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Abstract 
 
Cooperative teams of robots must possess the ability 
to interact.  In the event a team member fails or the 
team begins to operate in a sub-optimal fashion, the 
team must undergo reorganization with current team 
members potentially changing roles.  To facilitate a 
cooperative team of robots, physical architecture, 
software systems and infrastructure must exist to 
support these teams. 

 
Introduction 

 
Our research goal is to create a generic software 
architecture that will support cooperative robotic 
organizations with the flexibility to add new 
robot instances without changing the existing 
architecture.   
 In this paper, we begin with an 
explanation of the requirements and definitions 
of organization and reorganization.  Then we 
define the architecture used to implement these 
ideas within the scope of our research. 
 
 

Organization/Reorganization 
 
We define a cooperative robotic organization to 
be a group of robots acting in a specific role to 
accomplish a goal. An organization must 
reorganize anytime the structure of the group or 
the team member’s capabilities change.  
 Reorganization is the process of 
matching the requirements of the defined goal 
and the task breakdown structure with the 
optimal team role configuration to facilitate the 
most efficient satisfaction of a goal or set of 

goals.  Our model continuously examines the 
capabilities and availabilities of each member 
and checks if reorganization is warranted or 
necessary to optimize execution.  The act of 
organization or reorganization involves the 
transition from the current operating state of the 
organization to a more desired state. 
 The process of organization and 
reorganization, for an autonomous team of 
robots, is circular, providing the assumption that 
the goal satisfaction duration is infinite.  Figure 1 
exhibits the high-level steps involved in 
cooperative robotic team organization and 
reorganization.  The initial step is to define the 
goal of the group to be organized.  The next step 
is to decompose the overall goal into manageable 
tasks and a set of roles to accomplish the tasks.  
At the same time the group must assess its 
individual and collective capabilities.  Once 
tasks, roles and capabilities are defined, the 
assignment of player to role is completed.  At 
this point the new organization initiates action to 
satisfy the team goal(s). 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: Organization/Reorganization 
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To provide structure for the organization the 
formal organizational model is introduced in 
Figure 2.  All elements are shown with the 
relationship between each element to another. 
 

 
 
 
 
 
 
 
 

Figure 2:  Organization Architecture 
 
System 
The system consists of instances of all related 
components working together to form a set of 
agents with the ability to form an organization 
and reorganize itself when required. 
 
Goals 
Goals are abstract entities that often must be 
decomposed to have deliverable outputs.  Figure 
3 describes a goal structure decomposing a high-
level goal of Rescue Victims into two sub-goals 
and consequently seven tasks.  Goals are used to 
identify the critical aspects of system 
requirements.  Therefore, an analyst should 
specify goals as abstractly as possible without 
losing the essence of the requirement.  This 
abstraction can be performed by removing 
detailed information when specifying goals.  For 
example, to “Detect invalid sonar pings” is a 
goal.  How to detect invalid pings is a 
requirement that may change with time or 
between various operating systems and is not a 
goal.  
 
 
 
 
 

 
 

Figure 3: Goal Decomposition Structure 
 
Sub-goals 
Sub-goals are goals decomposed into 
increasingly granular pieces.  They are less 
abstract than goals and take on additional 
specific and definitive refinement. 

Agent 
Agents are basically equivalent to autonomous 
robots in this instance.  Agents coordinate with 
each other via conversations and act proactively 
to accomplish individual and system-wide goals.   
 
Tasks 
Tasks are leaf nodes of the organization’s goal 
decomposition structure.  They create granular 
components with minimal abstraction.  In a well 
defined domain, an organization should be 
capable of accomplishing tasks, given that the 
inherent capabilities of the actors or agents is 
sufficient and they are available to do so. 
 
Protocols 
Abstract definitions describing how agents 
within the organization communicate is defined 
by the protocol component.  It is important to 
discern the abstract communication model from 
the actual implementation protocol, with this 
project, because of the heterogeneous nature of 
the actors playing in our research. 
 
