
MinDART : A Multi-Robot Search & Retrieval System

Paul E. Rybski, Amy Larson, Heather Metcalf, Devon Skyllingstad,
Harini Veeraraghavan and Maria Gini

Department of Computer Science and Engineering, University of Minnesota
4-192 EE/CS Building

Minneapolis, MN 55455
{rybski,larson,hmetcalf,dsky,harini,gini}@cs.umn.edu

Abstract

We are interested in studying how environmental and control
factors affect the performance of a homogeneous multi-robot
team doing a search and retrieval task. We have constructed a
group of inexpensive robots called the Minnesota Distributed
Autonomous Robot Team (MinDART) which use simple sen-
sors and actuators to complete their tasks. We have upgraded
these robots with the CMUCam, an inexpensive camera sys-
tem that runs a color segmentation algorithm. The camera
allows the robots to localize themselves as well as visually
recognize other robots. We analyze how the team’s perfor-
mance is affected by target distribution (uniform or clumped),
size of the team, and whether search with explicit localization
is more beneficial than random search.

Introduction
Cooperating teams of robots have the potential to outper-
form a single robot attempting an identical task. Increasing
task or environmental knowledge may also improve perfor-
mance, but increased performance comes at a price. In addi-
tion to the monetary concerns of building multiple robots,
the complexity of the control strategy and the processing
overhead can outweigh the benefits. We explore these trade-
offs by comparing single robot versus team performance, as
well as examining the benefits of increased intelligence in
the form of environmental knowledge.

We propose a task of search and retrieval whereby robots
locate, collect, and return targets to a home base. Robots
are homogeneous and perform independently with a local-
ized goal of target retrieval. The task is a simplified version
of minefield clearing where mines are localized using close-
proximity sensors such as magnetometers, or of a search-
and-rescue task where robots find and retrieve specific tar-
gets such as those dropped by air. The MinDART, targets,
and some sample landmarks are shown in Figure 1.

In this paper, we describe the latest editions to the
Minnesota Distributed Autonomous Robot Team (Min-
DART) (Rybski et al. 1998; 2002) which include the ad-
dition of a CMUCam and a signaling beacon. We have also
added a new method of localization which is based on the
idea of visual homing. We describe our experiences at the

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: The robots with their infrared targets and colored
landmarks.

AAAI 2002 Mobile Robot Competition and Exhibition. Fi-
nally, we analyze how we would expect these robots to per-
form when compared to the older revisions.

Related Work
Most research with multiple robots has focused on vari-
ous forms of collaborative work as detailed, for instance,
in (Arkin & Bekey 1997; Cao, Fukunaga, & Kahng 1997).
While collaboration may be essential, we are interested in
studying tasks that can be done by a single robot, but where
using multiple robots can potentially increase performance
either by decreasing the time to complete the task or by in-
creasing the reliability. Sample tasks include cleaning up
trash, mapping a large area, and placing a distributed sen-
sor network. For this type of task, cooperation usually re-
quires communication among the robots (Earon, Barfoot,
& D’Eleuterio 2001; Mataric 1997; Parker 1996). Even
simple communication has been shown to substantially in-
crease the performance of robots when foraging, consum-
ing, and grazing (Balch & Arkin 1994). However, di-
rect communication can be replaced by indirect commu-
nication via sensing or via the environment (Arkin 1992;
Beckers, Holland, & Deneubourg 1994). One example of

From: AAAI Technical Report WS-02-18. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

this is where a robot uses a beacon to visually transmit data
to other robots (Michaud & Yu 1999).

Robotic Hardware
The robots are constructed out of LEGO Technic blocks.
LEGOs are used because they are lightweight, easy to work
with, and ideal for rapid prototyping. The chassis is a dual-
treaded skid-steer design, allowing the robot to turn in place.
Each robot is equipped with an articulated cargo bay that is
capable of securely grasping a target. For obstacle avoid-
ance, a set of bumpers is located just beyond the front of the
robots’ treads as well as on the back. Power is provided by
two 9.6V NiCad battery packs. Figure 2 shows a close-up of
one of the robots.

Figure 2: A MinDART robot.

