

Architecture to Enable Dynamic Reorganization of
Cooperative Robotic Teams

Eric Matson

Multi-Agent and Cooperative Robotics Lab
Department of Computing and Information Sciences
Kansas State University, Manhattan, Kansas, USA

etm7766@cis.ksu.edu

Abstract

Cooperative teams of robots must possess the ability
to interact. In the event a team member fails or the
team begins to operate in a sub-optimal fashion, the
team must undergo reorganization with current team
members potentially changing roles. To facilitate a
cooperative team of robots, physical architecture,
software systems and infrastructure must exist to
support these teams.

Introduction

Our research goal is to create a generic software
architecture that will support cooperative robotic
organizations with the flexibility to add new
robot instances without changing the existing
architecture.
 In this paper, we begin with an
explanation of the requirements and definitions
of organization and reorganization. Then we
define the architecture used to implement these
ideas within the scope of our research.

Organization/Reorganization

We define a cooperative robotic organization to
be a group of robots acting in a specific role to
accomplish a goal. An organization must
reorganize anytime the structure of the group or
the team member’s capabilities change.
 Reorganization is the process of
matching the requirements of the defined goal
and the task breakdown structure with the
optimal team role configuration to facilitate the
most efficient satisfaction of a goal or set of

goals. Our model continuously examines the
capabilities and availabilities of each member
and checks if reorganization is warranted or
necessary to optimize execution. The act of
organization or reorganization involves the
transition from the current operating state of the
organization to a more desired state.
 The process of organization and
reorganization, for an autonomous team of
robots, is circular, providing the assumption that
the goal satisfaction duration is infinite. Figure 1
exhibits the high-level steps involved in
cooperative robotic team organization and
reorganization. The initial step is to define the
goal of the group to be organized. The next step
is to decompose the overall goal into manageable
tasks and a set of roles to accomplish the tasks.
At the same time the group must assess its
individual and collective capabilities. Once
tasks, roles and capabilities are defined, the
assignment of player to role is completed. At
this point the new organization initiates action to
satisfy the team goal(s).

Figure 1: Organization/Reorganization

?

From: AAAI Technical Report WS-02-18. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

To provide structure for the organization the
formal organizational model is introduced in
Figure 2. All elements are shown with the
relationship between each element to another.

Figure 2: Organization Architecture

System
The system consists of instances of all related
components working together to form a set of
agents with the ability to form an organization
and reorganize itself when required.

Goals
Goals are abstract entities that often must be
decomposed to have deliverable outputs. Figure
3 describes a goal structure decomposing a high-
level goal of Rescue Victims into two sub-goals
and consequently seven tasks. Goals are used to
identify the critical aspects of system
requirements. Therefore, an analyst should
specify goals as abstractly as possible without
losing the essence of the requirement. This
abstraction can be performed by removing
detailed information when specifying goals. For
example, to “Detect invalid sonar pings” is a
goal. How to detect invalid pings is a
requirement that may change with time or
between various operating systems and is not a
goal.

Figure 3: Goal Decomposition Structure

Sub-goals
Sub-goals are goals decomposed into
increasingly granular pieces. They are less
abstract than goals and take on additional
specific and definitive refinement.

Agent
Agents are basically equivalent to autonomous
robots in this instance. Agents coordinate with
each other via conversations and act proactively
to accomplish individual and system-wide goals.

Tasks
Tasks are leaf nodes of the organization’s goal
decomposition structure. They create granular
components with minimal abstraction. In a well
defined domain, an organization should be
capable of accomplishing tasks, given that the
inherent capabilities of the actors or agents is
sufficient and they are available to do so.

Protocols
Abstract definitions describing how agents
within the organization communicate is defined
by the protocol component. It is important to
discern the abstract communication model from
the actual implementation protocol, with this
project, because of the heterogeneous nature of
the actors playing in our research.

Capabilities
The robots are defined by the physical and
computational capabilities they specifically
possess. The robots capabilities define what role
they can play in meeting a team goal. For robots,
there are two levels of capabilities;
computational and physical. The computational
capabilities are defined by the level of
intelligence built into the robot. The physical
capabilities are defined by the range of sensors
and effectors included as part of the robot’s
design.

Role
A role describes an entity that performs some
function within the system. In Multiagent
Systems Engineering (MaSE), each role is
responsible for achieving, or helping to achieve,
specific system goals or sub-goals [DeLoach,
Matson,Li 2002][DeLoach,Wood, Sparkman
2001]. MaSE roles are analogous to roles
played by actors in a play or by members of a
typical company structure. The company (which
corresponds to system) has roles such as
"president", "vice-president", and "mail clerk"
that have specific responsibilities, rights and
relationships defined in order to meet the overall
company goal.