Capabilities 
The robots are defined by the physical and 
computational capabilities they specifically 
possess.  The robots capabilities define what role 
they can play in meeting a team goal. For robots, 
there are two levels of capabilities; 
computational and physical.  The computational 
capabilities are defined by the level of 
intelligence built into the robot.  The physical 
capabilities are defined by the range of sensors 
and effectors included as part of the robot’s 
design. 
 
Role 
A role describes an entity that performs some 
function within the system.  In Multiagent 
Systems Engineering (MaSE), each role is 
responsible for achieving, or helping to achieve, 
specific system goals or sub-goals [DeLoach, 
Matson,Li 2002][DeLoach,Wood, Sparkman 
2001].  MaSE  roles are analogous to roles 
played by actors in a play or by members of a 
typical company structure.  The company (which 
corresponds to system) has roles such as 
"president", "vice-president", and "mail clerk" 
that have specific responsibilities, rights and 
relationships defined in order to meet the overall 
company goal. 
 
 
 



Relationships 
Relationships are dynamically allocated, 
cohesive links that exist from role-to-role, agent-
to-agent, and robot-to-robot during the active 
organization lifespan.  The relationships may be 
based on communication, delegation, 
cooperation, or other factors. 
 
Organizational Rule 
We introduce the notion of laws into the 
organization, which operationalize norms, 
sanctions/rewards, and their relationship.  Laws 
should also conform to organizational values.  
Laws are constraints on actions and thus the law 
(a, s) prohibits the action a from being taken 
when state s holds [Shoham and Tennenholtz 
1995]. 
 

Architecture 
 
To support the development and implementation 
of an organizationally flexible team of 
cooperative robots, we designed both hardware 
and software architectures that work together to 
form the basic comprehensive architecture to 
support cooperative team reorganization. 
 The overall methodology was to look 
initially for the intersection points of the selected 
robots to provide a generic robotic interface that 
will support independent selection of a robot 
based on its capabilities, not based on the model 
and physical configuration of the robot. 
 To create a well-scoped initial project, 
the functionality base represents common 
capabilities of the available research robots.  The 
generic programming interface, from an 
implementation perspective, is constrained by 
the low level task capabilities of each robot.  An 
example of a low level task capability is the 
ability to autonomously move about.  Another 
capability is the ability to use sonar for detection, 
environmental scanning and perception. 
 We use the development of this 
organizational model and architecture to create a 
system to organize and reorganize based on the 
requirements of the goal, sub-goals and task and 
the inherent capability set of the available robotic 
team, to instantiate an optimized organization 
capable of solving the task at hand.   The system 
will have the ability to choose robots for a 
particular task based on competence in 
accomplishing a certain task and the physical and 
computational capabilities it possesses not the 
model type.  In this manner, the architecture will 

make decisions without regard to specific 
hardware requirements. 
 
Hardware 
The hardware used in the development of our 
research begins with the robots available within 
the Multi-agents and Cooperative Robotics 
laboratory within the Department of Computer 
Science at Kansas State University.  The robotic 
hardware used in the prototyping of our initial 
research architecture begins with the robots 
included in the first project phase.  Four of the 
robots used are pictured in Figure 4. 
 

 
Figure 4:  Initial Robot Team 

 
 The base architecture developed 
consists of two models of Nomadic Technologies 
robots, two models of ActivMedia robots and a 
Parallax Javelin card. The Scout and Scout II are 
the robot models from Nomadic Technologies 
and the ActivMedia Pioneer and Amigobot, 
shown in Figure 5.   
 

 
Figure 5:  AtivMedia Amigobot 

 
 
 Although these models are used as the 
initial team, the overall scope of the project is to 
develop a generic model capable of supporting 
any robotic instance regardless of the proprietary 
architecture limitations.  The initial project 
architecture will additionally support most robots 
from ActivMedia and Nomadic such as the 
Nomad 200 shown in Figure 5.  The distinction 
is that the higher level abilities of some robots 
will not be supported in the initial design and 
release of the architecture.  The architecture 
model will capture basic motivational, sensing 
and effecting skills common to most robots. 