The targets that the robots attempt to locate transmit an
omnidirectional stream of40 KHz infrared light that is de-
tectable at a range of approximately70 cm. Two infrared
detectors are mounted on each side of the robot and two
more are mounted on the front. A CMUCam (Rowe, Rosen-
berg, & Nourbakhsh 2002) is mounted on top of a servo-
controlled turret. The CMUCam is a small CMOS-based
digital camera attached to a Scenix SX microprocessor. The
Scenix captures frames of video and performs color seg-
mentation on the image. Blob statistics are computed and
sent to the robot’s on-board computer. A light-bulb bea-
con sits just under the turret. The robot can activate the
beacon to signal other robots. The on-board computer is
the Handyboard (Martin 1998), a 2MHz MC68HC11-based
microcontroller with 32K of RAM. Because of the Handy-
board’s slow serial port (9600 bps) and clock speed, it can
only receive color information from the CMUCam at ap-
proximately 2-3 frames per second. The software was devel-
oped in Interactive-C 3.11 (Wright, Sargent, & Witty 1996),
a subset of C with multitasking capabilities.

1We are currently in the process of migrating our code to
Interactive-C 4.0.

The CMUCam is a substantial upgrade from the previous
sensor configuration. In previous work (Rybskiet al. 1998;
2002), the robots were equipped only with cadmium sul-
fide (CdS) photoresistors to detect the presence of light bulb
landmarks. Using light bulbs as landmarks was not as flex-
ible because there was no way of distinguishing one land-
mark from another. With the CMUCam, each landmark has
its own unique color. We upgraded our cameras to use a
3.7mm focal length lens rather than the stock 4.9mm lens in
order to give them a wider field of view.

In order to accurately determine the bearing to an object,
a function which mapped image coordinates to a bearing an-
gle needed to be computed. This was complicated by the
fact that the lens had some spherical distortions to it as well
as being slightly off-center. The centering problem was an
issue with the run of CMUCam boards that we received and
has been corrected on later models. To calibrate the camera,
a 2D polynomial was fit to a set angular measurements (Bai-
ley et al. 1998) . The CMUCam was placed in front of a
grid on which a small colored piece of paper was moved to
pre-defined positions. The center of mass in the image plane
was recorded for each of these positions. The function to fit
this data was generated by solving for the coefficients of the
following 2D polynomial:

θ =ax2y2 + bx2y + cx2 + dxy2 + exy + fx

+ gy2 + hy + i

Robot software
A set of parallel sensory-motor behavior processes, similar
to the Subsumption algorithm (Brooks 1986), are used to
control the robot’s behavior. Each process is responsible for
handling one segment of the robot’s control code by map-
ping sensors to actuators. When a process is activated by a
sensor (e.g. when collision detection is activated by a de-
pressed bumper), it tries to control the actuators. In order
to resolve conflicts between processes running in parallel,
each process is given a unique priority and control of the
robot goes to the process with the highest priority.

Finite State Machine Controller
There are several different aspects to the robot’s task. They
include finding a target, grabbing a target, and returning a
target to the home base. Instead of having a single set of be-
haviors that is responsible for handling all of it, three sets of
behaviors were designed. Each set of behaviors corresponds
to a specific state in the robot’s controller. Depending on the
state of the controller, a specific set of parallel behaviors are
active. When the controller switches state, the previously-
active behaviors are stopped and the behaviors belonging to
the new state are activated. Figure 3 shows the finite-state
machine control system. On power-up, the control system
starts in theFind Targetstate. In this state, the robots search
for targets, or head toward a target that they have seen pre-
viously. Once a target is detected with the robot’s infrared
sensors, the control system switches to theGrab Targetstate
which is responsible for maneuvering the robot such that the

target fits into the gripper. If the robot successfully grabs the
target, the control system switches to theReturn Targetstate
which will return the robot to the drop-off location. The
Grab Targetstate can fail and return to theFind Targetstate
either because the robot’s infrared sensors lost track of the
target for some reason, or because the target was too difficult
to grab and the robot gave up. A finite state manager process
determines what state the robot should be in and handles the
starting and stopping of all the corresponding behavior pro-
cesses.

Figure 3: High-level finite-state machine control program.

Behavior Hierarchies
TheFind Targetstate has four parallel behaviors in it, each
of which attempts to control the robot’s motors. The be-
haviors operate independently of each other and are given
access to the motors via an arbiter. As seen in Figure 4, the
lowest priority behavior isSearch for Targetsand the high-
est priority behavior isDetect Target. Control of the motors
is given to the active behavior with the highest priority.

Figure 4: Behaviors in theFind Targetstate.

TheSearch for Targetsbehavior has the lowest priority
and simply drives the robot straight unless the CMUCam
sees a robot light up its communications beacon. In this
case, the robot servos toward the beacon. Optional parame-
ters to this behavior allow it to change the robot’s heading at
random intervals.

