-
gration of this algorithm with obstacle avoidance for a
demonstration at the 2002 AAAI conference.

Introduction
Self-reconfiguring (SR) robots are robots that can change
shape to match the task at hand. These robots comprise
many discrete modules, often all identical, with simple func-
tionality such as connecting to neighbors, limited actua-
tion, computation, communication and power. Orchestrat-
ing the behavior of the individual modules allows the robot
to approximate, and reconfigure between, arbitrary shapes.
This shape-changing ability allows SR robots to respond
to unpredictable environments better than fixed architec-
ture robots. Common examples of reconfigurability in ac-
tion include transforming between snake shapes for moving
through holes and legged locomotion for traversing rough
terrain, and using reconfiguration for locomotion as shown
in Figure 1.

Development of functional self-reconfiguring robots is a
significant challenge. Hardware must be designed and built
that is capable of self-reconfiguration and autonomous op-
eration, and supporting algorithms must be developed that
can confer upon the hardware the ability to change shape
and to locomote. In particular, we are interested in systems
(hardware and software) that operate without a central con-
troller or common communication channel. In this paper,
we describe a design for a self-reconfiguring robot called
the Crystal, along with distributed algorithms for locomo-
tion (both in the abstract and instantiated to our system) and
associated experiments that demonstrate the basic operation
of both the robot and the algorithms.
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Several types of modules and actuation mechanisms
that can support self-reconfiguration have been proposed
(Fukuda & Kawakuchi 1990; Pamechaet al. 1996;
Hosokawaet al. 1998; Shen, Will, & Castano 1999;
Murata et al. 2000; Ünsal & Khosla 2000). In our pre-
vious work we described a module capable of 3D self-
reconfiguration by using a rotation-based actuation called
the robotic molecule(Kotay & Rus 1999) and a module ca-
pable of self-reconfiguration that uses scaling-based actua-
tion, the Crystal (Rus & Vona 2001). The Crystal robot has
gone through two design phases. The original design was
described in (Rus & Vona 2001). Based on our experience
with this module we refined the design to add an additional
degree of freedom, sensing, and distributed systems support
through point to point communication.

The key algorithmic question for self-reconfigurable
robots is the planning and control problem: how should the
modules move relative to each other in order to achieve a
static or dynamic goal shape, or to move in a desired way,
and how to do it efficiently. We have already developed sev-
eral centralized planners for self-reconfiguring robots (Ko-
tay & Rus 1999; Rus & Vona 2001). Some of the most in-
teresting applications of this work will employ thousands of
modules working together. The off-line planning algorithms
proposed above move one module at a time and may be too
slow and impractical for controlling lattices made of thou-
sands of modules. In this paper we discuss distributed con-
trol algorithms that are scalable, support parallelism, and are
better suited for operation in unstructured environments.

Distributed algorithms are naturally suited for controlling
self-reconfiguring robots because they take advantage of
modularity, allowing the system to be more robust to failures
of individual modules and communications, and supporting
partitioning of the robot. Several distributed algorithms for
self-reconfiguring robots have been proposed, including lo-
comotion for string-type robots (Støy, Shen, & Will 2002)
as well as reconfiguration of 2D and 3D robots. Notable 2D
examples are algorithms for the Fracta system (Tomitaet al.
1999) and the system of Hosokawaet al. (Hosokawaet al.
1998), and the PacMan algorithm for unit-compressible sys-
tems (Butler, Byrnes, & Rus 2001). Algorithms for 3D sys-
tems include work on the Proteo system (Yimet al. 2001)
as well as for meta-modules made from unit-compressible
modules(Vassilvitskii, Yim, & Suh 2002). Many of these
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Figure 1: Simulation of SR robot on Mars terrain. The robot begins as a single cube in (a), but divides into four in (b) and (c)
for parallel exploration using a distributed, waterfall-like locomotion algorithm inspired by cellular-automata.

works have also included hardware implementation.
In our recent work (Butleret al. 2002; Butler, Murata,