 
Figure 5:  Nomad 200 

 
 An important measure of a robot is its 
physical abilities to play a specific role within an 
organization.   Whereas a robot is defined by its 
computational and physical characteristics and 
capabilities, we will use the common physical 
characteristic of sonar to compare the hardware 
of our robot team. 
 The Nomad Scout robots,  from 
Nomadic Technologies, have multiple sensors 
and mainly utilize a sonar ring for environmental 
sensing.  The sonar ring is a Sensus 200 
consisting of 16 Polaroid 6500 sonar ranging 
modules fixed in 22.5º increments in a full 360º 
configuration.  The Polaroid 6500 module can 
accurately measure distances from 6 inches to 35 
feet within a +- accuracy of 1%.[Nomadic 
Technologies 1999] [Nomadic Technologies  
1997]. 
 The ActivMedia Pioneer robot has a 
configuration of 16 sonar with 8 positioned in 
the front and 8 in the rear. The front sonar have 3 
units spaced 15º away from each other away 
from center and 1 on each side.  The same 
configuration is used in the back.   This 
configuration provides a full 360º sweep of its 
environment [ActivMedia 2002].     
 The ActivMedia AmigoBot has a single 
array of eight sonar.  Six of the eight sonar are 
positioned in the front of the robot and 2 are 
positioned in the rear providing a full 360º range 
of sensing.  Two sonar units are positioned 12º 
away from center, two are positioned 44ºaway 
from center and the last two, in the front, are 
positioned 90º away from center.  The two rear 
sonar units are positioned 144º away from center 
(front) [ActivMedia 2001]. 
 The comparison of hardware 
capabilities is important to establish baseline 
capabilities of each robot.  A minimal sonar 
comparison is shown in Table 1.  In this case, 
each robot has a full 360º sweep of its 
environment, but the differentiating factor is the 
range that each robot can detect within its 
environment.  Each robot has a lower bound of 
6”  but the Nomad has a greater ability to detect, 

with a maximum available range of 35’ , than the 
Amigobot with an maximum range of only 10’ .   
 
 
 Sonar Sweep SonarRange 
Nomad 360 6”  –  35’  
AmigoBot 360 6”  –  10’  
Pioneer 360 6”  –  21’  

Table 1: Hardware Comparison 
 
 The applied reasoning, within an 
organizations perspective, suggests that the 
Nomad has a higher capability to perform some 
functions requiring sonar than the AmigoBot or 
the Pioneer.  This will provide a baseline level of 
reasoning to determine basic capabilities for 
organization and reorganization based on 
individual robotic physical abilities. 
 
Operating System Architecture 
Operating systems support is critical for 
designing and evaluating the portability of our 
software architecture.  The first step is to 
determine what systems will be required to 
implement the architecture and the second step is 
to determine the target platforms supported. 
 The Nomad robots operate on a number 
of operating systems and hardware platforms, 
including most Unix and Linux distributions as 
well as being compilable, in a limited sense, for 
Win32.  Red Hat Linux 7.X is used as the 
operating system for our development and one of 
the platforms for deployment. 
 The Pioneer and AmigoBot run 
primarily on the Linux and Win32 operating 
system platforms. 
 
Software 
The overall design idea was to look initially for 
the intersection points of the selected robots to 
provide a generic robotic interface that will 
support autonomously configurable robotic 
organizations.  This requires independent 
selection of a robot based on its capabilities, not 
based on the model and physical configuration of 
the robot.  The organization has to possess the 
intelligence, through design, to select the most 
appropriate agent to participate in an 
organization by matching the organizational 
requirements with the ability to participate in a 
role. In the previous section, we discussed the 
hardware capabilities inherent in each robot.  In 
this section, we will discuss the software choices 
and design used to implement our architecture. 