TheOrient to Target behavior has third priority and di-
rects the robot to head toward the position of a previously-
seen target. If the robot has a position to return to, this be-
havior activates every 30 seconds, localizes, and rotates the

robot to point in the heading of that position. If there is no
target visible (possibly because another robot grabbed it al-
ready), the behavior will select the next position from the
list. If the position list is empty, this behavior will not acti-
vate.

The Avoid Obstaclesbehavior has second priority and
monitors the five bump sensors (four in front and one in the
rear) to detect whether the robot has collided with some-
thing. If a collision occurs, this behavior activates and ma-
neuvers the robot back and forth in a circular motion until it
is free again.

The Detect Target behavior has the highest priority and
monitors the infrared sensors for targets. This behavior stops
the robot and signals the finite state manager to switch to the
Grab Targetstate.

The four behaviors of theGrab Targetstate are shown in
Figure 5. This state is responsible for moving the robot so
it can grasp the target that was discovered in the previous
state.

Figure 5: Behaviors in theGrab Targetstate.

The Approach Target behavior has the lowest priority
and drives the robot toward the target. This behavior rotates
the robot until the target is lined up with its front infrared
sensors. As long as the target is aligned with the gripper,
this behavior will drive the robot straight forward.

The Avoid Obstaclesbehavior has third priority and is
slightly different from the behavior of the same name in the
Find Targetstate. Unlike the behavior in the previous state,
which attempts to move the robot away from all obstacles,
this behavior attempts to move the robot so that the obstacle
that it collided with is centered on the gripper. This behavior
makes the assumption that any collisions are caused by mis-
alignment of the target with the robot’s gripper rather than
by a stationary obstacle (or another robot).

The Redo Approach behavior has second priority and
keeps track of how many times the robot has attempted to
grab the target. Once a certain number of attempts have been
made, this behavior activates and moves the robot to a new
position so that it can try to grab the target from a different
direction. If this behavior needs to activate more than a few
times, it signals the finite state manager that this state has
failed and that it should return to theFind Targetstate.

The Grab Target behavior has the highest priority and
checks to see if a target has moved into the gripper. When
this happens, this behavior stops the motors, closes the grip-
per, and signals the finite state manager to switch the con-
troller to theReturn Targetstate.

TheReturn Targetstate, illustrated in Figure 6, is respon-
sible for directing the robot back to its home base so it can
drop off the target it has acquired. This state is also respon-
sible for remembering the locations of other targets that the
robot passes on its way home so that it can return to them in
theFind Targetstate.

Figure 6: Behaviors in theReturn Targetstate.

The Head Homebehavior has the lowest priority and is
responsible for driving the robot back to the home base.
There are two different methods for doing this. In one home-
base detection method, the robot servos to one of the three
landmarks and stops in front of it to drop off the target. This
is the simplest method and assumes the robot is capable of
accurately determining the relative size of the landmark in
the image plane. In the second home base-detection method,
the robot stores a specific(x, y) position for its home base
and uses its localization routine to determine when it has ar-
rived there. This is more useful when the landmarks that the
robot uses are too far away to be able to use their relative
sizes as an accurate indication of their distance.

The Avoid Obstaclesbehavior has third priority and is
identical to the behavior of the same name in theFind Target
state.

TheDetect Targetbehavior has second priority and mon-
itors the infrared sensors for new targets and stops the
robot’s motors when one is detected. Since the robot al-
ready has a target in its gripper, it cannot grab this new one.
Instead, the behavior localizes the robot and stores that lo-
cation in a list so it can return to it later. If there are already
several targets on the stack, the robot does not store the lo-
cation but rather turns its beacon on in an attempt to recruit
other robots to the location.

The Drop Target behavior has the highest priority and
checks to see whether the robot is at the home base. This is
determined either by the size of the home base in the CMU-
Cam’s image plane (if the robot is servoing to its home base),
or by the current(x, y) location of the robot. This behavior
stops the robot, lowers its gripper, and backs the robot away
before signaling the finite state manager to return to theFind
Targetstate.

Localization
There are two different localization methods available for
use by the robots. They are mutually exclusive and have
their own advantages and disadvantages. The first localiza-
tion method assumes that there exist three collinear colored
landmarks at known positions in the environment. These
landmarks are used to resolve the robot’s(x, y, θ) position

in a global frame of reference. Figure 7 illustrates the ana-
lytical solution to this localization problem.