& Rus 2002) we proposed distributed algorithms for sev-
eral tasks: (1)locomotion, where the modular robot can im-
plement a tumbling gait that conforms to the terrain geom-
etry; (2) self-replication, where the robot can divide itself
into smaller autonomous robots, for example to explore the
terrain in parallel, and (3)merging, where two autonomous
modular robots can connect into a larger robot, for example
in order to climb taller obstacles. These algorithms use local
information only and are inspired by a cellular automata ap-
proach. For each task we designed a set of geometric rules,
so that each module tests the same rules with respect to its
neighborhood to decide what action to take. The resulting
control algorithms are distributed, efficient, and provably
correct (Butleret al. 2002; Butler, Murata, & Rus 2002).
These algorithms are also generic in the sense that they ap-
ply to an abstract model for self-reconfiguring robots, where
individual modules on the robot have the ability to traverse
a planar surface composed of identical modules and to make
convex and concave transitions between surfaces. Many
existing self-reconfiguring robots (Hosokawaet al. 1998;
Kotay & Rus 1999; Murataet al. 2000; Pamechaet al. 1996;
Ünsal & Khosla 2000) fit this model.

In this paper we start from the algorithms developed in
(Butler et al. 2002; Butler, Murata, & Rus 2002) and show
how we instantiated them to unit-compressible systems such
as the Crystal robot. This instantiation is challenging be-
cause the actuation mechanism of unit-compressible robots
more naturally supports movement through the volume of
the robot rather than on its surface. We discuss in detail
the control algorithms for distributed robot locomotion; each
module can sense its local neighborhood structure, commu-
nicate with its neighbors, and perform some simple com-
putations to evaluate the control rules. We also discuss an
implementation of these algorithms on the Crystal robot and
a task recently demonstrated at the 2002 SIGGRAPH and
AAAI conferences where a five-unit Crystal robot executed
our locomotion algorithm while sensing obstacles.

Crystal Robot
The Crystal Robot is a unit-compressible self-reconfiguring
modular robot. It actuates by expansion and contraction of
individual modules, which together with connection and dis-
connection allows the robot to change shape as well as lo-

Figure 2: The first (left) and second (right) version proto-
types of the Crystal robot. The first version is fully expanded
while the second is contracted along one axis and expanded
along the other.

comote. Each module consists of a central core and four
faces that move in and out relative to the core to perform
expansion. An expanded module is exactly twice the size
of a compressed module, which aids in reconfiguration and
planning.

The original version of the Crystal (Rus & Vona 2001)
had a single degree of freedom for expansion, so that all
four faces expanded and contracted together. Each module
had its own processor to control actuation, but synchroniza-
tion was performed through sensing an external beacon —
modules had no ability to communicate directly with each
other. In the new version of the hardware, the expansion has
two degrees of freedom as well as inter-module communi-
cations. In fact, in the current version, there is no facility for
global communications, so all operations must be performed
in a distributed fashion. The old and new prototypes are pic-
tured together for comparison in Fig. 2. In this section, we
describe in detail the hardware components, electronics and
fabrication of the new modules, the communications infras-
tructure developed, and our method of initializing the robot’s
software state.
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Figure 3: A single module of the Crystal robot.

Hardware
The second-generation Crystal module, shown in Fig. 3, in-
corporates several important new features including an addi-
tional degree of freedom for actuation, inter-module IR com-
munication capability and sensor inputs. A central control
beacon is no longer present to coordinate behavior. Thus,
the robot control is now done in a purely distributed fash-
ion. The North/South and East/West faces are independently
actuated, so the degrees of freedom increase to four (two
for expansion/contraction, and two for connectors on active
faces). In addition, several features have been improved over
the first version, including stiffening of the linear bearings
that align the faces during actuation, more powerful motors
to perform actuation, and a faster processor with more mem-
ory and I/O capability.

Each atom’s on-board electronics provide computation,
IR communication, sensor inputs and motor control. The
processor is a Hitachi HD64F3644H running at 10 MHz,
which includes 32KB of EEPROM for program storage.
Analog inputs to this chip are brought out to a small con-
nector so that various sensors (analog or digital in nature)
can be attached. Digital outputs control motor drivers that
perform actuation, and an additional digital output powers
an LED for rudimentary debugging.

Communication is implemented with asynchronous serial
over IR components on the Crystal faces. Each module face
contains an IR emitter and detector that allow modules to
communicate at distances of up to 10 cm. These compo-
nents are connected to a dedicated Maxim Max3100 UART
in the core, so a unit can talk with all neighboring units es-
sentially simultaneously. The UARTs communicate at 1200
Baud and have an eight-word hardware FIFO. Synchronous
serial communication is used between the processor and the
UARTs.