Relationships
Relationships are dynamically allocated,
cohesive links that exist from role-to-role, agent-
to-agent, and robot-to-robot during the active
organization lifespan. The relationships may be
based on communication, delegation,
cooperation, or other factors.

Organizational Rule
We introduce the notion of laws into the
organization, which operationalize norms,
sanctions/rewards, and their relationship. Laws
should also conform to organizational values.
Laws are constraints on actions and thus the law
(a, s) prohibits the action a from being taken
when state s holds [Shoham and Tennenholtz
1995].

Architecture

To support the development and implementation
of an organizationally flexible team of
cooperative robots, we designed both hardware
and software architectures that work together to
form the basic comprehensive architecture to
support cooperative team reorganization.
 The overall methodology was to look
initially for the intersection points of the selected
robots to provide a generic robotic interface that
will support independent selection of a robot
based on its capabilities, not based on the model
and physical configuration of the robot.
 To create a well-scoped initial project,
the functionality base represents common
capabilities of the available research robots. The
generic programming interface, from an
implementation perspective, is constrained by
the low level task capabilities of each robot. An
example of a low level task capability is the
ability to autonomously move about. Another
capability is the ability to use sonar for detection,
environmental scanning and perception.
 We use the development of this
organizational model and architecture to create a
system to organize and reorganize based on the
requirements of the goal, sub-goals and task and
the inherent capability set of the available robotic
team, to instantiate an optimized organization
capable of solving the task at hand. The system
will have the ability to choose robots for a
particular task based on competence in
accomplishing a certain task and the physical and
computational capabilities it possesses not the
model type. In this manner, the architecture will

make decisions without regard to specific
hardware requirements.

Hardware
The hardware used in the development of our
research begins with the robots available within
the Multi-agents and Cooperative Robotics
laboratory within the Department of Computer
Science at Kansas State University. The robotic
hardware used in the prototyping of our initial
research architecture begins with the robots
included in the first project phase. Four of the
robots used are pictured in Figure 4.

Figure 4: Initial Robot Team

 The base architecture developed
consists of two models of Nomadic Technologies
robots, two models of ActivMedia robots and a
Parallax Javelin card. The Scout and Scout II are
the robot models from Nomadic Technologies
and the ActivMedia Pioneer and Amigobot,
shown in Figure 5.

Figure 5: AtivMedia Amigobot

 Although these models are used as the
initial team, the overall scope of the project is to
develop a generic model capable of supporting
any robotic instance regardless of the proprietary
architecture limitations. The initial project
architecture will additionally support most robots
from ActivMedia and Nomadic such as the
Nomad 200 shown in Figure 5. The distinction
is that the higher level abilities of some robots
will not be supported in the initial design and
release of the architecture. The architecture
model will capture basic motivational, sensing
and effecting skills common to most robots.

Figure 5: Nomad 200

 An important measure of a robot is its
physical abilities to play a specific role within an
organization. Whereas a robot is defined by its
computational and physical characteristics and
capabilities, we will use the common physical
characteristic of sonar to compare the hardware
of our robot team.
 The Nomad Scout robots, from
Nomadic Technologies, have multiple sensors
and mainly utilize a sonar ring for environmental
sensing. The sonar ring is a Sensus 200
consisting of 16 Polaroid 6500 sonar ranging
modules fixed in 22.5º increments in a full 360º
configuration. The Polaroid 6500 module can
accurately measure distances from 6 inches to 35
feet within a +- accuracy of 1%.[Nomadic
Technologies 1999] [Nomadic Technologies
1997].
 The ActivMedia Pioneer robot has a
configuration of 16 sonar with 8 positioned in
the front and 8 in the rear. The front sonar have 3
units spaced 15º away from each other away
from center and 1 on each side. The same
configuration is used in the back. This
configuration provides a full 360º sweep of its
environment [ActivMedia 2002].
 The ActivMedia AmigoBot has a single
array of eight sonar. Six of the eight sonar are
positioned in the front of the robot and 2 are
positioned in the rear providing a full 360º range
of sensing. Two sonar units are positioned 12º
away from center, two are positioned 44ºaway
from center and the last two, in the front, are
positioned 90º away from center. The two rear
sonar units are positioned 144º away from center
(front) [ActivMedia 2001].
 The comparison of hardware
capabilities is important to establish baseline
capabilities of each robot. A minimal sonar
comparison is shown in Table 1. In this case,
each robot has a full 360º sweep of its
environment, but the differentiating factor is the
range that each robot can detect within its
environment. Each robot has a lower bound of
6” but the Nomad has a greater ability to detect,

with a maximum available range of 35’ , than the
Amigobot with an maximum range of only 10’ .