Let a = sin(γ1)/L1

Let b = sin(γ2)/L2

Let c = cos(γ1 + γ2)sin(γ1)/L1

Let d = (b − c)/sin(γ1 + γ2)
D =

√
1/ (a2 + d2)

β = π − (γ1 + γ2)− tan−1(a/d)
α = π − β − γ2

x = D ∗ sin(α)
y = D ∗ cos(α)
θ = π + tan−1(y/x)− φ2

Figure 7: Three-landmark localization used by the robot.
The lines connecting the lights and the robot represent the
line of sight between the robot and the landmarks. The po-
sition of Landmark-2 is the origin of the coordinate system.
To avoid problems with symmetry, the robot is only allowed
to move in the positive X direction. The values ofa, b, c & d
are computed through algebraic manipulations involving the
Law of Sines and various other trigonometric identities.

The values ofL1 andL2 are programmed into the robot
a priori and are assumed never to change. The robot uses
its CMUCam to measure the angles to the three landmarks
with respect to its own orientation (φ1, φ2, andφ3)2, thus
γ1 = (φ1 − φ2) andγ2 = (φ2 − φ3). The anglesα and
β and the distance to the center landmarkD are solved for
and from these values, the robot’s global pose(x, y, θ) can
be calculated. In our approach, the robot’s orientationθ is
measured with respect to the globalx axis.

This localization method typically estimates the robot’s
position to within 25 cm and its orientation to within 5 de-
grees. However, it will fail if it cannot resolve three distinct
landmarks, such as if a landmark is occluded.

Homing

The previously described localization strategy is useful
when the landmarks can be hand-placed in the environment.
However, in practice, this is not always desirable. In more
general environments, it often more practical to make use of
pre-existing features.

2For the sake of clarity, onlyφ2 is shown in the figure.

Visual homing algorithms have been inspired by the nav-
igational strategies of small insects such as bees. Studies
suggest that these insects use a combination of the appar-
ent size of the landmarks and the bearings to the landmark
for navigation (Honget al. 1991). In essence, they store a
snapshot of a location and navigate to that location by mini-
mizing the error between the observed and the stored target
snapshots.

Homing can be used by the robots as another method for
navigating back to target locations or the home base. The
second localization method available to the MinDART is a
homing-based algorithm reported by (Weber, Venkatesh, &
Srinivasan 1999). A location is stored as a set of bearings
to the landmarks from that position. The only requirement
of this algorithm is that all of the landmarks must be visible
from all parts of the environment. Once the landmarks have
been identified, the homing direction is computed. Given
a set of landmark bearings, the robot attempts to minimize
its landmark error by moving perpendicular to a computed
heading so that the current landmark bearings are brought
closer to the landmark bearings at the home location. This
is illustrated in Figure 8, which shows the path that would
be taken by a robot starting from positionP1 to get to the
home position.(Ha,Hb,Hc) are the bearings to the land-
marks A, B and C as seen from the home position. From
a different positionP1, if the bearings to the landmarks are
(P1a, P1b, P1c), the correctional vectors are computed such
that each vector is in a direction perpendicular to the current
bearing and the direction taken brings the bearings of the
landmarks closer to those observed from home. The length
of the correctional vectors are computed based on the mag-
nitude of the angular difference between the currently ob-
served landmark bearing and the corresponding bearing ob-
served from home. The resultant vectorR1 is just the vector
addition of the correctional component vectors. The resul-
tant vector is computed as,

R→ =
n∑

i=1

V→i (1)

wheren is the number of landmarks andV→ are the cor-
rectional vectors.

V→i = |θi − βi|6 δi (2)
whereθi is the bearing to a landmark from home position

andβi is the bearing to the same landmark from the current
position, and

δi =
{

βi + 90 deg : θi < βi

βi − 90 deg : θi ≥ betai
(3)

Finally, the distance moved by the robot between succes-
sive measurements can either be constant or proportional to
the magnitude of the total error between the bearings. The
second approach seems intuitive in the sense that the larger
the error, the longer the distances the robot can move before
taking the next measurement; and the smaller the error, the
shorter the distance it should move so that it does not over-
shoot or move past the correct position. However, prelim-
inary experiments indicate that both methods give more or

Figure 8: Example of the homing algorithm in operation.
The robot is trying to return to the area marked “Home”.
From positionP1, its first move is away from its intended
goal, but from positionP2, its second move is in the correct
direction. Such circuitous paths are common when using
this algorithm. In this example, the landmarks are all co-
linear, but they can be placed in any configuration.

less similar results with our environment, particularly if the
robot must make many course corrections due to encounter-
ing obstacles and other robots. One of the issues in checking
the error between current and home bearings is when a robot
approaches a home position from the opposite direction (180
deg out of phase). One of the ways to deal with this is to
use half the total bearing angle computed for moving. Pre-
liminary experiments suggest that both the approaches fare
equally well in our setting.