 The initial step to design a generic 
architecture is to consider the factors existing in 
the architectures and platforms to be abstracted 
into a generic platform.  In this case we must 
examine the pre-existing platforms of the 
Nomadic and ActivMedia robots used in this 
project. 
 The Nomadic Robots can either be 
programmed in C or Lisp and have an open 
source code base available.  The ActivMedia 
robots have several choices for development; 
Colbert, Saphira or Aria.  We chose Aria because 
we could access the source code and extend its 
native C++ code base.  It was important for us to 
access the source code for each robot instance so 
that we could first understand the actual robot 

manipulation code and also extend the source for 
our own purposes. 
 Java was selected as the language of 
choice due to portability between platforms, 
networking capabilities and support for the Java 
Native Interface (JNI) support of the C and C++ 
instances that required “wrapping” for each robot 
model. 
 The scope of the initial phase of this 
project is to develop the generic operating 
platform where an organization is abstracted 
away from the hardware implementation.  The 
complete design is exhibited in Figure 6.  The 
parts within the scope of this project are the 
Lower Level Functionality and the Interface 
Layer. 
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Figure 6:  Software Architecture 

 
Lower Level Functionality 
This segment was developed by first abstracting 
basic robotic sensing and movement.  Functions 
such as move, turn, rotate were modeled without 
regard for the actual implementation by any 
actual robot interfaces.  An example is the move 
command: 

Move(1000) 
  

where the command will make a robot move 
directly forward 1 meter (1000 mm).   

 
Another example is for rotating around a center 
point without moving in any direction: 
 

Rotate(180) 
 
where the parameter is in degrees.  In this case 
the robot will rotate 180º and finish with an 
orientation directly opposite of where it started. 
 The Lower Level Functions will call 
interface functions from the Interface Layer.  
The Lower Level Functionality layer knows 



about the robotic instances and which specific 
interface layer to contact, but hides all of this 
information from the Higher Level Functions, 
Organization Reasoning and Environmental 
Learning components of the architecture. 
 
Interface Layer 
This layer connects to the Lower Level 
Functionality to provide the abstraction interface 
connection to the robot servers.  This layer 
actually wraps native C and C++ code using the 
Java Native Interface (JNI). 
 
AgentMOM 
AgentMOM is a framework to construct multi-
agent systems.  It is used as a standard 
communications protocol between agents to 
establish conversations.  Each agent will have a 
message handler to receive messages and a 
conversation object to send messages and 
communicate with other agents [DeLoach 2000]. 
 
AgentTool 
AgentTool is an implementation of a Multi-
agents Systems Engineering methodology used 
for the design of cooperative, multi-agent 
systems.  In our case, we used the tool to develop 
the fundamental components of the organization 
such as goals, sub-goals and tasks [DeLoach and 
Wood 2001] [DeLoach 2001]. 
 
Spin 
The Spin verifier software is included in the 
AgentTool 2.0 distribution package and will be 
used for modeling, testing and verifying 
specifications created in AgentTool to represent 
the organizational model. 
 
Connectors 
This component represents interfaces to systems 
not yet defined.  It has no specific purpose until a 
system would need to interface the architecture 
instance and cannot communicate via the 
AgentMOM module. 
 
Organization Reasoning 
The organizational reasoning module will use the 
structural information from AgentTool to create 
the organization instance.  The organizational 
instance will control the creation of a team, the 
team state and will monitor if reorganization is 
necessary to optimize the execution of the group. 
 
 
 

High Level Functions 
The High Level Functionality module contains 
algorithms for mapping, search and other multi-
robotic functions, where multiple lower level 
type functions are assembled to create a higher 
level capability.   
 
Environmental Learning 
Learning from the environment is the highest 
level function considered in the architecture.  
The architecture will use reinforcement learning 
and probabilistic techniques to drive the 
organization and higher level functions to act in 
a rational manner. 
 

Implementation 
 
The architecture was successfully implemented 
using the Nomad Scout Robots, the ActivMedia 
Pioneer robots and the AmigoBots.  The 
operating systems used to operate the 
architecture are Red Hat Linux 7.X, Windows 
2000, Windows 98, Windows XP Professional 
and Sun OS.   Java version 1.3X was initially 
used and then we upgraded to 1.4 when it was 
released. 
 