Each face is connected to the core circuit board with a

flexible ribbon cable, so that the cabling exerts minimal
force on the face during expansion and contraction. Four 3V
Lithium batteries (one in each face) power the unit and en-
able fully untethered operation. Code is downloaded to the
processor though a serial interface, then executes as soon as
the unit is powered on.

The expansion/contraction mechanism uses a rack-and-
pinion to actuate each pair of module faces. Two MicroMo
motors are mounted coaxially in the module core, with
pinion gears mounted directly on the motor output shafts.
Racks connected to opposing faces mate on opposite sides
of a pinion such that each motor drives two faces simulta-
neously. Shaft encoders built into the MicroMo’s housing
generate interrupts that allow the processor to detect when
the face is fully expanded or contracted.

Modules attach to each other at their faces, using channel-
and-key type connectors. Each module has two faces with
active connectors, and two faces with passive connectors.
Passive faces simply contain a channel that accepts a bar
from an active face. The active face can rotate the bar a
quarter-turn, locking the two modules together, and unlock
the modules by reversing the rotation. Lego mini-motors are
used to actuate the active faces.

Dimensionally, this Crystal prototype is slightly larger
than its predecessor. Expanded size is 5.2 inches square,
and contracted size is 2.6 inches square. Overall height is
7.4 inches with a weight of 18 ounces. Eighteen modules
have been constructed so far.

Software Architecture
Communication is the key component for providing the sys-
tem support for distributed control in Crystal robots. To
this end, we developed a message passing infrastructure on
top of the Crystal’s communication capabilities. Each unit
maintains a message queue, and can post messages to neigh-
bor modules. A module’s program is then centered around
a message loop, similar to the message loop in modern win-
dowing systems. In each iteration, the processor polls each
UART for incoming messages and adds any new messages
to the queue. It then takes a message from the queue and
processes it according to the appropriate message handler.
Since each UART has its own FIFO, the UARTs still can
receive data while the processor is busy handling messages.
Because the processor speed is much faster than the UART
transmission rate, the risk of the UART FIFOs filling up be-
fore they get serviced by the processor has not been an issue.

Library functions were developed to handle the syn-
chronous communication between the processor and UARTs
in both directions. Polling of the UARTs is done with a sin-
gle library call, so that the creation of the message loop is
trivial. For these library functions, we have assumed that
all messages will be two bytes long (although the content
within the two bytes is message dependent). This limit was
imposed to allow the system to be able to receive four mes-
sages from each direction before the UARTs are polled, al-
though future messaging infrastructure (and interrupt-based
communication) will allow us to relax this restriction. For
all the algorithms and robot sizes presented here, this mes-
sage size limitation has not been problematic.
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Figure 4: Message format example.

Using this infrastructure we implemented the distributed
algorithms by defining a set of message types and creating
message handlers for each message type. In general we have
maintained a common format for the messages, so that ad-
ditional common library functions can be used. In particu-
lar, the lowest four bits of the message are reserved for the
message type, and the highest two bits are reserved for the
direction from which the message was received. These data
can be extracted from the message with a bit mask, and pro-
viding library functions to perform the bit masking leads to
less propensity for coding errors. The data can take up the
remainder of the message and be in whatever format is nec-
essary for the particular message or algorithm (in many of
our algorithms, the data format is consistent over all mes-
sage types). An example message is given in Fig. 4.

Initialization
While the messages used by any given algorithm are nec-
essarily specific to that algorithm, there is a common boot
sequence that is used (with some algorithm-specific adapta-
tions possible). A boot sequence is required since the mod-
ules must be manually switched on one at a time, so that
when a module starts its program, it does not initially know
whether its neighbor units are powered on. To solve this
problem, we use a special message calledsysteminit. This
message is initially generated only after all modules have
been powered on, and can be sent at later times to effect a
software “reboot.” This message is created by one module
that has a switch. Thesysteminit message handler propa-
gates the message to all neighbors, and also recognizes each
neighbor from which it received asysteminit. Any initial-
ization of algorithm-specific global variables is also done in
this function. If furthersysteminits are received, they are
ignored. However, to enable later soft reboots, there is also
a pre init message to set a state bit that is cleared bysys-
tem init. This allows a module to realize when asysteminit
(or pre init) is a duplicate and when it indicates a new reboot
of the system.