Experiences at AAAI
The AAAI 2002 Robot Competition and Exhibition took
place in one of the large exhibition halls at the Shaw Con-
ference Center in Edmonton, Alberta, Canada. The large
environment in which the robots were allowed to operate is
shown in Figure 9. Unlike previous years, there was no en-
closed demonstration area. This meant that all demonstra-
tions had to operate without boundaries and had to accom-
modate spectators walking through the demonstration area.
This posed several interesting challenges for the MinDART
that we did not anticipate and had to be compensated for on-
site. First, the control code was written with the assumption
that the robots had a boundary to move around in. Without
a boundary, the robots would quickly disperse outside of the

demonstration area. Second, the landmarks that we had pre-
pared for use in our laboratory were too small to be seen at
large distances.

Figure 9: MinDART robots performing at the AAAI 2002
Robot Competition and Exhibition. The three cardboard
squares against the curtain are colored landmarks used for
localization.

In order to properly use all of the space, three1.11 m
x 0.71 m landmarks were constructed on-site and set up
against a dark curtain on one side of the demonstration area.
The landmarks were spaced approximately 5.5 meters apart,
ensuring that the robots could see them from nearly any-
where in the demonstration environment. Because the land-
marks were square, the robots had to be facing them nearly
perpendicularly in order for the cameras to receive the full
color. If the robots viewed the landmarks at too oblique
an angle, the reflected color was darker than what was de-
tectable by the trained color space. In order to properly view
the landmarks, the robots had to stay at least three meters
away from them. However, this posed a problem for theRe-
turn Targetstate. In our lab, the condition for being home
was the relative size and shape of the landmark. The robot
could approach the landmark to within0.5 m and have the
landmark fill nearly all of the visual field. Since the robots
couldn’t approach the landmarks at the exhibition, the rela-
tive sizes couldn’t reliably be determined. To fix this prob-
lem, the robot’s code was modified so that the targets would
be dropped off at a pre-defined position in space. Thus, the
Head Homebehavior localized the robot every 30 seconds
and when the robot was within a meter of the pre-defined
location, it would drop the target.

In order to keep the robots from wandering away from
the demonstration area, their code was modified so that they
would navigate via way points. If the robots were not ac-
tively searching for a previously-seen target, they would fol-
low a path through pre-defined positions. This ensured that
they would not go too far away from the demonstration area
and would help them cover the space in a more systematic
fashion (as compared to random walk).

After these modifications were made, the robot demon-

stration worked well for most of the conference. An un-
expected problem emerged when the environment was sud-
denly re-arranged to accommodate the poster session on the
last day of the conference. The dark green backdrop that the
colored landmarks were placed against was removed. This
meant that there wasn’t enough contrast for the robots to see
the targets anymore. The landmarks had to be moved in front
of our demonstration booth and the color channels had to be
retrained. The only persistent problem was when spectators
occluded the landmarks, as seen in Figure 10. When this
occurred, the robots could not localize and thus would not
navigate properly.

Figure 10: Robot’s view of a landmark blocked by specta-
tors.

Even though the robots had a large environment to operate
in, they still tended to bunch up around targets and interfere
with each other. As seen in Figure 11, three robots are trying
to grab the same target and are continually running into each
other.

Figure 11: Inter-robot interference.

Figure 12: A robot recruits another one to grab a target.

The robots successfully demonstrated their ability to re-
cruit each other as well. The lighting in the Shaw Conven-
tion center was such that the beacons could be detected by
the robots from about4 − 5 m away. Figure 12 shows a
robot (lower right) responding to the lit beacon of another
(lower left).

Software and Hardware Challenges

There were several challenges that needed to be overcome
when upgrading the robots to use the CMUCam. One prob-
lem was caused by interrupt conflicts. The Handyboard con-
trols its servos through the use of an interrupt service routine
(ISR). Another ISR was added to the code to monitor the
serial port and to buffer characters coming from the CMU-
Cam. This second interrupt would cause occasional timing
problems with the first interrupt and so the servos became
unstable. This was especially problematic because the cam-
era was mounted on a servo which needed to be stable in
order to take accurate measurements to the landmarks. To
solve the problem, an external PIC-based servo controller
board was added to the robots.