 Sonar Sweep SonarRange
Nomad 360 6” – 35’
AmigoBot 360 6” – 10’
Pioneer 360 6” – 21’

Table 1: Hardware Comparison

 The applied reasoning, within an
organizations perspective, suggests that the
Nomad has a higher capability to perform some
functions requiring sonar than the AmigoBot or
the Pioneer. This will provide a baseline level of
reasoning to determine basic capabilities for
organization and reorganization based on
individual robotic physical abilities.

Operating System Architecture
Operating systems support is critical for
designing and evaluating the portability of our
software architecture. The first step is to
determine what systems will be required to
implement the architecture and the second step is
to determine the target platforms supported.
 The Nomad robots operate on a number
of operating systems and hardware platforms,
including most Unix and Linux distributions as
well as being compilable, in a limited sense, for
Win32. Red Hat Linux 7.X is used as the
operating system for our development and one of
the platforms for deployment.
 The Pioneer and AmigoBot run
primarily on the Linux and Win32 operating
system platforms.

Software
The overall design idea was to look initially for
the intersection points of the selected robots to
provide a generic robotic interface that will
support autonomously configurable robotic
organizations. This requires independent
selection of a robot based on its capabilities, not
based on the model and physical configuration of
the robot. The organization has to possess the
intelligence, through design, to select the most
appropriate agent to participate in an
organization by matching the organizational
requirements with the ability to participate in a
role. In the previous section, we discussed the
hardware capabilities inherent in each robot. In
this section, we will discuss the software choices
and design used to implement our architecture.

 The initial step to design a generic
architecture is to consider the factors existing in
the architectures and platforms to be abstracted
into a generic platform. In this case we must
examine the pre-existing platforms of the
Nomadic and ActivMedia robots used in this
project.
 The Nomadic Robots can either be
programmed in C or Lisp and have an open
source code base available. The ActivMedia
robots have several choices for development;
Colbert, Saphira or Aria. We chose Aria because
we could access the source code and extend its
native C++ code base. It was important for us to
access the source code for each robot instance so
that we could first understand the actual robot

manipulation code and also extend the source for
our own purposes.
 Java was selected as the language of
choice due to portability between platforms,
networking capabilities and support for the Java
Native Interface (JNI) support of the C and C++
instances that required “wrapping” for each robot
model.
 The scope of the initial phase of this
project is to develop the generic operating
platform where an organization is abstracted
away from the hardware implementation. The
complete design is exhibited in Figure 6. The
parts within the scope of this project are the
Lower Level Functionality and the Interface
Layer.

Daemon

Server

Nomad
Robot

Nomad.c

Daemon

Pioneer
Robot

Aria.cpp

AgentMOM AgentTool

Server

Nclient.c

Nomad.so

Pioneer.cpp

Pioneer.so

Lower Level Functionality

Daemon

AmigoBot
Robot

Aria.cpp

Server

Amigo.cpp

AmigoBot.so

Daemon

Javelin
Robot

Server

Organization Reasoning High Level Functions Environmental Learning

Spin Connectors

Interface
Layer

Figure 6: Software Architecture

Lower Level Functionality
This segment was developed by first abstracting
basic robotic sensing and movement. Functions
such as move, turn, rotate were modeled without
regard for the actual implementation by any
actual robot interfaces. An example is the move
command:

Move(1000)

where the command will make a robot move
directly forward 1 meter (1000 mm).

Another example is for rotating around a center
point without moving in any direction:

Rotate(180)

where the parameter is in degrees. In this case
the robot will rotate 180º and finish with an
orientation directly opposite of where it started.
 The Lower Level Functions will call
interface functions from the Interface Layer.
The Lower Level Functionality layer knows

about the robotic instances and which specific
interface layer to contact, but hides all of this
information from the Higher Level Functions,
Organization Reasoning and Environmental
Learning components of the architecture.

Interface Layer
This layer connects to the Lower Level
Functionality to provide the abstraction interface
connection to the robot servers. This layer
actually wraps native C and C++ code using the
Java Native Interface (JNI).

AgentMOM
AgentMOM is a framework to construct multi-
agent systems. It is used as a standard
communications protocol between agents to
establish conversations. Each agent will have a
message handler to receive messages and a
conversation object to send messages and
communicate with other agents [DeLoach 2000].

AgentTool
AgentTool is an implementation of a Multi-
agents Systems Engineering methodology used
for the design of cooperative, multi-agent
systems. In our case, we used the tool to develop
the fundamental components of the organization
such as goals, sub-goals and tasks [DeLoach and
Wood 2001] [DeLoach 2001].