Demonstration
The development of the new Crystal hardware and commu-
nication infrastructure has enabled us to implement and test
several distributed algorithms for this system. In fact, since
there is no central communication or control capability, all
testing of the system must be done in a distributed fashion.
This allows us to test the validity of our distributed algo-
rithms in a truly asynchronous context, in which modules
are powered up at different times, have different actuation
speeds, and have no way to share data except via the pass-

ing of messages (all issues that are easy to forget about in
simulation).

In preparing a demonstration for the 2002 AAAI confer-
ence, we wished to choose a task that illustrated the basic ca-
pabilities of the Crystal robot and the style of algorithms we
have developed. The task also needed to be one that could
be run reliably, as the demonstration would run for hours at
a time, and had to operate for a reasonable period without
human intervention. The task we chose was for the robot to
locomote on a table until it detected an obstacle, then reverse
direction and repeat. This task is simple, yet presents three
challenges: a locomotion algorithm, obstacle detection, and
a reliable implementation. We addressed these challenges
by adding simple contact sensors to the robot, and modify-
ing our inchworm locomotion algorithm to make use of sen-
sory data in controlling direction. In this section we describe
the algorithm, the implementation, and observed results.

Algorithm 1 Distributed Stand-Alone locomotion.
State:
neighbors[], array of neighbors
heading, direction robot is moving: N,S,E,W

Messages:
inch (direction d), sent to move robot in directiond

Action: setheadingstate tod, execute TryRules()
state (state s), announces state changes to neighbors

Action: execute TryRules()

Procedures:
TryRules()

position← FindPosition()
if position = headthen

if neighbor[opposite(heading)] is contractedthen
contract, send state
expand, poll touch sensor, send state
if touch sensor is triggeredthen

send inch in reverse direction
else

send inch
if position = bodythen

if neighbors[opposite(heading)] is contractedthen
contract, send state
expand, send state

if position = tail and responding toinchmessagethen
contract, send state
expand

FindPosition()
if rear neighbor but no forward neighborthen

return head
else ifforward neighbor but no rear neighborthen

return tail
else

return body

Inchworm Locomotion Algorithm
One of the fundamental tasks of any self-reconfigurable
robot system is locomotion. On most lattice-based systems,
locomotion can be performed by having individual modules



move over the surface of the group from the back to the front
in a tank-tread-like pattern. In unit-compressible systems
such as the Crystal, however, no single module can move
relative to the group without help from other modules, and
so a different specialized technique is required. In previous
work, we have described various locomotion techniques for
the Crystal that operate in a centralized fashion to coordi-
nate the modules. Here we present distributed algorithms
which achieve similar performance with only local informa-
tion available to each module.

Figure 5: Schematic of module action under Stand-Alone
locomotion, in which the group is heading upward, and the
series (left to right) represents progress of a single inchworm
“step”.

To perform locomotion, we have developed several algo-
rithms for unit-compressible systems. One such algorithm
produces inchworm-like motion to perform locomotion on a
stand-alone group of modules, taking advantage of friction
with the ground to move the group forward. It is based on a
set of rules that test the module’s relative geometry and gen-
erate expansions and contractions as well as messages that
modules send to their neighbors. When a module receives a
message from a neighbor indicating a change of state, it tests
the neighborhood against all the rules, and if any rule ap-
plies, executes the commands associated with the rule. The
algorithm is designed to mimic inchworm-like locomotion:
compressions are created and propagated from the back of
the group to the front, producing overall motion.

The Stand-Alone algorithm is presented as Algorithm 1.
In our algorithm listings, we give a module’s global state
variables, the message types it can send and receive, and the
procedures that are called from the message handlers (in-
cluding the rules of the algorithm). The overall idea behind
Stand-Alone locomotion is that at any given moment, the
majority of the modules are stationary, so that the remain-
ing modules will move relative to the majority. In addi-
tion, the motion is specified such that two adjacent modules
will move together, minimizing the net force to the other
modules. A schematic storyboard of this algorithm is given
in Fig. 5. The “tail” module contracts first and signals its
forward neighbor to contract. Each module expands after
contraction, so that the contraction propagates through the
robot. When the contraction has reached the front of the
group, the group will have moved half a unit forward. De-
pending on context, once the leader of the group has con-
tracted and expanded, it can then send a message back to
the tail to initiate another step. In our demonstration, the
head module polls its touch sensor as it expands. If it senses
an obstacle, it stops the expansion and sends a message to
initiate the algorithm with the direction reversed.