The Subsumption-based robot control architecture works
very quickly primarily because reading most of the sensors
takes very little time. Each behavior is an Interactive-C pro-
cess which is written as a series of fast loops. During the
execution time of a process, the sensor that the process mon-
itors (bumpers, IR, etc...) is queried many times. Thus there
are typically no problems with synchronization if a process
is swapped out just after reading a sensor since that sensor
will be read multiple times when the process becomes active
again. Adding the CMUCam to the robots for the exhibi-
tion this year introduced the possibility of priority inversion.
Priority inversion occurs when a higher-level process is not
allowed to run because a lower level-process is tying up a re-
source that the higher-level process requires. Reading from
the CMUCam and scanning the environment for landmarks
is an operation that cannot be interrupted. Doing so would
corrupt he bearing readings.

Handling re-entrant code in Interactive-C when actuators
are involved is also a problem. Suppose that a low-level pro-
cess B is controlling the turret servo and is taking readings
from the CMUCam. Suppose that B is subsumed by a pro-
cess A which also wants to use the camera. The state of
the servo needs to be saved so that when B’s control is re-
stored, it can resume where it left off. If two processes fight
over control of the servo and/or reading from the camera,
the servo is not physically fast enough to keep up with the
conflicting motion commands that are being sent to it. Addi-
tionally, if two processes send commands to the CMUCam,
the ISR that parses the returned packets will fail to parse the
data properly.

Adding mechanisms for avoiding priority inversion and
re-entrant code problems added a great deal of complexity
to the robot’s control code. This kind of complex sensor
does not fit very well into our simple Subsumption-based
methodology. This suggests that some modifications to this
methodology, or at least to the sensor interface, are neces-
sary if such sensors are to be added in the future.

Empirical Performance Analysis
Many factors determine the effectiveness of a cooperative
multi-robotic solution to a search and retrieval task. Three
such factors include the number of robots used, the physical
distribution of the targets, and the kinds of search strategies
employed by the robots. The purpose of this work is to study
how the overall performance of a robotic team is affected by
altering these factors.

Experiments were run where the robots started from a
fixed location, searched an area for targets, and returned
them to one of three drop-off zones. Experiments were run
with one-, two-, and four-robot configurations. Target lo-
cations were either distributed uniformly or all lumped to-
gether into a single location (non-uniformly). Some exper-
iments were run using localization while others were not.
Without the ability to localize, the robots only searched ran-
domly. For a more complete description of the experiments,
please refer to (Rybskiet al. 2002).

Experimental Results
For each of the experiments (results shown in Table 1), the
times that the robots returned each target to the drop-off
zones were recorded and averaged over five runs for each
experiment. The experiments were run until all nine targets
were retrieved.

In the earlier work, the robots took 18 seconds to local-
ize themselves. This delay had a significant effect on the
overall time to complete the tasks, as reflected in the table.
To provide a theoretical upper bound to these calculations,
the data was modified so that the times to localize were re-
moved from the pick up and drop off times. These results
were labeled “Instant Localization.” While these results do
not accurately reflect how the robots actually operated, they
do provide a useful metric to compare the real robot runs
against. Instantaneous localization calculations are also use-
ful because they factor out time bottlenecks caused by im-
plementation details. There are two reasons for factoring out

uniform uniform uniform non-uniform non-uniform non-uniform
1 robot 2 robots 4 robots 1 robot 2 robots 4 robots

no localize 934 458 374 1672 1058 587
18-sec localize 986 478 343 1911 1030 593
5-sec localize 1020 478 326 1490 854 483

instant localize 1108 478 323 1328 *794 *444

Table 1: Average time in seconds that the last target was returned to home base. The differences between the starred instant
localize results and the no localize results in the same column are statistically significant at the 95% confidence level. Italicized
localization data sets were synthesized from the recorded data.

localization overhead. This indicates potential payoff for
improvement of the localization technique and it can help
determine how much overhead the system can afford while
still improving task performance. With the CMUCam to de-
tect the landmarks, the localization routine only took 5 sec-
onds. In practice, instantaneous localization would be dif-
ficult to achieve but as can be seen, the delay was reduced
from 18 seconds in the original implementation to 5 in the
current one. Performance can be analyzed for a range of
times for localization, providing a maximum for localiza-
tion overhead (i.e. the longest localization can take while
still improving performance). We wished to see how the
team’s performance might have been affected with 5-second
localization and so we created another set of synthetic data
by subtracting only 13 seconds from the original localization
times and compared these results against the others.