Spin
The Spin verifier software is included in the
AgentTool 2.0 distribution package and will be
used for modeling, testing and verifying
specifications created in AgentTool to represent
the organizational model.

Connectors
This component represents interfaces to systems
not yet defined. It has no specific purpose until a
system would need to interface the architecture
instance and cannot communicate via the
AgentMOM module.

Organization Reasoning
The organizational reasoning module will use the
structural information from AgentTool to create
the organization instance. The organizational
instance will control the creation of a team, the
team state and will monitor if reorganization is
necessary to optimize the execution of the group.

High Level Functions
The High Level Functionality module contains
algorithms for mapping, search and other multi-
robotic functions, where multiple lower level
type functions are assembled to create a higher
level capability.

Environmental Learning
Learning from the environment is the highest
level function considered in the architecture.
The architecture will use reinforcement learning
and probabilistic techniques to drive the
organization and higher level functions to act in
a rational manner.

Implementation

The architecture was successfully implemented
using the Nomad Scout Robots, the ActivMedia
Pioneer robots and the AmigoBots. The
operating systems used to operate the
architecture are Red Hat Linux 7.X, Windows
2000, Windows 98, Windows XP Professional
and Sun OS. Java version 1.3X was initially
used and then we upgraded to 1.4 when it was
released.

Conclusions

Although this research is preliminary, the results
from research, development and implementation
of the Lower Level Functionality and Interface
Layer architecture is very promising. We have
proven the ability to abstract away the need for a
simple organization to know about which robot
instance is chosen to perform a specific task.
 The architecture was used to implement
several successful test groups, although the
didn’ t have the higher level function to
reorganize based on sub-optimal conditions, they
did successfully execute goals scenarios in the
domains of search and rescue, mapping, and
inter-robot physical coordination.
 There are some issues that surfaced
during the initial implementation scenarios and
test. There were problems with using threading
on top of the communications protocols, but the
issues were solved by minimal reconstruction of
threading algorithms and re-testing.
 All other failures or problems can be
attributed to environmental sensing errors such
as sonar unit failure. Although not necessarily
the fault of the interface layers, we will develop
additional algorithms to alleviate these problems.

Future Work

Since we are in the beginning of a long project
there is a great deal or work remaining to
successfully implement the entire architecture.
The following is a list of major areas to research,
develop and implement. They are not listed in
order of importance or significance.
• Extend the architecture, breadth-wise, to

include additional robots families.
• Extend the architecture, depth-wise, to

include additional common functionality
shared between robotic families abstracting
hardware and computational capabilities.

• Test the software with additional and more
extensive cooperative robotics scenarios and
goal domains.

• Test the architecture with the entire families
of Nomadic and ActivMedia robots.

• Complete development of all upper level
functionality such as Organization
Reasoning, High-Level Functions and
Environmental Learning Modules.

References

Shoham, Y. and Tennenholtz, M. 1995. On
Social Laws for Artificial Agent Societies: Off
Line Design. Artificial Intelligence Vol. 73 231-
252.

Nomadic Technologies, Inc. July 12, 1999.
Nomad Scout User’s Manual, Mountain View,
California.

Nomadic Technologies, Inc. March 11, 1997.
Nomad Scout User’s Manual, Mountain View,
California.

ActivMedia. 2001. AmigoBot User’s Guide.
Version 1.7.

ActivMedia. 2002.
http://www.activrobots.com/ROBOTS/specs.htm

Deloach, S. 2000. agentMom User’s Manual.
Graduate School of Engineering and
Management, Air Force Institute of Technology,
Wright-Patterson Airforce Base, Ohio.

DeLoach, S., Matson, E. and Li, Y. May 2002.
"Applying Agent Oriented Software Engineering
to Cooperative Robotics," Proceedings of the
The 15th International FLAIRS Conference

(FLAIRS 2002). pp. 391 - 396. Pensacola,
Florida.

DeLoach, S., Wood, M. and Sparkman,S. June
2001. Multiagent Systems Engineering, The
International Journal of Software Engineering
and Knowledge Engineering, Volume 11 no. 3.

DeLoach,S and Wood, M. 2001. Developing
Multiagent Systems with agentTool. in
Intelligent Agents VII. Agent Theories
Architectures and Languages, 7th International
Workshop (ATAL 2000, Boston, MA, USA,
July 7-9, 2000), C. Castelfranchi, Y.
Lesperance (Eds.). Lecture Notes in Computer
Science. Vol. 1986, Springer Verlag, Berlin.

DeLoach, S. 2001. Analysis and Design using
MaSE and agentTool, Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive
Science Conference (MAICS 2001). Miami
University, Oxford, Ohio.