Conclusions 
 
Although this research is preliminary, the results 
from research, development and implementation 
of the Lower Level Functionality and Interface 
Layer architecture is very promising.  We have 
proven the ability to abstract away the need for a 
simple organization to know about which robot 
instance is chosen to perform a specific task.  
 The architecture was used to implement 
several successful test groups, although the 
didn’ t have the higher level function to 
reorganize based on sub-optimal conditions, they 
did successfully execute goals scenarios in the 
domains of search and rescue, mapping, and 
inter-robot physical coordination. 
 There are some issues that surfaced 
during the initial implementation scenarios and 
test.  There were problems with using threading 
on top of the communications protocols, but the 
issues were solved by minimal reconstruction of  
threading algorithms and re-testing. 
 All other failures or problems can be 
attributed to environmental sensing errors such 
as sonar unit failure.  Although not necessarily 
the fault of the interface layers, we will develop 
additional algorithms to alleviate these problems. 
 



Future Work 
 
Since we are in the beginning of a long project 
there is a great deal or work remaining to 
successfully implement the entire architecture.  
The following is a list of major areas to research,  
develop and implement.  They are not listed in 
order of importance or significance. 
• Extend the architecture, breadth-wise, to 

include additional robots families. 
• Extend the architecture, depth-wise, to 

include additional common functionality 
shared between robotic families abstracting  
hardware and computational capabilities. 

• Test the software with additional and more 
extensive cooperative robotics scenarios and 
goal domains. 

• Test the architecture with the entire families 
of Nomadic and ActivMedia robots. 

• Complete development of all upper level 
functionality such as Organization 
Reasoning, High-Level Functions and 
Environmental Learning Modules.  

 
References 

 
Shoham, Y. and Tennenholtz, M. 1995.  On 
Social Laws for Artificial Agent Societies: Off 
Line Design.  Artificial Intelligence Vol. 73 231-
252. 
 
Nomadic Technologies, Inc. July 12, 1999. 
Nomad Scout User’s Manual,  Mountain View, 
California. 
  
Nomadic Technologies, Inc. March 11, 1997. 
Nomad Scout User’s Manual, Mountain View, 
California.  
 
ActivMedia. 2001.  AmigoBot User’s Guide. 
Version 1.7. 
 
ActivMedia. 2002. 
http://www.activrobots.com/ROBOTS/specs.htm 
 
Deloach, S.  2000.  agentMom User’s Manual.  
Graduate School of Engineering and 
Management, Air Force Institute of Technology, 
Wright-Patterson Airforce Base, Ohio. 
 
DeLoach, S., Matson, E. and Li, Y. May 2002.  
"Applying Agent Oriented Software Engineering 
to Cooperative Robotics," Proceedings of the 
The 15th International FLAIRS Conference 

(FLAIRS 2002).  pp. 391 - 396.  Pensacola, 
Florida.  
 
DeLoach, S.,  Wood, M. and Sparkman,S. June 
2001.  Multiagent Systems Engineering, The 
International Journal of Software Engineering 
and Knowledge Engineering, Volume 11 no. 3.  
 
DeLoach,S and Wood, M.  2001. Developing 
Multiagent Systems with agentTool. in 
Intelligent Agents VII. Agent Theories 
Architectures and Languages, 7th International 
Workshop ( ATAL 2000, Boston, MA, USA, 
July 7-9, 2000), C. Castelfranchi, Y.                       
Lesperance (Eds.). Lecture Notes in Computer 
Science. Vol. 1986, Springer Verlag, Berlin. 
  
DeLoach, S. 2001.  Analysis and Design using 
MaSE and agentTool, Proceedings of the 12th 
Midwest Artificial Intelligence and Cognitive 
Science Conference (MAICS 2001).  Miami 
University, Oxford, Ohio. 