T tests were run to determine the significance of the non-
localization vs. localization trials and the non-localization
vs. instant localization trials. Only the two- and four-robot
trials with the instant localization and non-uniform target
distribution were statistically significant at the 95% confi-
dence interval (one-tailed, two-samplet test,p = 0.0482 and
p = 0.0291 for the two- and four-robot cases, respectively.)
All other localization results (instant or otherwise) were not
statistically significant from the non-localization cases.

In all cases, the robots tended to do much better at finding
targets when the targets were uniformly distributed through-
out the environment. As was expected, the performance of
the robots, regardless of whether they localized or not, was
about the same in an environment with uniformly distributed
targets. Other targets were rarely encountered when return-
ing one to base, thus localization (i.e. storing the location of
a found target) was rarely needed. In contrast, localization
was used very heavily in the non-uniformly distributed en-
vironment. Robots almost always encountered other targets
when returning to base. Robots that did not use localization
wandered randomly until they found the cache.

The ability to localize did not necessarily improve the
robot team’s overall performance due to the computational
overhead. The instant localization results were computed
to analyze how increased knowledge of the robot’s location
can affect performance without the overhead of our local-
ization implementation. One thing to keep in mind when
looking at the results is that in both the localization and
non-localization cases, the robots randomly wandered in the
same fashion until the cache of targets was first discovered.
Thus, the absolute time that the first target is found affects

the absolute times for the other targets. Other factors be-
sides localization overhead contributed to the task comple-
tion times. For instance, it is more likely that multiple robots
will cluster around the targets and interfere with each other.

One benefit of localization which is not obvious from the
results is how quickly the robots were able to find a new
target once they had dropped one off. Table 2 illustrates
the average times that it took each robot to grab a new tar-
get after returning a captured one to the base. Once again,
the two localization times and the instant localization results
were compared against the no localization results for sta-
tistical significance. For this data, all three of the the in-
stant localization with non-uniform target distributions were
significant (one-tailed, two-samplet test,p = 0.0085,p =
0.0032, andp = 0.0371 for the one-, two- and four-robot
cases.) Additionally, the one- and two-robot cases for the
5-second localization tests were significant (one-tailed, two-
samplet test,p = 0.0305 andp = 0.0111 for the one- and
two-robot cases). All other localization results (instant or
otherwise) were not statistically significant from the corre-
sponding non-localization results.

It is apparent that fast localization allows the robots to
more quickly return to a cache of targets that had been seen
before, at least in the non-uniform target case. When the
robots took the full 18 seconds to localize, their performance
was statistically no better than random search.

Conclusions and Future Work
We have analyzed how the performance of a robotic team
is affected by environmental factors, the number of robots,
and the search strategy employed by these robots. We ex-
pected that localization would greatly assist the robots in the
non-uniformly distributed environment and not so much in
the uniformly-distributed environment. The time that it took
to localize greatly affected whether this hypothesis was true.
In the 18-second localization case, this was not true. With 5-
second localization, this was true in some cases. If the time
to localize was completely discounted (instant localization),
the robots were much faster at finding their way back to a
new target once one had been dropped off. Another hypoth-
esis we had was that adding more robots would greatly in-
crease the performance of the team, but continually increas-
ing the number of robots wouldn’t be as beneficial. This
was proven true in that four robots generally didn’t improve
the performance over two robots as much as two robots did
over one. Additionally, we observed significant interference
between the robots when they tried to obtain targets in the

uniform uniform uniform non-uniform non-uniform non-uniform
1 robot 2 robots 4 robots 1 robot 2 robots 4 robots

no localize 83 57 64 150 181 142
18-sec localize 96 65 79 131 143 152
5-sec localize 91 65 74 *100 *112 110

instant localize 89 65 72 *88 *100 *94

Table 2: Average times in seconds for a robot to grab a new target right after a captured one has been dropped off. These values
are calculated by the number of targets actually returned during the run. The differences between the starred localize results
and the no localize results in the same column are statistically significant at the 95% confidence level.Italicized localization
data sets were synthesized from the recorded data.

non-uniformly distributed environment, which added further
evidence to this claim. These results show that some knowl-
edge about the structure of the environment is very important
when choosing a search strategy for a team of robots.