Analysis/Extensions The Stand-Alone locomotion algo-
rithms can be proven correct (i.e. it produces locomotion
in the intended direction). This is done by noting that only
the tail can contract at first, followed by each other module
in turn. Since each contraction must be triggered by astate
message, no module will contract until it has the proper in-
formation, but once it does contract and sends a message
forward to that effect, the contraction will always propagate.

Algorithm 1 is specified (and analyzed above) for a single
column, but can be extended to convex shapes by select-
ing one column as a master column. When a module in the
master column actuates, a message is passed across its row
that causes all modules in the row to actuate simultaneously.
This is effective since communication is much faster than ac-
tuation, and the modules not in the master column have no
other responsibilities that could cause communications lag.
This allows for correct locomotion for any convex shape, as
shown in the experiments below.

Implementation
The ability to perform distributed locomotion depends on
the modules passing their state to their immediate neighbors.
The communication infrastructure enables this by allowing
us to define astatemessage, which indicates whether the
module is expanded in the direction of motion and (for the
Attaching algorithm) whether it is connected to a fixed mod-
ule. This information (along with the message type) easily
fits within the two-byte limit. The other message required
is the inch message, which tells the robot to begin locomo-
tion, and includes the desired direction of travel. Theinch
message is sent from an external source to initiate the lo-
comotion, and is also sent by the head module to trigger
another step (when desired). Together with the soft-boot se-
quence described previously, these algorithms therefore use
only four message types to perform locomotion.

Results
We implemented this algorithm and performed experiments
with various shapes, one of which is shown in Figure 6. The
experiments successfully demonstrated reliable locomotion
in the configurations we tested. See Butler, Fitch and Rus
(Butler, Fitch, & Rus 2002) for further discussion.

This locomotion gait is significant first in that it exempli-
fies the style of distributed, scalable algorithms we wish to
develop and implement in proposed work. It also provides
on possible gait to use in an application that chooses be-
tween various gaits, such as wheeled locomotion versus the
inchworm, in response to the environment. For demonstra-
tions at the SIGGRAPH and AAAI conferences, the touch
sensors we added to the modules allowed the head module to
detect obstacles and reverse the direction of the inchworm.
The result was that the robot “walked” back and forth be-
tween two obstacles on a table. The algorithm ran for over
65 hours in total at the SIGGRAPH and AAAI conferences.

Conclusion
These experiments were the first significant repeated demon-
strations of untethered unit-compressible modular robots in
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Figure 6: Photos of locomotion experiment for a “blob” shape. In (a), the leftmost column is contracted, and in (b) and (c) the
following columns contract to make the group walk to the right.

public. They were largely successful, in that we were able
to successfully perform distributed communication and ac-
tuation to achieve specific tasks without any central con-
trol using on-board processing and power supply. Dur-
ing the course of the experimentation, we learned several
things which we plan to incorporate into future versions
of the system. In particular, the connectors are not rigid
enough to support some types of reconfigurations and often
jam during initialization, the power consumption could be
greatly reduced by utilizing the processor’s “sleep” modes
when possible, and a more general communications protocol
would allow for greater algorithmic capability and robust-
ness against ambient IR. Cameras, camcorders, and other
photographic equipment emit enough IR to trigger the com-
munications hardware. This creates false messages that con-
fuse the robot.

The connector issues are more challenging. In the first
prototype of the Crystal, the faces themselves were not par-
ticularly rigid, and so compliance in the connectors was
not noticed in the overall performance. However, the new
Crystal uses better bushings to keep the faces more rigidly
aligned during expansion. This means that alignment tol-
erances are now limited by the connector stiffness. The
lock-and-key style of connector is advantageous in that it
can fit in a very small space (the faces of the Crystal are
only 8 mm thick), allows two module faces to slide along
each other when not connected, and uses very simple parts
(the key can be directly driven by a gearmotor). However,
it does not have much tolerance for misalignment (≈3 mm
laterally and≈1 mm of separation, and virtually no vertical
misalignment). In addition, in order to decrease the potential
for jamming, the keys must be slightly undersized relative to
the slot, but this allows for them to wobble. We are currently
exploring alternative connector designs.
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