Future work will include experiments to better analyze ex-
actly how much gain there is by adding more robots to the
team. Throughout all the experiments, the obstacles were
distributed uniformly. Another variation to consider is a
maze-like environment where the targets would be enclosed
inside of small alcoves. In this case, explicit localization is
expected to be extremely important. Path planning may also
prove to be beneficial, if not essential, in this kind of en-
vironment. Finally, the effects of communication between
the robots will be explored. The implicit communications
system using the lighted beacons was not used in the exper-
iments. This and other mechanisms will be examined to see
how well they affect the overall performance.

Acknowledgments

This work supported by the Doctoral Dissertation and
Louise T. Dosdall Fellowships of the University of Min-
nesota. Our thanks to Daniel Boley for his insights into the
localization algorithm and the help that he gave us in com-
puting a closed-form solution. We would also like to thank
Joseph Djugash, Ashutosh Jaiswal, Esra Kadioglu, Elaine B.
Rybski, and Lorry Strother for their help in collecting data.

References

Arkin, R. C., and Bekey, G. A., eds. 1997.Robot Colonies.
Kluwer.

Arkin, R. C. 1992. Cooperation without communication:
Multi-agent schema based robot navigation.Journal of
Robotic Systems9(3):351–364.

Bailey, B.; Reese, J.; Sargent, R.; Witty, C.; and Wright, A.
1998. Robots with a vision: Using the cognachrome vision
system. Circuit Cellar Ink: The Computer Applications
Journal92:12–19.

Balch, T., and Arkin, R. 1994. Communication in reactive
multiagent robotic systems.Autonomous Robots1(1):27–
52.

Beckers, R.; Holland, O. E.; and Deneubourg, J. L. 1994.
From local actions to global tasks: Stigmergy in collective
robotics. InArtificial Life IV, 181–189. MIT Press.

Brooks, R. A. 1986. A robust layered control system for
a mobile robot.IEEE Journal of Robotics and Automation
RA-2(1):14–23.
Cao, Y. U.; Fukunaga, A. S.; and Kahng, A. B. 1997. Co-
operative mobile robotics: antecedents and directions.Au-
tonomous Robots4(1):7–27.
Earon, E.; Barfoot, T. D.; and D’Eleuterio, G. 2001. Devel-
opment of a multiagent robotic system with application to
space exploration. InAdvanced Intelligent Mechatronics.
Hong, J.; Tan, X.; Pinetter, B.; Weiss, R.; and Riseman, E.
1991. Image-based homing. InProc. IEEE Int’l Conf. on
Robotics and Automation, 620–625.
Martin, F. G. 1998.The Handy Board Technical Reference.
MIT Media Laboratory, Cambridge, MA.
Mataric, M. J. 1997. Using communication to reduce local-
ity in distributed multi-agent learning. InProc. Nat’l Conf.
on Artificial Intelligence.
Michaud, F., and Yu, M. T. 1999. Managing robot auton-
omy and interactivity using motives and visual communi-
cation. In Etzioni, O.; M̈uller, J. P.; and Bradshaw, J. M.,
eds.,Proceedings of the Third International Conference on
Autonomous Agents (Agents’99), 160–167. Seattle, WA,
USA: ACM Press.
Parker, L. E. 1996. On the design of behavior-based multi-
robot teams.Journal of Advanced Robotics10(6).
Rowe, A.; Rosenberg, C.; and Nourbakhsh, I. 2002. A low
cost embedded color vision system. InProc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems.
Rybski, P. E.; Larson, A.; Lindahl, M.; and Gini, M. 1998.
Performance evaluation of multiple robots in a search and
retrieval task. InWorkshop on Artificial Intelligence and
Manufacturing: State of the Art and State of Practice, 153–
160. Albuquerque, NM: AAAI Press.
Rybski, P. E.; Larson, A.; Schoolcraft, A.; Osentoski, S.;
and Gini, M. 2002. Evaluation of control strategies for
multi-robot search and retrieval. In Gini, M., ed.,Proceed-
ings of The 7th International Conference on Intelligent Au-
tonomous Systems (IAS-7).
Weber, K.; Venkatesh, S.; and Srinivasan, M. 1999. Insect-
inspired robotic homing.Adaptive Behavior7(1):65–97.
Wright, A.; Sargent, R.; and Witty, C. 1996.Interactive C
User’s Guide. Newton Research Labs, Cambridge, MA.

